
Comp 3620: Artificial Intelligence
Lab 3: Situation Calculus

March 31, 2005

1 Introduction

The goal of this lab is to create a very basic planning system using the situation calculus (see Lecture KRR6). This
planner will be implemented using PROLOG (see Lecture KRR5). The purpose of this planner is to generate plans for
a medical assistant robot.Firstly, read completely the document. The result of this lab should be the submission of
three PROLOG programs with comments:robot1.pl , robot2.pl , robot3.pl .

robot

corridor

room 3room 2room 1

The robot is in charge of three rooms. In each room, there is a patient. The patient can be either hungry or thirsty
or both. The robot is initially in the corridor. The robot can move from one location to another location if there is
a door between the two locations: for instance, the robot can move from the corridor to room 1 and from room 1 to
room 2, but it cannot go from room 2 to room 3, it has to go back to the corridor first. The robot can bring food to the
patient if the patient is hungry and it can bring water if the patient is thirsty. After bringing the food, the patient is not
hungry anymore. After bringing water, the patient is not thirsty anymore.

2 Preliminaries

In order to become more familiar with SWI-prolog, you can first have a look to the filegoodteacher.pl .

• Runswipl

• You see the prolog prompt: to load the file enter the following fact

[goodteacher].

• Then you can ask queries: trygoodteacher(yannick). then trygoodteacher(T). .

1

• PROLOG is based on a backward chaining algorithm. You cantracethe way PROLOG tries to answer the queries.
Try trace. thengoodteacher(T). .

• To quit PROLOG, the command ishalt.

3 Your Work

3.1 Knowledge representation 1 (easy)

For this first part, we do not consider that the patients are thirsty or hungry and we consider that the robot can only
move from locations to locations.

Step 1: Using the Situation Calculus (situations, facts, fluents, axioms...), write in PROLOG the facts and the pred-
icates that represent the world described in the first section. In your implementation, how does a situation term look
like?

In order to test if your implementation works, you can write then a set of predicates like

goal(S) :- fluent1(...,S),....,fluentN(...,S).

Such a predicate says that the situationS is a goal iffluent1(...,S)... fluentN(...,S) are true.

Example: if we want the robot in room 1, then the predicategoal(S) is something like:

goal(S) :- pred(...S) wherepred is a fluent which says that in the situationS the robot is in room 1.

Given this goal, here are some queriesgoal(..) where.. is a term which represents the following situations:

1. The robot was initially in the corridor then it moves to room 1.

2. The robot was initially in the corridor then it moves to room 2.

3. The robot was initially in the corridor then it moves to room 2, then it moves to room 1.

4. The robot was initially in the corridor then it moves to room 3, then it moves to room 1.

Step 2: For each situation, write the query in PROLOG. The result should be eitherYes or No depending on the
situation. Write this result in your PROLOG file (as a comment) with a small explanation about the result.

Step 3: Is there any frame problem here? Explain.

Submission: the result of this section will be a filerobot1.pl with your representation in PROLOG and the
answers to the questions as comments.

3.2 Knowledge representation 2 (medium)

For this second section, we consider the complete world. First of all, copyrobot1.pl in a new filerobot2.pl .
For each step, TEST YOUR PROGRAM by making several queries.

Step 4: Write the fact that patients can be hungry. Write the axioms about the action “bring food” of the robot. Is
there any frame problem?

2

Step 5: We consider the following initial situation: “The robot is in the corridor and only the patient of room 2 is
hungry”. We consider the goal “The patient of room 2 is not hungry”. Write the initial situation and ask the queries to
PROLOG with the following situations:

1. The robot moves to room 2 and brings food to the patient of room 2.

2. The robot moves to room 1 then to room 2 and brings food to patient of room 2.

3. The robot moves to room 3 and brings food to patient of room 3.

4. The robot moves to room 3, brings food to patient of room 3, moves to the corridor, moves to room 2, brings
food to patient 2.

For each situation, ask the query to PROLOG and put a comment in the filerobot2.pl about the result and your
explanation (or expectation) about the result.

Step 6: Write the fact that patients can be thirsty. Write the axioms about the action “bring water” of the robot.

Step 7: We consider the following initial situation: “The robot is in the corridor and the patients of room 2,3 are
hungry, the patients of room 1,2 are thirsty”. We consider the goal “The patient of room 1 is not thirsty and the patient
of room 2 is neither thirsty nor hungry”. Write the initial situation and ask the queries to PROLOG with the following
situations:

1. The robot moves to room 1, brings water to the patient of room 1, moves to room 2 and brings food to the patient
of room 2, brings water to the patient of room 2.

2. The robot moves to room 1 then to room 2 and brings food to patient of room 2, moves to room 1, brings water
to patient of room 1, moves to room 2, brings water to patient of room 2.

3. The robot moves to room 3 and brings food to patient of room 3, moves to corridor, moves to room 1, brings
water to the patient of room 1, moves to room 2 and brings food to the patient of room 2, brings water to the
patient of room 2.

For each situation, ask the query to PROLOG and put a comment in the filerobot2.pl about the result and your
explanation (or expectation) about the result.

Submission: the result of this section will be a filerobot2.pl with your representation in PROLOG and the
answers to the questions as comments.

3.3 Planning (tricky)

For this third section, we consider the complete world. First of all, copyrobot2.pl in a new filerobot3.pl . For
each step, TEST YOUR PROGRAM by making several queries. The purpose of this section is to make a deductive
planning system for the robot.

Step 8: Write a predicateserviceDone(S) which says that in the situationS, every patient is not hungry and is
not thirsty.

The purpose of a planning system is to provide at least one plan. The problem is that there is an infinite number of
solutions. We want to restrict our search for plans with limited number of actions.

Step 9: Write a predicatesize(S,N) which says that the number of actions inS isN. Write a predicateplan(S,N)
which says that the situation hasNactions and that the service is done.

3

Step 10: Write a predicategoal(S,N) which says thatS is a plan withNactions at the most.
Example: we consider the following initial situation: “The robot is in the corridor, every patient is hungry but

only the patients of room 2,3 are thirsty”. Ask the following query:goal(S,10). (be careful, the computation can
take several minutes).

Submission: the result of this section will be a filerobot3.pl with your representation in PROLOG. If the query
goal(S,10). does not work, you can provide tests whereS is an instantiated term and the answer of the query is
yes.

4 Advises

• A PROLOG program is always short. My own solutionrobot3.pl is less than 80 lines! (comments not
included)

• Don’t forget the order of the rules in the file is important (PROLOG triggers the rules from the top to the bottom).
The order of the premises in a rule is also important (PROLOG unifies the predicate from the left first and
propagates the result to the predicates on the right).

• This program is simple, no need of the cut operator (for a basic solution), no need of lists.

• Be careful, a noun beginning with a captial letter is always considered as a variable.

• Thenot operator is denoted\+ in SWI-PROLOG. Try to avoid it if it is possible. If you feel the need of writing
something like\+ pred(X) , try to consider the predicatenotpred(X) .

In order to say\+ T1 = T2 you can also sayT1 \= T2 . If you useT1 \= T2 , be sure that SWI-PROLOG

will trigger it when the terms are fully instantiated.

Example:
if we suppose thatpred2(X,T1), pred3(Y,T2) will unify X andY with some ground terms then
pred(X,Y) :- pred2(X,T1), pred3(Y,T2), pred4(T1,T2), X \= Y.
is completely different from
pred(X,Y) :- X \= Y, pred2(X,T1), pred3(Y,T2), pred4(T1,T2).
from the unification point of view (backward chaining).

• Write:

pred(toto(X)) :- pred(X).
pred(titi(X)) :- pred(X).
instead of
pred(X) :- X = toto(Y), pred(Y); X = titi(Y), pred(Y).

Have fun!

4

