KRR8: Diagnosis and the rest...

Yannick Pencolé Yannick.Pencole@anu.edu.au

29 Mar 2005

- 2 Diagnosis computation
- Incremental Diagnosis



Reiter Diagnosis

Definition

A Reiter Diagnosis for an observed system (SD, COMP, OBS) is a minimal set $\Delta \subset COMP$ such that:

 $SD, OBS, \{\neg Ab(c), c \in COMP \setminus \Delta\}, \{Ab(c), c \in \Delta\}$

is satisfiable.

Theorem

A Reiter Diagnosis is equivalent to a Minimal Diagnosis.

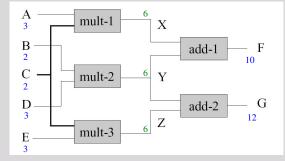
Another represenetation

An R-diagnosis is seen as a set of components and not a logical sentence. The representation are equivalent.

Reiter Diagnosis: example

Example

Davis circuit

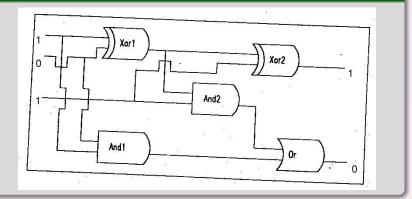


If OBS = In1(m1, 3), In2(m1, 2), ..., Out(a2, 12) there are 4 R-diagnoses,

 $\{m1\}; \{a1\}; \{m2, m3\}; \{m2, a2\}$

The R-diagnosis $\{m1\}$ is equivalent to the minimal diagnosis $\neg Ab(a1) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$.

Example



A new example: an additionner

Example

SD (behavioural model):

•
$$AND(x) \land \neg Ab(x) \Rightarrow Out(x) = and(In1(x), In2(x))$$

- $OR(x) \land \neg Ab(x) \Rightarrow Out(x) = or(In1(x), In2(x))$
- $XOR(x) \land \neg Ab(x) \Rightarrow Out(x) = xor(In1(x), In2(x))$
- AND(A1); AND(A2), OR(O1), XOR(X1); XOR(X2)

SD (structural model):

•
$$Out(X1) = In2(A2) ...$$

Observations:

•
$$In1(X1) = 1$$
; $In2(X1) = 0$; $In1(A2) = 1$; $Out(X2) = 1$; $Out(O1) = 0$.

R-diagnoses:

•
$$\{X1\}; \{X2, O1\}; \{X2, A2\}$$

Theorem

 \emptyset is the only R-diagnosis for (SD, COMP, OBS) iff

 $SD, OBS, \{\neg Ab(c), c \in COMP\}$

is satisfiable.

Theorem

 $\Delta \subseteq$ COMP is a R-diagnosis iff it is a minimal set such that:

 $SD, OBS, \{\neg Ab(c), c \in COMP \setminus \Delta\}$

is satisfiable.

How to compute R-diagnoses?

1 Theory of Reiter

2 Diagnosis computation

Incremental Diagnosis

4 And the rest

< ロ > < 回 > < 三 > < 三 > < 三 > の Q (P)

Definition

An R-conflict *C* is a set $\{c_1, c_2, ..., c_k\}$ with $c_i \in COMP$ such that:

$$SD, OBS, \{\neg Ab(c), c_i \in C\}$$

is not satisfiable.

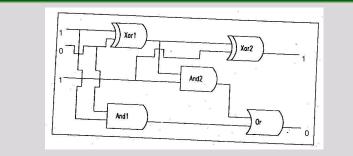
An R-conflict is a set of components $C \subseteq COMP$ which cannot be together in a normal state.

Definition

An **R-conflict** is **minimal** iff there is no strict subset which is also an R-conflict.

R-conflicts: Example 1

Example



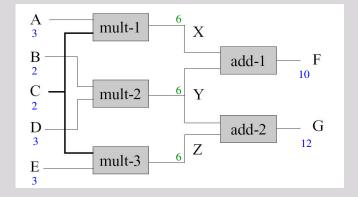
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

There are 2 minimal R-conflicts:

- •
- 2?

R-conflicts: Example 2

Example



There are 2 minimal R-conflicts:

2?

Theorem

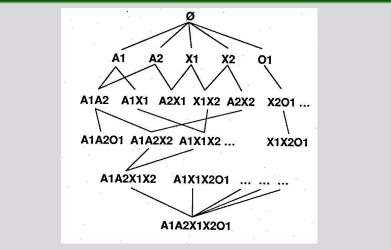
 $\Delta \subseteq$ COMP is an R-diagnosis for (SD, COMP, OBS) iff Δ is a minimal set such that COMP $\setminus \Delta$ is not an R-conflict.

This theorem is the basis of the algorithm DIAGNOSE from Reiter: it is a lattice exploration.

Definition

A lattice is (roughly) a non-empty partial order set (S, \subseteq) such that every element *a*, *b* have an infimum inf(a, b) (a "lower bound" element) and a supremum sup(a, b) (an "upper bound" element).

Search space for R-diagnoses



The search space is a lattice.

Algorithm

Breadth-first search on the lattice from the empty set \emptyset

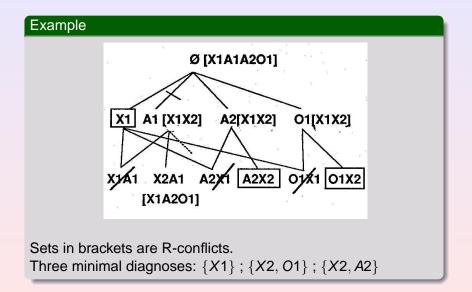
- Iet X the current node in the search
- 2 Call a theorem prover and ask:

Is $COMP \setminus X$ an R-conflict ?

- if **yes**, eliminate the nodes X' such that $X' \cap (COMP \setminus X) = \emptyset$
 - X' cannot be a minimal diagnosis.

If no, X is a minimal diagnosis, eliminate the descendants

DIAGNOSE algorithm: example



The intersection between a diagnosis and any R-conflicts is not empty \Rightarrow Hitting set

Theorem

 $\Delta \subseteq$ COMP is an *R*-diagnosis for (SD, COMP, OBS) iff Δ is a minimal hitting set for the set of minimal conflicts of (SD, COMP, OBS)

(日) (日) (日) (日) (日) (日) (日)

General diagnosis engine (GDE) from de Kleer.

R-diagnosis: a minimal hitting set problem

Definition

Let $S = \{S_1, \dots, S_n\}$ be a set of sets, H is a hitting set of S iff

 $H \subseteq_{S_i \in S} S_i$

and

 $\forall S_i \in \mathcal{S}, H \cap S_i \neq \emptyset$

Example

 $S = \{\{a, b\}, \{c, b\}, \{e, f\}\}$ The following sets are hitting sets of S:

- *H* = {*a*, *b*, *c*, *e*}
- H = {b, e} (H is minimal)
- $H = \{a, c, f\}$ (*H* is minimal)

The following sets are not hitting sets of S:

•
$$H = \{a, b\}$$

Algorithm

Computation of all the minimal R-conflicts.

Use of an ATMS (Assumption Truth Maintenance System)

(日) (日) (日) (日) (日) (日) (日)

- Update of beliefs about assumptions by retractation of knowledge and declaration of new ones
- Computation of the minimal hitting set on the obtained R-conflicts

Example

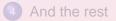
Additionner:

The 2 minimal R-conflicts $\{X1, X2\}$ and $\{X1, A2, O1\}$ correspond to the 3 minimal diagnoses: $\{X1\}$; $\{X2, O1\}$; $\{X2, A2\}$

Davis circuit: The 2 minimal R-conflicts: $\{a1, m1, m2\}$ and $\{a1, a2, m1, m3\}$ correspond to the 4 minimal diagnoses: $\{m1\}$; $\{a1\}$; $\{a2, m2\}$; $\{m2, m3\}$

1 Theory of Reiter

- 2 Diagnosis computation
- 3 Incremental Diagnosis



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

GDE or DIAGNOSE solve the diagnosis problem in a off-line way.

• The observation set is supposed to be complete

Observations/Tests

In some systems, an observation is the result of a test, an action, a measurement from the environment to the system.

Definition

The incremental diagnosis problem is to:

- compute a diagnosis based on a partial set of observations
- choose what could be the next measurement to perform in the system: prediction

Definition

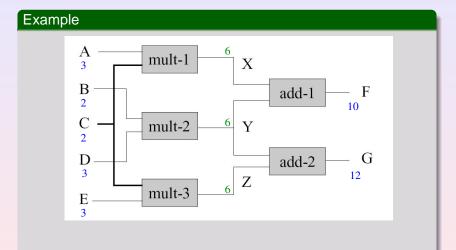
An R-diagnosis Δ predicts O iff

 $SD, OBS, \{\neg Ab(c), c \in COMP \setminus \Delta\}, \{Ab(c), c \in \Delta\} \vDash O$

Given the system SD, the current set of observations OBS and the current diagnosis Δ , the system should produce the observation O.

(日) (日) (日) (日) (日) (日) (日)

Predicted observations: example



- Δ_1 : {*m*1} predicts Out(m2) = 6
- Δ_2 : {*m*2, *m*3} predicts *Out*(*m*2) = 4 and *Out*(*m*3) = 6.

Theorem

Confirmation: A R-diagnosis for (SD, COMP, OBS) which predicts O is a R-diagnosis for (SD, COMP, OBS \land O).

If the predicted observation *O* is real (the measurement gives *O*), then the diagnosis is confirmed by the observation *O*.

Theorem

Invalidation: A R-diagnosis for (SD, COMP, OBS) which predicts $\neg O$ is not a R-diagnosis for (SD, COMP, OBS $\land O$).

If a diagnosis predicts something which is not true, it means that the diagnosis becomes a wrong hypothesis and is invalid.

Algorithm

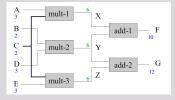
Input: (SD, COMP, OBS) an observed system, O a new observation

(日) (日) (日) (日) (日) (日) (日)

- 2 Check if Δ predicts O
- If yes then ∆ is confirmed
 - Δ is a diagnosis of (SD, COMP, OBS \land O)
- Check if Δ predicts $\neg O$
- If yes then look at supersets of Δ

Updating an R-Diagnosis: example

Example



- $\Delta_1 = \{m1\}$ predicts Out(m2) = 6
- Δ₂ = {m2, m3} predicts Out(m2) = 4
- $\Delta_3 = \{a1\}$ predicts Out(m2) = 6
- Δ₄ = {a2, m2} predicts Out(m2) = 4

If O is Out(m2) = 5, every diagnosis is invalidated. The new ones are supersets: {a2, m1, m2}, {a1, m2, m3}, {a1, a2, m2}, {m1, m2, m3}

Discriminability/ Diagnosability

Definition

Let O be an observation which confirms Δ_1 and invalidates Δ_2 , we say that O discriminates.

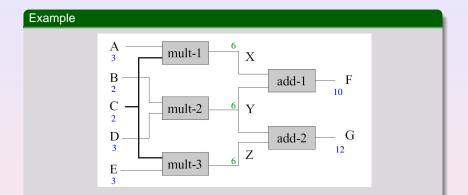
Definition

A system (*SD*, *COMP*) is diagnosable if for any set of possible measurements (any complete set of observations) we have a unique diagnosis.

In a diagnosable system, we have enough information (observations) to discriminate between all the diagnoses and to get only one.

Using an incremental diagnosis algorithm on a diagnosable system, we have the guarantee that it converges to one diagnosis.

Diagnosability: example



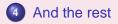
If we can can observe only A, B, C, D, E, F, G then the system is not diagnosable. If we observe A, B, C, D, E, F, G, X, Y, Z then the system is diagnosable.

The observations from B, C, D, E, G do not allow to discriminate between diagnoses involving m2, m3, a2.

- Theory of Reiter: notions of R-Diagnosis, R-conflicts
- Logic representation = set representations (minimal diagnoses)
- Algorithms:
 - DIAGNOSE: use of a theorem prover, exploration a lattice
 - GDE: computation of conflicts and hitting sets computation
- Incremental diagnosis: update the diagnoses with new measurements
- Discriminality-Diagnosability of systems
 - The more information we have, the less numerous are the diagnoses.

1 Theory of Reiter

- 2 Diagnosis computation
- Incremental Diagnosis



(日)

So many things...

Non-monotonic reasoning

- Monotonicity: if KB ⊨ α then with a new information β, we still have KB ∧ β ⊨ α
- The world is full of **exceptions**: every bird can fly, so the emu does!
- Nonmonotonic logics: Default logic, Circumscription
- Uncertainty
 - Strong assumption: our knowledge is complete!
 - How to express and make reasoning about ignorance, incompleteness
 - Use of probability theory (Bayesian networks, Markov Decision Process, Fuzzy logic)

- Inconsistency
 - Always reasoning with consistency! boring! and bounded! (incompleteness)
 - What about reasoning about inconsistencies: 1 + 1 = 3 for 1 big enough !

(日) (日) (日) (日) (日) (日) (日)

- Paraconsistent logics...
- I give up, I do not have time...