Part I
Diagnosis

1 Types of reasonings

Deduction, Abduction, Learning

Example 1. Famous *syllogism* of Aristotle: “Socrates is a man” “Every man is mortal” *SO* “Socrates is mortal” *Deduction principle* (entailment, prediction, anticipation, planning...)

Elementary! My Dear Watson!

Example 2. Crime scene: Sherlock came and saw Socrates dead: “Socrates is mortal” Sherlock knew one crucial information: “Every man is mortal” Watson said: “what are your conclusions?” Sherlock answered: “Elementary! My Dear Watson! Socrates is a man, that’s the reason why he had to die one day” Is it right? Is it deduction? *NO*

This is *abduction*. Main reasoning for *diagnosis*. Sherlock is a master of abduction (and not deduction)...

We cannot deduce that Socrates is a man. Maybe he’s a rat, a flower... This is just an hypothesis.

What about learning?

Example 3. A machine knows that “Socrates is a man” and sees that “Socrates is mortal”. so it can *learn* a generic rule:

- “Every man is mortal”
- or “Every mortal is a man”
- or “The concept of man has a relationship with the concept of mortality”

2 Diagnosis: an introduction

Diagnosis problem

Definition 4. Given:

1. *a system*
2. *a set of observations*

How to:

1. determine the *failures* of the system
2. repair the system
Diagnosis problem: example

Example 5. **System:**

Observation: The car does not start

Possible diagnoses: The battery does not work, the starter is broken, no petrol...

Repair: test plan to discriminate among the diagnoses (check the battery, ...)

Diagnosis problem: another example

Example 6. **System:**

Observation: Flu (40 degrees), headache

Possible diagnoses: Cold, Migraine

Repair: Take three pills per day

Diagnosis: history

- 70’s: heuristic approaches (expert systems)
 - knowledge base = set of abductive rules (need expertises)
 - inference
- 80’s: model-based diagnosis (static systems)
- 90’s: model-based diagnosis (dynamic systems)

3 Model-based diagnosis

3.1 Knowledge representation

Model-based diagnosis: the idea
Knowledge representation

Definition 7. A *system* is a couple \((SD, COMP)\):

- \(COMP\) is a finite set of constants, one constant = one component
- \(SD\) is a set of FOL sentences describing the behaviour of the system
 - *Behavioral model* (how a component works)
 - *Structural model* (how components interact)

Definition 8. A *observed system* is a system \((SD, COMP)\) with some observations \(OBS\):

- \(OBS\) is a set of atomic sentences.
- Each atomic sentence represents an observation

Knowledge representation: example

Example 9. Davis circuit
Knowledge representation: symbols

Example 10. \(\text{COMP} = \{a_1, a_2, m_1, m_3, m_3\}\) \(SD\) predicates:

- \(\text{Add}\) additioner
- \(\text{Mult}\) multiplier
- \(\text{In}_1\) input 1
- \(\text{In}_2\) input 2
- \(\text{Out}\) output
- \(\text{Ab}\) abnormal
- \(\text{Sum}\) sum
- \(\text{Prod}\) product

Knowledge representation: behavioural model

Example 11. Note: all the variables are universally quantified.

Behavior of an additioner

- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{In}_1(x, u) \land \text{In}_2(x, v) \land \text{Sum}(u, v, w) \Rightarrow \text{Out}(x, w)\)
- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{In}_1(x, u) \land \text{Out}(x, w) \land \text{Sum}(u, v, w) \Rightarrow \text{In}_2(x, v)\)
- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{Out}(x, w) \land \text{In}_1(x, u) \land \text{Sum}(u, v, w) \Rightarrow \text{In}_1(x, u)\)

Behavior of a multiplier

- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{In}_1(x, u) \land \text{In}_2(x, v) \land \text{Prod}(u, v, w) \Rightarrow \text{Out}(x, w)\)
- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{In}_1(x, u) \land \text{Out}(x, w) \land \text{Prod}(u, v, w) \Rightarrow \text{In}_2(x, v)\)
- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{Out}(x, w) \land \text{In}_1(x, u) \land \text{Prod}(u, v, w) \Rightarrow \text{In}_1(x, u)\)

Knowledge representation: structural model

Example 12. Topology, structural model: \(\text{COMP} = \{a_1, a_2, m_1, m_3, m_3\}\) \(\text{Add}(a_1); \text{Add}(a_2); \text{Mult}(m_1); \text{Mult}(m_2); \text{Mult}(m_3)\) Connections: use of the equality

- \(\text{Out}(m_1, u) \land \text{In}_1(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_2, u) \land \text{In}_2(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_2, u) \land \text{In}_1(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_3, u) \land \text{In}_1(a_2, v) \Rightarrow u = v\)
- \(\text{In}_2(m_1, u) \land \text{In}_1(m_3, v) \Rightarrow u = v\)

Knowledge representation: observations

Example 13. Only the inputs and the output of the circuit are observable.

- \(\text{In}_1(m_1, 3): \text{“The input 1 of the multiplier 1 is 3”}\)
- \(\text{In}_2(m_1, 2)\)
- \(\text{In}_1(m_2, 2)\)
- \(\text{In}_2(m_2, 3)\)
- \(\text{In}_1(m_3, 2)\)
- \(\text{In}_2(m_3, 3)\)
- \(\text{Out}(a_1, 10)\)
- \(\text{Out}(a_2, 12)\)
3.2 Diagnosis: an intuition

Main idea

Definition 14. A State of the system $SD, COMP$ is a sentence Φ_Δ with $\Delta \subseteq COMP$ like:

$$\bigwedge_{c \in \Delta} Ab(c) \land \bigwedge_{c \not\in \Delta} \neg Ab(c)$$

The component of Δ are abnormal.

Example 15. 1. $\Delta = \{a_1, m_2\}; \Phi_\Delta = Ab(a_1) \land Ab(m_2) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_3)$

2. $\Delta = \emptyset; \Phi_\Delta = \neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$: state where every component has a normal behaviour

3. $\Delta = \{a_1, a_2, m_1, m_2, m_3\}; \Phi_\Delta = Ab(a_1) \land Ab(a_2) \land Ab(m_1) \land Ab(m_2) \land Ab(m_3)$: where every component has an abnormal behaviour

Main idea

Definition 16. A Diagnosis of the system $SD, COMP$ is a state Φ_Δ such that:

$$SD, OBS, \Phi_\Delta \text{ is satisfiable}$$

The state is possible according to SD, OBS (consistency-based).

Definition 17. A diagnosis exists iff:

$$SD, OBS \text{ is satisfiable}$$

If not, the model is not well-designed or incomplete.

Detection of abnormalities

Definition 18. Normal behaviour of the system:

$$SD, \Phi_\emptyset$$

where $\Phi_\emptyset = \bigwedge_{c \in COMP} \neg Ab(c)$.

Definition 19. How to detect abnormal observations OBS?

Check the satisfiability of:

$$SD, \Phi_\emptyset, OBS$$

Detection of abnormalities: example

Example 20. In the presented example, SD, OBS, Φ_\emptyset is unsatisfiable so OBS is an abnormal observations.
Identification of abnormalities

Definition 21. If we have detected that the observations are abnormal, we need to identify which components are faulty. We need satisfiability back!!

\[SD, OBS \models Ab(?) \lor \ldots \lor Ab(?) \]

- Which abnormalities are entailed by \(SD, OBS \)?
- Use of inference algorithms to solve that problem.

Identification of abnormalities: example

Example 22. \(SD, OBS \models Ab(a1) \lor Ab(m1) \lor (Ab(m2) \land Ab(a2)) \lor (Ab(m2) \land Ab(m3)) \)

Identification of abnormalities: example

Example 23. \(SD, OBS \models Ab(a1) \lor Ab(m1) \lor (Ab(m2) \land Ab(a2)) \lor (Ab(m2) \land Ab(m3)) \)

From that, we guess the following set of states are diagnoses:

1. \(Ab(a1) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \)
 - only \(a1 \) and \(m1 \) are faulty

2. \(\neg Ab(a1) \land Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \)
 - only \(a2 \) is faulty

3. \(Ab(a1) \land Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \)
 - \(a1, a2, \) and \(m1 \) are faulty

4. \(Ab(a1) \land Ab(a2) \land Ab(m1) \land Ab(m2) \land Ab(m3) \)
 - everything can be faulty!!!

5. ...

But the following state is not a diagnosis state:

1. \(\neg Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land Ab(m3) \)
 - if \(m3 \) is faulty there must another faulty component (\(m2 \) at least)
Failure knowledge

Definition 24. Failure knowledge: piece of knowledge about the behaviour of components when they are faulty

Example 25.
- “When faulty, the output of the additioner 2 is always 0”
 - $Ab(a_2) \Rightarrow Out(a_2, 0)$
- “Faulty additioners behave like substracters”
 - $Add(x) \land Ab(x) \land In_1(x, u) \land In_2(x, v) \land Subtract(u, v, w) \Rightarrow Out(x, w)$

Identification of abnormalities: example 2

Example 26. $SD, \{Ab(a_2) \Rightarrow Out(a_2, 0)\}, OBS \models (Ab(a_1) \land \neg Ab(a_2)) \lor (\neg Ab(a_2) \land Ab(m_1)) \lor (\neg Ab(a_2) \land Ab(m_2) \land Ab(m_3))$

Identification of abnormalities: example 2

Example 27. $SD, \{Ab(a_2) \Rightarrow Out(a_2, 0)\}, OBS \models (\neg Ab(a_1) \land \neg Ab(a_2)) \lor (\neg Ab(a_2) \land Ab(m_1)) \lor (\neg Ab(a_2) \land Ab(m_2) \land Ab(m_3))$

From that, we guess the following set of states are diagnoses:
1. $Ab(a_1) \land \neg Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$
 - only a_1 and m_1 are faulty
2. $\neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land Ab(m_2) \land Ab(m_3)$
 - m_1 and m_2 are faulty
3. $Ab(a_1) \land \neg Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$
 - m_1 and a_1 are faulty
4. ...

But the following state is not a diagnosis state:
1. $\neg Ab(a_1) \land Ab(a_2) \land \neg Ab(m_1) \land Ab(m_2) \land Ab(m_3)$
 - any hypothesis where a_2 is faulty is not a diagnosis any more
Diagnosis representation: Partial Diagnosis

For n components, the number of potential diagnoses is 2^n. We need a clever representation.

Definition 28. A *Partial Diagnosis* is a conjunction Φ of Ab literals such that every state Φ' covered by Φ is a diagnosis.

Example 29.

- $\Phi = Ab(a) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$ is a diagnosis so it is a partial diagnosis
- $\Phi = Ab(a) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$ is a partial diagnosis because it covers the two diagnoses
 - $\Phi' = Ab(a) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$
 - $\Phi' = Ab(a) \land Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$

Diagnosis representation: Kernel Diagnosis

Definition 30. A *Kernel Diagnosis* is a partial diagnosis that is covered by only itself. Kernel diagnoses provide a very economical way to implicitly represent all the diagnoses.

Example 31. Example 1:

- $Ab(a)$ is a kernel diagnosis for example 1. Every conjunction covered by $Ab(a)$ is a partial diagnosis. The empty clause \emptyset is not a kernel diagnosis because it covers $\neg Ab(a)$ which is not a partial diagnosis.
- $Ab(m1)$, $Ab(m2)$, $Ab(a2)$, $Ab(m2)$, $Ab(m3)$ are the other kernel diagnoses of example 1.

Example 2:

- $Ab(a) \& \neg Ab(a2)$, $\neg Ab(a2) \& Ab(m1)$, $\neg Ab(a2) \& Ab(m2) \& Ab(m3)$

Diagnosis representation: Preferences

A diagnosis is an *hypothesis* (it may be true) and not a *conclusion*. So we may decide to *prefer* some of these diagnoses.

- Diagnoses with a minimal number of abnormal components
- Diagnoses with a set of abnormal components that is minimal: *minimal diagnoses*
 - i.e. if I remove one component from this set (it becomes normal) the corresponding state is not a diagnosis anymore
- Diagnoses that “explain in the best way” the observations: *explanation*

Diagnosis representation: Preferences

Example 32. Example 1:

- **2 diagnoses with minimal cardinality**
 1. $Ab(a) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$
 2. $\neg Ab(a) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$

- **4 minimal diagnoses**
 1. $Ab(a) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$ (same as above)
 2. $\neg Ab(a) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$ (same as above)
 3. $\neg Ab(a) \land Ab(a2) \land Ab(m1) \land Ab(m2) \land \neg Ab(m3)$
 4. $\neg Ab(a) \land \neg Ab(a2) \land \neg Ab(m1) \land Ab(m2) \land Ab(m3)$
Explanation

Definition 33. A diagnosis Φ_Δ for an observed system $(SD, COMP, OBS)$ is an *explanation* for an elementary observation $o \in OBS$ iff

$$SD, \Phi_\Delta \vdash o$$

1. select diagnoses that explain all the observations of OBS
2. select diagnoses that explain a biggest subset of OBS
3. select diagnoses that explain the biggest subset of OBS

Explanation: example

Example 34. Example 1:

All the diagnoses that cover the following sentence (which is not a partial diagnosis) are explanations of $Out(a2, 12)$

$$\neg Ab(m2) \land \neg Ab(m3) \land \neg Ab(a2)$$

for instance:

$$Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$$

Summary

- Be careful between *Deduction* and *Abduction*
- *Diagnosis* reasoning is generally close to *Abduction*
- Model-based diagnosis for static systems
 - Description of a model with FOL (structural/behavioural model)
 - Use of Failure knowledge in the model
- Diagnosis:
 - Detection is satisfiability problem
 - Identification consists in retrieving the satisfiability
- Diagnosis representation:
 - Kernel diagnosis: an efficient way to represent all the diagnoses.
- Diagnosis preference:
 - Minimal diagnoses, Explanations