
C++/C

Lecture: Andrei Doncescu
FILS-IPB

Outline

 Fundamentals of C++

Class & inheritance

Overloading & overriding

 Templates, Error handling,…

2

Reference C/C++

 The C Programming Language

 Brian Kernighan & Denis Ritchie

 The C++ Programming Language

 Bjarne Stroustrup

3

C/C++ Compilers

 Differences between the compilers Windows and Linux

 Linux

 The compiler C the most used is GCC

 The equivalent C++ is G++

 Windows

GCC/G++ exit with Cygwin and MinGW

 Differents IDE exist and propose their own compiler

Microsoft Visual Studio with CL

Borland C++ Builder / Turbo C++ / Borland Developper
Studio avec BCC32

Code Blocks / Dev-C++ with MinGW

4

 Differences between the compilers Windows and Linux

Equivalences Linux / Windows

Linux/GCC Windows/Visual C++

Object Files .o .obj

Static Library

.a .lib

Dynamiv Library

.so .dll

Executed - .exe

5

An example

#include<iostream.h>

int main()

{

int i=0;

double x=2.3;

char s[]="Hello";

cout<<i<<endl;

cout<<x<<endl;

cout<<s<<endl;

return 0;

}

6

C Basics

Variables, Identifiers, Assignments,

Input/Output

Variables

 variable can hold a number or a data of other types, it

always holds something. A variable has a name

 the data held in variable is called value

 variables are implemented as memory locations and

assigned certain memory address. The exact address

depends on computer and compiler.

12.5

32

'c'

y

Temperature

Letter

1001
1002
1003
1004
1005
1006
1007

-Number
1008
1009

Identifiers

 identifier – name of a variable or any other named construct

 identifier must start with a letter or underscore symbol (_), the rest

of the characters should be letters, digits or underscores

 the following are legal identifiers:

x x1 x_1 _abc sum RateAveragE

 the following are not legal identifiers. Why?

13 3X %change data-1 my.identifier a(3)

 C++ is case sensitive:

MyVar and myvar are different identifiers

Identifier Style

 careful selection of identifiers makes your program clearer

 identifiers should be

 short enough to be reasonable to type (single word is norm)

 standard abbreviations are acceptable

 long enough to be understandable

 two styles of identifiers

 C-style - use abbreviations and underscores to separate the words, never use
capital letters for variables

 Camel Case - if multiple words: capitalize, do not use underscores

variant: first letter lowercased

 pick style and use consistently

 ex: Camel Case 1 C-style Camel Case 2

Min min min

Temperature temperature temperature

CameraAngle camera_angle cameraAngle

CurrentNumberPoints cur_point_nmbr currentNumberPoints

Keywords

keywords are identifiers reserved as part of the language

int, return, float, double

 cannot be used by the programmer to name things

 consist of lowercase letters only

 have special meaning to the compiler

Keywords

asm do if return typedef

auto double inline short typeid

bool dynamic_cast int signed typename

break delete long sizeof union

case else mutable static unsigned

catch enum namespace static_cast using

char explicit new struct virtual

class extern operator switch void

const false private template volatile

const_cast float protected this wchar_t

continue for public throw while

default friend register true union

delete goto reinterpret_cast try unsigned

Variable Declarations

 before use, every variable in C++ program needs to be declared

 type – the kind of data stored in a variable

 declaration – introduces a variable to a compiler

 a variable declaration specifies

 type

 name

 declaration syntax:

 two commonly used numeric types are:

 int - whole positive or negative numbers:

1,2, -1,0,-288, etc.

 double - positive or negative numbers with fractional part:

1.75, -0.55

 example declarations:

int numberOfBars;

double weight, totalWeight;

type id, id, ..., id;

list of one or

more identifiers

Declaration Location,

Initial Value

 a variable should be declared as close to its use as possible

 variable contains a value after it is declared

 until assigned, this value is arbitrary

Assignment

 assignment statement is an order to the computer to set the value of the

variable on the left hand side of equal sign to what is written on the right

hand side

 it looks like a math equation, but it is not

 example:

numberOfBars = 37;

totalWeight = oneWeight;

totalWeight = oneWeight * numberOfBars;

numberOfBars = numberOfBars + 3;

variable = value;

Output

 to do input/output, at the beginning of your program insert
#include <iostream>

using std::cout; using std::endl;

 C++ uses streams for input an output

 stream – a sequence of data to be read (input stream) or a sequence of
data generated by the program to be output (output stream)

 variable values as well as strings of text can be output to the screen using
cout (console output):

cout << numberOfBars;

cout << ”candy bars”;

cout << endl;

 << is called insertion operator, it inserts data into the output stream, anything
within double quotes will be output literally (without changes) - ”candy bars
taste good”

 note the space before letter “ c” - the computer does not insert space on its
own

 keyword endl tells the computer to start the output from the next line

More Output

 several insertion operators can be stacked together in a single

statement:

cout << numberOfBars << ”candy bars\n”;

 symbol \n at the end of the string serves the same purpose as

endl

 arithmetic expressions can be used with the output statement:

cout << ”The total cost is $” << (price + tax);

Input
 cin - (stands for Console INput) – stream used to give variables user-input values

need to add the following to the beginning of your program
using std::cin;

 when the program reaches the input statement it just pauses until the user types something
and presses <Enter> key

 therefore, it is beneficial to precede the input statement with some explanatory output
called prompt:

cout << ”Enter the number of candy bars”;

cout << ”and weight in ounces.\n”;

cout << ”then press return\n”;

cin >> numberOfBars >> oneWeight;

 >> is extraction operator

 dialog – collection of program prompts and user responses

 input operator (similar to output operator) can be stacked

 input token – sequence of characters separated by white space (spaces, tabs, newlines)

 the values typed are inserted into variables when <Enter> is pressed, if more values needed
- program waits, if extra typed - they are used in next input statements if needed

Lexical elements

 Identifiers: case sensitive

 nCount, strName, Strname

 Reservered words

 if, else, while

 Operators

 +, ==, &, &&, ‘? :’

 Preprocessor Directives

 #include, #if,

20

Primitive Data Types
Name Size (bytes) Description Range

char 1
character or eight bit integer signed: -128..127

unsigned: 0..255

short 2
sixteen bit integer signed: -32768..32767

unsigned: 0..65535

long 4
thirty-two bit integer signed: -231 .. 231-1

unsigned: 0 .. 232

int * (4)
system dependent, likely four

bytes or thirty-two bits

signed: -32768..32767

unsigned: 0..65535

float 4
floating point number 3.4e +/- 38

(7 digits)

double 8
double precision floating point 1.7e +/- 308

(15 digits)

long double 10
long double precision floating

point

1.2e +/- 4932

(19 digits)

bool 1
boolean value

false → 0, true → 1

{0,1}

21

Hello World!

Notion of namespace

Operator

22

Namespace

Not necessary to use std::

23

Variables declaration & assignments

#include<iostream>

using namespace std;

int main()

{

 int i,j,k;

 int l;

 i=10;

 j=k=l=20; //j=(k=(i=20))

 cout<<"i="<<i<<endl;

 cout<<"k="<<k<<endl;

 cout<<"l="<<l<<endl;

 i+=10; //i = i + 10;

 i++; //i = i + 1;

 cout << "i="<<i<<endl;

}

24

Expressions

 Boolean expressions
 == , != , >, >=, < , <=, …

 && , || …

 Arithmetic expression
 + , - , *, / ,% …

 &, | …

 Assignment
 =

 ? :

 Expressions have values

25

Example of expressions

 7 && 8

 7 & 8

 7 / 8

 7 % 8

 7 >> 1

(i > 127 ? true : false)

(i > 127 ? i-127 : i)

26

27

Statements

 Assignments

 Conditional

 Loop

 Goto,break,continue

 Compound statement

28

Conditional

if A

B ;

if A

B

else

C

If (I > 10) {cout<<“ > 10”;} else {cout<<“ < 10”;}

29

Trick

 What is the difference?

 If (i==1) ……

 If (i=1)……

A better way to compare a variable with a constant

if (constant==variable)..
if (10 == i)…..

30

Trick

 If (i) ……

 If (1) …….

31

Loop, for

 for (A;B;C) D

 1 execute A

 2 execute B

 3 if the value of B is false(==0), exit to D

 4 execute C, goto 2

 for(i=0; i<n; i++){cout << A[i]<<endl;}

 for(;;) {…}

32

Loop, while & do while

 while A B

 While (i>10) { x-=4;i--;}

 do A while B

 do {x -=4;i--} while (i>10);

33

Goto,break,continue

For (; ;){

…

If (a==b) break;

…

}

C

For (;;){

{B}

If (a==b) continue;

{A}

}

34

switch

switch (grade){

case ‘A’:++nACount;break;

case ‘B’:++nBCount;break;

case ‘C’:++nCCount;break;

case ‘D’:++nDCount;break;

default: cout<<“Something wrong\n”;break;

}

Try: write a program using the code segment. Then
remove several of the ‘break’s and see the difference

35

functions

 Can not define a function within another function*

 Parameters passed by value or reference

36

Example

 #include<iostream>
 using namespace std;

 int square (int);
 int main ()
 {
 int z = 4;
 cout << square(z);
 }
 int square (int x)
 { x = (x*x); return x; } 6.cpp

37

Pass by value

 void swap1(int x,int y)

 {

 int temp=x;

 x = y;

 y=temp;

 }

38

Pass by reference

 void swap2(int& x,int& y)

{

int temp=x;

x = y;

y=temp;

}

39

To pass a variable by reference, we simply declare the

function parameters as references rather than as normal

variables:

void addOne(int &y) // y is a reference variable

{

y = y + 1;

}

 /* exchange values */

#include <stdio.h>

void swap(float *x, float *y);

main()

{

float x, y;

 printf("Please input 1st value: ");

 scanf("%f", &x);

 printf("Please input 2nd value: ");

 scanf("%f", &y);

 printf("Values BEFORE 'swap' %f, %f\n", x, y);

 swap(&x, &y); /* address of x, y */

 printf("Values AFTER 'swap' %f, %f\n", x, y);

 return 0;

 }

/* exchange values within function */

 void swap(float *x, float *y)

 {

 float t;

 t = *x; /* *x is value pointed to by x */

 *x = *y;

 *y = t;

 printf("Values WITHIN 'swap' %f, %f\n", *x, *y); }

40

References

Pass by reference

41

Array in C/C++

 Definition

 Int a[10]; //int[10] a;

 Char b[12];

 No bounds checking

 The cause of many problems in C/C++

42

Array

 Int x[7];

 Int score[3][3]={{1,2,3},{2,3,4}{3,5,6}};

43

Array: confusing

 What is the result of the program.

 So, array is passed by reference?

Exo 8 :

44

Name of space

#include <iostream>

namespace balle

{

double centre_x=50, centre_y=0;
int rayon=5;

void deplacer (double x, double y)

{
centre_x+=x;
centre_y+=y;

}}

void test_bale()

{

balle::deplacer(1,2,3);

}

45

Pointers

Why C/C++ is a good Programming Language ?

46

Pointers

A pointer is a reference to another variable (memory
location) in a program

Used to change variables inside a function (reference
parameters)

Used to remember a particular member of a group (such
as an array)

Used in dynamic (on-the-fly) memory allocation (especially
of arrays)

Used in building complex data structures (linked lists,
stacks, queues, trees, etc.)

47

Outline

Pointers

Basics

Variable declaration, initialization, NULL pointer

& (address) operator, * (indirection) operator

Pointer parameters, return values

Casting points, void *

Arrays and pointers

1D array and simple pointer

Passing as parameter

Dynamic memory allocation

calloc, free, malloc, realloc

Dynamic 2D array allocation (and non-square arrays)

48

Pointer Basics

Variables are allocated at addresses in computer memory (address
depends on computer/operating system)

Name of the variable is a reference to that memory address

A pointer variable contains a representation of an address of another
variable (P is a pointer variable in the following):

101

V PName

Abstract

Representation

Concrete

Representation

Address

4 bytes for

int value 101

4 bytes for

mem address v

v (some value) p (some value)
int V = 101;

int *P = &V;

49

Pointer Variable Definition

Basic syntax: Type *Name

Examples:

int *P; /* P is var that can point to an int var */

float *Q; /* Q is a float pointer */

char *R; /* R is a char pointer */

Complex example:

int *AP[5]; /* AP is an array of 5 pointers to ints */

more on how to read complex declarations later

50

Address (&) Operator

The address (&) operator can be used in front of any
variable object in C -- the result of the operation is
the location in memory of the variable

Syntax: &VariableReference
Examples:

int V;
int *P;
int A[5];
&V - memory location of integer variable V
&(A[2]) - memory location of array element 2 in array A
&P - memory location of pointer variable P

51

Pointer Variable Initialization/Assignment

NULL - pointer lit constant to non-existent
address
used to indicate pointer points to nothing

Can initialize/assign pointer vars to NULL or use
the address (&) op to get address of a
variable
variable in the address operator must be of the

right type for the pointer (an integer pointer points
only at integer variables)

Examples:
int V;

int *P = &V;

int A[5];

P = &(A[2]);

52

Indirection (*) Operator

A pointer variable contains a memory address

To refer to the contents of the variable that the pointer
points to, we use indirection operator

Syntax: *PointerVariable

Example:

int V = 101;

int *P = &V;

/* Then *P would refer to the contents of the variable V (in this
case, the integer 101) */

printf(“%d”,*P); /* Prints 101 */

53

Pointer Sample

int A = 3;

int B;

int *P = &A;

int *Q = P;

int *R = &B;

printf(“Enter value:“);

scanf(“%d”,R);

printf(“%d %d\n”,A,B);

printf(“%d %d %d\n”,

*P,*Q,*R);

Q = &B;

if (P == Q)

printf(“1\n”);

if (Q == R)

printf(“2\n”);

if (*P == *Q)

printf(“3\n”);

if (*Q == *R)

printf(“4\n”);

if (*P == *R)

printf(“5\n”);

54

Reference Parameters

To make changes to a variable that exist after a function
ends, we pass the address of (a pointer to) the variable
to the function (a reference parameter)

Then we use indirection operator inside the function to
change the value the parameter points to:
void changeVar(float *cvar) {

*cvar = *cvar + 10.0;

}

float X = 5.0;

changeVar(&X);

printf(“%.1f\n”,X);

55

Pointer Return Values

A function can also return a pointer value:
float *findMax(float A[], int N) {

int I;

float *theMax = &(A[0]);

for (I = 1; I < N; I++)

if (A[I] > *theMax) theMax = &(A[I]);

return theMax;

}

void main() {

float A[5] = {0.0, 3.0, 1.5, 2.0, 4.1};

float *maxA;

maxA = findMax(A,5);

*maxA = *maxA + 1.0;

printf("%.1f %.1f\n",*maxA,A[4]);

}

56

Pointers to Pointers

A pointer can also be made to point to a pointer
variable (but the pointer must be of a type that
allows it to point to a pointer)

Example:

int V = 101;

int *P = &V; /* P points to int V */

int **Q = &P; /* Q points to int pointer P */

printf(“%d %d %d\n”,V,*P,**Q); /* prints 101 3 times */

57

Pointer Types

Pointers are generally of the same size (enough bytes
to represent all possible memory addresses), but it is
inappropriate to assign an address of one type of
variable to a different type of pointer

Example:

int V = 101;

float *P = &V; /* Generally results in a Warning */

Warning rather than error because C will allow you to
do this (it is appropriate in certain situations)

58

Casting Pointers

When assigning a memory address of a variable of one type to a
pointer that points to another type it is best to use the cast
operator to indicate the cast is intentional
(this will remove the warning)

Example:

int V = 101;

float *P = (float *) &V; /* Casts int address to float * */

Removes warning, but is still a somewhat unsafe thing to do

59

The General (void) Pointer

A void * is considered to be a general pointer

No cast is needed to assign an address to a void *

or from a void * to another pointer type

Example:

int V = 101;

void *G = &V; /* No warning */

float *P = G; /* No warning, still not safe */

Certain library functions return void * results (more

later)

60

1D Arrays and Pointers

int A[5] - A is the address where the array starts (first
element), it is equivalent to &(A[0])

A is in some sense a pointer to an integer variable

To determine the address of A[x] use formula:

(address of A + x * bytes to represent int)

(address of array + element num * bytes for element size)

The + operator when applied to a pointer value uses the
formula above:

A + x is equivalent to &(A[x])

*(A + x) is equivalent to A[x]

61

1D Array and Pointers Example

float A[6] = {1.0,2.0,1.0,0.5,3.0,2.0};

float *theMin = &(A[0]);

float *walker = &(A[1]);

while (walker < &(A[6]))
{

if (*walker < *theMin)

theMin = walker;

walker = walker + 1;

}

printf("%.1f\n",*theMin);

62

1D Array as Parameter

When passing whole array as parameter use syntax
ParamName[], but can also use *ParamName

Still treat the parameter as representing array:
int totalArray(int *A, int N) {

int total = 0;

for (I = 0; I < N; I++)

total += A[I];

return total;

}

For multi-dimensional arrays we still have to use the
ArrayName[][Dim2][Dim3]etc. form

63

Understanding Complex

Declarations

Right-left rule: when examining a declaration, start at the
identifier, then read the first object to right, first to left,
second to right, second to left, etc.

objects:

Type

* - pointer to

[Dim] - 1D array of size Dim

[Dim1][Dim2] - 2D of size Dim1,Dim2

(Params) - function

Can use parentheses to halt reading in one direction

64

Declarations Examples

int A A is a int

float B [5] B is a 1D array of size 5 of floats

int * C C is a pointer to an int

char D [6][3] D is a 2D array of size 6,3 of chars

int * E [5] E is a 1D array of size 5 of

pointers to ints

int (* F) [5] F is a pointer to a

1D array of size 5 of ints

int G (…) G is a function returning an int

char * H (…) H is a function returning

a pointer to a char

65

Program Parts

Space for program code includes space for
machine language code and data

Data broken into:

space for global variables and constants

data stack - expands/shrinks while program runs

data heap - expands/shrinks while program runs

Local variables in functions allocated when
function starts:

space put aside on the data stack

when function ends, space is freed up

must know size of data item (int, array, etc.) when
allocated (static allocation)

Free

Space

Machine

Code

Global

Variables,

Constants

Data

Stack

Data

Heap

66

Limits of Static Allocation

What if we don’t know how much space we will need
ahead of time?

Example:
ask user how many numbers to read in

read set of numbers in to array (of appropriate size)

calculate the average (look at all numbers)

calculate the variance (based on the average)

Problem: how big do we make the array??
using static allocation, have to make the array as big as the

user might specify (might not be big enough)

67

Dynamic Memory Allocation

Allow the program to allocate some variables
(notably arrays), during the program, based on
variables in program (dynamically)

Previous example: ask the user how many numbers to
read, then allocate array of appropriate size

Idea: user has routines to request some amount of
memory, the user then uses this memory, and returns
it when they are done

memory allocated in the Data Heap

68

Memory Management Functions

calloc - routine used to allocate arrays of memory

malloc - routine used to allocate a single block of
memory

realloc - routine used to extend the amount of space
allocated previously

free - routine used to tell program a piece of memory
no longer needed

note: memory allocated dynamically does not go away at
the end of functions, you MUST explicitly free it up

69

Array Allocation with calloc

prototype: void * calloc(size_t num, size_t esize)

size_t is a special type used to indicate sizes, generally an
unsigned int

num is the number of elements to be allocated in the array

esize is the size of the elements to be allocated

generally use sizeof and type to get correct value

an amount of memory of size num*esize allocated on heap

calloc returns the address of the first byte of this memory

generally we cast the result to the appropriate type

if not enough memory is available, calloc returns NULL

70

calloc Example

float *nums;

int N;

int I;

printf(“Read how many numbers:”);

scanf(“%d”,&N);

nums = (float *) calloc(N, sizeof(float));

/* nums is now an array of floats of size N */

for (I = 0; I < N; I++) {

printf(“Please enter number %d: “,I+1);

scanf(“%f”,&(nums[I]));

}

/* Calculate average, etc. */

71

Releasing Memory (free)

prototype: void free(void *ptr)

memory at location pointed to by ptr is released (so

we could use it again in the future)

program keeps track of each piece of memory

allocated by where that memory starts

if we free a piece of memory allocated with calloc,

the entire array is freed (released)

results are problematic if we pass as address to free an

address of something that was not allocated

dynamically (or has already been freed)

72

The Importance of free

void problem() {

float *nums;

int N = 5;

nums = (float *) calloc(N, sizeof(float));

/* But no call to free with nums */

} /* problem ends */

When function problem called, space for array of size N allocated,
when function ends, variable nums goes away, but the space
nums points at (the array of size N) does not (allocated on the
heap) - furthermore, we have no way to figure out where it is)

Problem called memory leakage

73

Array Allocation with malloc

prototype: void * malloc(size_t esize)

similar to calloc, except we use it to allocate a single
block of the given size esize

as with calloc, memory is allocated from heap

NULL returned if not enough memory available

memory must be released using free once the user is
done

can perform the same function as calloc if we simply
multiply the two arguments of calloc together

malloc(N * sizeof(float)) is equivalent to

calloc(N,sizeof(float))

74

Increasing Memory Size with realloc

prototype: void * realloc(void * ptr, size_t esize)

ptr is a pointer to a piece of memory previously
dynamically allocated

esize is new size to allocate (no effect if esize is smaller
than the size of the memory block ptr points to
already)

program allocates memory of size esize,

then it copies the contents of the memory at ptr to the
first part of the new piece of memory,

finally, the old piece of memory is freed up

75

Realloc: Example

float *nums;

int I;

nums = (float *) calloc(5, sizeof(float));

/* nums is an array of 5 floating point values */

for (I = 0; I < 5; I++)

nums[I] = 2.0 * I;

/* nums[0]=0.0, nums[1]=2.0, nums[2]=4.0, etc. */

nums = (float *) realloc(nums,10 * sizeof(float));

/* An array of 10 floating point values is allocated, the first
5 floats from the old nums are copied as the first 5 floats
of the new nums, then the old nums is released */

76

Dynamically Allocating 2D Arrays

Can not simply dynamically allocate 2D

(or higher) array

Idea - allocate an array of pointers (first

dimension), make each pointer point

to a 1D array of the appropriate size

Can treat result as 2D array

0

4

3

2

1

0 321

A

77

Dynamically Allocating 2D Array

float **A; /* A is an array (pointer) of float

pointers */

int I;

A = (float **) calloc(5,sizeof(float *));

/* A is a 1D array (size 5) of float pointers */

for (I = 0; I < 5; I++)

A[I] = (float *) calloc(4,sizeof(float));

/* Each element of array points to an array of 4 float variables */

/* A[I][J] is the Jth entry in the array that the Ith member of A
points to */

78

Non-Square 2D Arrays

No need to allocate square 2D arrays:

float **A;

int I;

A = (float **) calloc(5,

sizeof(float *));

for (I = 0; I < 5; I++)

A[I] = (float **)

calloc(I+1,

sizeof(float));

0

4

3

2

1

0 321

A

4

79

Pointer

 Example

 int *p, char * s;

 The value of a pointer is just an address.

 Why pointers?

 Dereferencing (*)

 Get the content

 Referencing (&)

 Get the address of

80

Examples of pointer

 int *p;

 int a;

a=10;

p=&a;

 *p=7;

 int b=*p;

You must initialize a pointer before you use it

81

arithmetic of pointer

 Suppose n is an integer and p1 and p2 are pointers

 p1+n

 p1-n

 p1-p2

82

Strings

 C

 A string is an array of chars end with ‘\0’

 char name[]=“ABC”;

 char school_name[]={‘N’,’Y’,’U};

 C++ library: string class

83

Dynamic allocating memory

new , delete

 int *p=new int;

 int *p=new int [12];

delete p;

delete []p;

malloc,…

malloc.c

#include <stdlib.h> /* using ANSI C standard libraries */

#include <malloc.h>

main()

{ char *string_ptr; string_ptr = malloc(80); }

84

 Using External Libraries

File .c/.cpp

File .obj

File .exe

File .lib

File .dll

Compilation

In Used

Link Edition

Grouping

Link Edition

Link Edition

85

From C to Assembler

 $ gcc -v

 $ hexdump –C a.out

 $ gcc –S prog1.c

 $ ldd a.out //

86

cdir.c

/* cdir.c program to emulate unix cd command */

/* cc -o cdir cdir.c */

#include<stdio.h>

/* #include<sys/dir.h> */

main(int argc,char **argv)

{

if (argc < 2)

{ printf("Usage: %s <pathname>\n",argv[0]);

exit(1);

}

if (chdir(argv[1]) != 0)

{ printf("Error in \"chdir\"\n");

exit(1);

}

}

87

Object-Oriented programming in C++

Classes as units of encapsulation

 Information Hiding

 Inheritance

 polymorphism and dynamic dispatching

 Storage management

multiple inheritance

Presentation

 C is included (99%) in C++

 The C++ is an oriented programming language (classes, inheritance,

polymorphisme… like Java).

89

OBJECT ORIENTED PROGRAMMING (OOP)

 Object-oriented programming is a programming paradigm that
uses abstraction (in the form of classes and objects) to create
models based on the real world environment.

 An object-oriented application uses a collection of objects, which
communicate by passing messages to request services.

 Objects are capable of passing messages, receiving messages,
and processing data.

 The aim of object-oriented programming is to try to increase the
flexibility and maintainability of programs. Because programs
created using an OO language are modular, they can be easier
to develop, and simpler to understand after development.

PROCEDURAL PROGRAMMING

 Procedural programming is a classic programming
where the program language is used to tell the
computer EXACTLY what to do - step by step.

 A program in a procedural language is a list of
instruction. That is, each statement in the language tell
the computer to do something.

 The focus of procedural programming is to break down
a programming task into a collection of variables, data
structures, and subroutines.

PROBLEMS WITH PROCEDURAL PROGRAMMING

1. In Procedural language the programmers concentration is
on problem and its solution so we need another approach
where the developers study the entire system and
developed.

2. After writing the programmers 10,000 to 1,00,000 lines of
code in procedural language they are loosing their control
on the code. they cant identify the errors easily. later if any
modifications are there in the code it is difficult to modify.

behind these above problems there are further two more
problems with procedural programming i.e.

first, in PPL functions are unrestricted access to global data.

second, unrelated functions and data.

Lets examines these two problems…

1. In PPL, functions are unrestricted access to global

data.

 In procedural program, there are two kinds of data.
Local data (that is hidden inside a function and used
exclusively by the function), and Global data (that can
be accessed by any function in the program).

 In a large program, there are many functions and global
data items. The problem with the procedural paradigm
is that this leads to even larger number of potential
connections b/w functions and data as shown in
following Fig.

Global Data Global Data Global Data

Function Function Function Function

 This large number of connections causes problems in
several ways.

 First, it makes a program structure difficult to conceptualize.

 Second, it makes the program difficult to modify. (because a
change made in global data item may result in rewriting all
the functions that access that item.)

When data items are modified in a large program it may not be
easy to tell which functions access the data, and even when
we figure this out, modification to the functions may cause
them to work incorrectly with other global data items.

Everything is related to every thing else, so modification
anywhere has far-reaching and often unintended ,
consequences.

The second and most important problem with the procedural
paradigm is that its arrangement of separate data and
functions does a poor job of modeling things in the real world.

Object-Oriented Programming vs. Procedural

Programming

 Programs are made up of modules, which are parts of a program that can be
coded and tested separately, and then assembled to form a complete
program.

 In procedural languages (i.e. C) these modules are procedures, where a
procedure is a sequence of statements, such as assignments, tests, loops and
invocations of sub procedures.

 The design method used in procedural programming is called Top Down
Design. This is where you start with a problem (procedure) and then
systematically break the problem down into sub problems (sub
procedures). This is called functional decomposition, which continues until a
sub problem is straightforward enough to be solved by the corresponding sub
procedure.

 The difficulties with this type of programming, is that software maintenance can
be difficult and time consuming. When changes are made to the main
procedure (top), those changes can cascade to the sub procedures of main,
and the sub-sub procedures and so on, where the change may impact all
procedures in the pyramid.

Object-Oriented Programming vs. Procedural

Programming cont…

 One alternative to procedural programming is object

oriented programming.

Object oriented programming is meant to address the

difficulties with procedural programming.

In object oriented programming, the main modules in a

program are classes, rather than procedures. The object-

oriented approach lets you create classes and objects that

model real world objects.

CONCEPTS OF OOP

 Let’s briefly examine a few of the most elements of object-
oriented programming.

 CLASSES: A class is an object-oriented concept which is
used to describe properties and behavior of a real world
entity.

 A class is a combination of state (data) and behavior
(methods).

 In object-oriented languages, a class is a data type,
and objects are instances of that data type.

 In other words, classes are prototypes from which
objects are created.

For example, we may design a class Human, which is a collection of all
humans in the world. Humans have state, such as height, weight,
and hair color. They also have behaviors, such as walking, talking,
eating.

All of the state and behaviors of a human is encapsulated (contained)
within the class human.

Class name

Attributes

Operations

Human

Name

Hair color

talking

walking

Representation of class

Circle

Radius

center

Calculate area()

Draw()

What is an Object?

Real-world objects have attributes and behaviors.

Examples:

 Dog

 Attributes: breed, color, hungry, tired, etc.

 Behaviors: eating, sleeping, etc.

 Bank Account

 Attributes: account number, owner, balance

 Behaviors: withdraw, deposit

OBJECTS: An object is an instance of a class. An object can
communicate with other objects using messages. An object
passes a message to another object, which results in the
invocation of a method. Objects then perform the actions
that are required to get a response from the system.

 Data Members: A class contains data members. Data
members are used to store characteristics information of a real
world entity in a class.

 For example, name is the data member of the Human class.

 Fields/attributes and methods/operation are referred to as
class members.

 Fields and Methods: Objects in a class have a number of
shared properties/features/attributes.

 Fields are the variables contained in a class.

Methods are functions that represent the operations
associated with a particular class.

CONCEPTS OF OOP

Classes

The definitions of the attributes and methods of an object are

organized into a class. Thus, a class is the generic definition

for a set of similar objects (i.e. Person as a generic definition

for Jane, Mitch and Sue)

 A class can be thought of as a template used to create a set of objects.

 A class is a static definition; a piece of code written in a programming
language.

 One or more objects described by the class are instantiated at runtime.

 The objects are called instances of the class.

 INHERITANCE: One of the powerful features of c++ is
inheritance.

 In object-oriented programming, inheritance is a way to
form new classes using classes that have already been
defined.

 Inheritance lets you increase the functionality of previously
defined classes without having to rewrite the original class
declaration. This can be a greater time saver in writing
applications.

 POLYMORPHISM: In c++ you can declare two functions with
the same name provided they can be distinguished by the
number or type of arguments they take. This is called
function overloading. Function overloading is an example of
polymorphism, which means one thing serving several
purposes.

CONCEPTS OF OOP

 REUSEBILITY: Once a class has been written, created,
and debugged, it can be distributed to other
programmers for use in their own programs. This is called
reusability.

 It is similar to the way a library functions in procedural
language can be incorporated in different programs.

Struct:

struct person

{ long nId;

char strName[30];

int nAge;

float fSalary;

char strAddress[100];

char strPhone[20]; };

struct person a , b, c;

struct person *p;

104

union

union num

{

int x;

float y;

}

105

You are supposed to use only one of the

elements in union because they are all stored in

the same memory location. This is useful when

you want to store something that could be one

of several datatypes.

On the other hand, a struct has separate

memory locations for each of its elements and all

of these elements can be used at once.

Take the following case for example:

typedef struct foo {

int a;

char b;

} foo;

foo x;

typedef union bar {

int a;

char b;

} bar;

bar y;

x.a = 10; //OK

x.b = 'a'; //OK

y.a = 10; //OK

y.b = 'a'; //NOT OK

bar y;

y.a = 10;

y.b = 'a';

printf("%d %d", y.a, y.b);

Bank Example

 The "account" class describes the

attributes and behaviors of bank

accounts.

 The “account” class defines two state

variables (account number and

balance) and two methods (deposit

and withdraw).

class: Account

deposit()

withdraw()

balance:

number:

Bank Example - Cont’d

 When the program runs there will be

many instances of the account class.

 Each instance will have its own account

number and balance (object state)

 Methods can only be invoked .

balance: $240

number: 712

balance: $941

number: 036

balance: $19

number: 054

Instance #1

Instance #2

Instance #3

Encapsulation

When classes are defined, programmers can specify that

certain methods or state variables remain hidden inside the

class.

 These variables and methods are

accessible from within the class, but not

accessible outside it.

 The combination of collecting all the

attributes of an object into a single class

definition, combined with the ability to hide

some definitions and type information

within the class, is known as

encapsulation.

Hidden
State
Variables
and
Methods

Visible

Methods

Visible

Variables

Class

Definition

Graphical Model of an Object

State variables make up the nucleus of the object. Methods surround and

hide (encapsulate) the state variables from the rest of the program.

theBalance

acctNumber

accountNumber()

balance()Instance

variables

Methods

deposit()withdraw()

Structure of Object Oriented Program in c++

#include<iostream.h>

Class class-name

{

access-specifiers…

int i,j;

float f;

char ch;

double b;

access-specifiers…

void function-name()

{

statement 1;

statement 2;

}

}

main()

{

class-name.obj-name;

}

Header File

c
la

ss

Variables or fields

Function or Method

Object of class

Class members

More in a stucture: operations

struct box
{

double dLength,dWidth,dHeight;
double dVolume;

double get_vol()
{

return dLength * dWidth * dHeight;
}

}

111

Operator overloading

 Define new operations for operators (enable them to work with class

objects).

 + - * / = < > += -= *= /= << >> <<= >>= == != <= >= ++ -- % & ^ ! | ~ &= ^= |=

&& || %= [] () new delete

 Class date x ,y

 X+y x-y x>y, x&y

112

Classes

 Encapsulation of type and related operations

class point {

double x,y; // private data members

public:

point (int x0, int y0); // public methods

point () { x = 0; y = 0;}; // a constructor

void move (int dx, int dy);

void rotate (double alpha);

int distance (point p);

}

A class is a type : objects are instances

point p1 (10, 20); // call constructor with given arguments

point p2; // call default constructor

Methods are functions with an implicit argument

p1.move (1, -1); // special syntax to indicate object

// in other languages might write move (p1, 1, -1)

// special syntax inspired by message-passing metaphor:

// objects are autonomous entities that exchange messages.

Implementing methods

No equivalent of a body: each method can be defined separately

void point::rotate (double alpha) {

x = x * cos (alpha) - y * sin (alpha);

y = y * cos (alpha) + x * cos (alpha);

};

// x and y are the data members of the object on which the

// method is being called.

// if method is defined in class declaration, it is inlined.

Class

class box

{

double dLength,dWidth,dHeight;

double dVolume;

public:

double vol(){return dLength * dWidth * dHeight;}

}

116

Constructors

 One of the best innovations of C++

 special method (s) invoked automatically when an object of
the class is declared

point (int x1, int x2);

point ();

point (double alpha; double r);

point p1 (10,10), p2; p3 (pi / 4, 2.5);

 Name of method is name of class

 Declaration has no return type.

The target of an operation

 The implicit parameter in a method call can be retrieved
through this:

class Collection {

Collection& insert (thing x) { // return reference

… modify data structure

return *this; // to modified object

};

};

my_collection.insert (x1).insert (x2);

class

class box

{

double dLength,dWidth,dHeight;

double dVolume;

public:

double vol() ;

}

double box::vol()

{

return dLength * dWidth * dHeight;}

}

119
namespace cassebrique

{

classe Vector {

public:

/*constructor*/

Vector(double x, double y);

/*method*/

void newCoordonates(double x, double y);

void getCoordonates(double &x,double &y) const;

private:

double m_x;

double m_y;

};

};

Vector.hpp

Constructors

 A special member function with the same name of the class

 No return type (not void)

 Executed when an instance of the class is the created

120

Deconstructors

 A special member function with no parameters

 Executed when the class is destroyed

121

Static members

 Need to have computable attributes for class itself,
independent of specific object; e.g. number of objects
created.

 Static qualifier indicates that entity is unique for the class

static int num_objects = 0;

point () { num_objects++;}; // ditto for other constructors

Can access static data using class name or object
name:

if (point.num_objects != p1.num_objects) error ();

Classes

TestClass.cpp

TestClass.h

Main.cpp

123

Public vs. private

 Public functions and variables are accessible from anywhere the object is

visible

 Private functions and variable are only accessible from the members of the

same class and “friend”

 Protected

124

Inheritance

base derived

Public

inheritance

public public

protected protected

private N/A

Private

inheritance

public private

protected private

private N/A

Protected

inheritance

public protected

protected protected

private N/A

125

Constructor/Destructor and Surcharged

TestClass.cppTestClass.h

126

Initialisation

Member Initialisation

can be done in this way

127

Operators

TestClass.cpp
TestClass.h

128

Static members in class

 Static variables

 Shared by all objects

 Static functions

 Have access to static members only

 Static members can be accessed by the class name

 29.cpp 21.cpp

129

Résultat

Main.cpp

Operators130

Friend Fonctions

TestClass.h

131

11/04/2017 132

Friend Functions

TestClass.cpp

132

Functions Friends

Main.cpp

133

Inheritance

Classe Based

Derived Classes
Appel à un constructeur

spécifique de la classe de base

134

Classes abstraites

Abstract Based Classes

Derived Classes

135

Abstract Classes136

Empty constructor & Copy constructor

 Empty constructor

 The default constuctor with no parameters when an object is created

 Do nothing: e.g. Examp::Examp(){}

 Copy constructor

 Copy an object (shallow copy)

 The default consturctor when an object is copied (call by value,
return an object, initialized to be the copy of another object)

 22.cpp {try not to pass an object by value)

137

Virtual function & overriding

 Define a member function to be virtual

 Use pointer/reference/member functions to call virtual functions

 Dynamic binding

 Time consuming

 The constructor cannot be virtual

 Must be a member function

138

Pure virtual functions & abstract class

 Pure virtual functions

 A function declared without definition

 virtual ret_type func_name(arg_list)= 0;

 Abstract class

 A class contains one or more pure functions

 Can not be instantiated

 Can be used to define pointers

139

Template specialization

 An example from www.cplusplus.com

 template <> class class_name <type>

140

http://www.cplusplus.com/

Default value for templates

parameters

 template <class T = char> // With a default value.

 template <int Tfunc (int)> // A function as parameter.

 the implementation (definition) of a template class or function must be in

the same file as the declaration.

141

Analysis and Design Space

Analysis and Design Space - Cont’d

Use Cases

Use cases describe the basic business logic of an application.

 Use cases typically written in structured English or Diagrams

 Represent potential business situations of an application

 Describes a way in which a real-world actor – a person, organization, or external system –
interacts with the application.

For example, the following would be considered use cases for a

university information system:

 Enroll students in courses

 Output seminar enrolment lists

 Remove students from courses

 Produce student transcripts.

Use Cases Diagrams

Class Responsibility Collaborator Cards

 A CRC model is a collection of CRC cards that represent whole or part of

an application or problem domain

 The most common use for CRC models is to gather and define the user

requirements for an object-oriented application

 The next slide presents an example CRC model for a shipping/inventory

control system, showing the CRC cards as they would be placed

 Note the placement of the cards: Cards that collaborate with one another

are close to each other, cards that don’t collaborate are not near each

other

CRC Example

Methods and

Attributes

Class

Information

Collaborators

CRC Card Layout

Class Name:

Parent Class: Subclasses:

Attributes:

Responsibilities:

Collaborators (Sends Messages to):

Sequence Diagrams

Traditional sequence diagrams show:

 The objects involved in the use case

 The messages that they send each other

 Return values associated with the messages

Sequence diagrams are a great way to review your work as

they force you to walk through the logic to fulfill a use-case

scenario and match the responsibilities and collaborators in

CRC cards.

Sequence Diagrams

Class Diagrams

Class diagrams (object models) are the
mainstay

of OO modeling

 They are used to show both what the system will be able to do (analysis) and
how it will be built (design)

 Class diagrams show the classes of the system and their interrelationships

 Inheritance

 Aggregation

 Associations

Class Diagram

UML Models

Annexes

154

 "!" exclamation mark or exclamation point
apostrophe (’ ')
brackets ([], (), { }, ⟨ ⟩)
colon (:)
comma (, ،、)
dash (‒, –, —, ―)
ellipsis (…,...,...)
exclamation mark (!)
full stop/period (.)
guillemets (« »)
hyphen (‐)
hyphen-minus (-)
question mark (?)
quotation marks (‘ ’, " ", ' ', " ")
semicolon (;)
slash/stroke/solidus (/, ⁄)ampersand (&)
asterisk (*)
at sign (@)
backslash (\)
bullet (•)
caret (^)
dagger (†, ‡)
degree (°)
ditto mark (〃)
inverted exclamation mark (¡)
inverted question mark (¿)
number sign/pound/hash (#)
numero sign (№)
obelus (÷)
ordinal indicator (º, ª)
percent, per mil (%, ‰)
basis point (‱)
pilcrow (¶)
prime (′, ″, ‴)
section sign (§)
tilde (~)
underscore/understrike (_)
vertical bar/broken bar/pipe (¦, |)

157

