KRR7: Diagnosis

Yannick Pencolé
Yannick.Pencole@anu.edu.au

24 Mar 2005
1. Types of reasonings

2. Diagnosis: an introduction

3. Model-based diagnosis
 - Knowledge representation
 - Diagnosis: an intuition
Example

Famous syllogism of Aristotle:

“Socrates is a man”

“Every man is mortal”

SO “Socrates is mortal”

Deduction principle (entailment, prediction, anticipation, planning...)
Example

Crime scene: Sherlock came and saw Socrates dead:
“Socrates is mortal”

Sherlock knew one crucial information:
“Every man is mortal”

Watson said: “what are your conclusions?”

Sherlock answered:
“Elementary! My Dear Watson! Socrates is a man, that’s the reason why he had to die one day”

Is it right? Is it deduction? NO
This is abduction. Main reasoning for diagnosis. Sherlock is a master of abduction (and not deduction)...
We cannot deduce that Socrates is a man. Maybe he’s a rat, a flower... This is just an hypothesis.
What about learning?

Example

A machine knows that “Socrates is a man” and sees that “Socrates is mortal”.

so it can **learn** a generic rule:

- “Every man is mortal”
- or “Every mortal is a man”
- or “The concept of man has a relationship with the concept of mortality”
1 Types of reasonings
2 Diagnosis: an introduction
3 Model-based diagnosis
 - Knowledge representation
 - Diagnosis: an intuition
Diagnosis problem

Definition

Given:
1. a system
2. a set of observations

How to:
1. determine the failures of the system
2. repair the system
Diagnosis problem: example

Example

System:
Observation: The car does not start
Possible diagnoses: The battery does not work, the starter is broken, no petrol...
Repair: test plan to discriminate among the diagnoses (check the battery, ...)

Example

System:
Observation: Flu (40 degrees), headache
Possible diagnoses: Cold, Migraine
Repair: Take three pills per day
Diagnosis: history

History

- 70’s: heuristic approaches (expert systems)
 - knowledge base = set of abductive rules (need expertises)
 - inference
- 80’s: model-based diagnosis (static systems)
- 90’s: model-based diagnosis (dynamic systems)
Outline

1. Types of reasonings
2. Diagnosis: an introduction
3. Model-based diagnosis
 - Knowledge representation
 - Diagnosis: an intuition
Model-based diagnosis: the idea

Model-based diagnosis

Model -> Predicted observations -> Discrepancies Detection -> Identification -> Diagnosis

Discrepancies Detection -> Observations

System -> Tests -> Repair

Model

Predicted observations

Discrepancies Detection

Identification

Diagnosis
Knowledge representation

Definition

A **system** is a couple \((SD, COMP)\):

- **COMP** is a finite set of constants, one constant = one component
- **SD** is a set of FOL sentences describing the behaviour of the system
 - Behavioral model (how a component works)
 - Structural model (how components interact)

Definition

A **observed system** is a system \((SD, COMP)\) with some observations **OBS**:

- **OBS** is a set of atomic sentences.
- Each atomic sentence represents an observation
Example

Davis circuit

- A
- B
- C
- D
- E

- mult-1
- mult-2
- mult-3

- X
- Y
- Z
- add-1
- add-2

- F
- G
Knowledge representation: symbols

Example

\[\text{COMP} = \{a_1, a_2, m_1, m_3, m_3\} \]

SD predicates:
- \textit{Add} additioner
- \textit{Mult} multiplier
- \textit{In1} input 1
- \textit{In2} input 2
- \textit{Out} output
- \textit{Ab} abnormal
- \textit{Sum} sum
- \textit{Prod} product
Knowledge representation: behavioural model

Example

Note: all the variables are universally quantified.

Behavior of an additioner

- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{In}1(x, u) \land \text{In}2(x, v) \land \text{Sum}(u, v, w) \Rightarrow \text{Out}(x, w) \)
- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{In}1(x, u) \land \text{Out}(x, w) \land \text{Sum}(u, v, w) \Rightarrow \text{In}2(x, v) \)
- \(\text{Add}(x) \land \neg \text{Ab}(x) \land \text{Out}(x, w) \land \text{In}1(x, u) \land \text{Sum}(u, v, w) \Rightarrow \text{In}1(x, u) \)

Behavior of a multiplier

- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{In}1(x, u) \land \text{In}2(x, v) \land \text{Prod}(u, v, w) \Rightarrow \text{Out}(x, w) \)
- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{In}1(x, u) \land \text{Out}(x, w) \land \text{Prod}(u, v, w) \Rightarrow \text{In}2(x, v) \)
- \(\text{Mult}(x) \land \neg \text{Ab}(x) \land \text{Out}(x, w) \land \text{In}1(x, u) \land \text{Prod}(u, v, w) \Rightarrow \text{In}1(x, u) \)
Example

Topology, structural model:

\[\text{COMP} = \{a_1, a_2, m_1, m_3, m_3\} \]

Add \((a_1)\); Add \((a_2)\); \(\text{Mult}(m_1)\); \(\text{Mult}(m_2)\); \(\text{Mult}(m_3)\)

Connections: use of the equality

- \(\text{Out}(m_1, u) \land \text{In}(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_2, u) \land \text{In}(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_2, u) \land \text{In}(a_1, v) \Rightarrow u = v\)
- \(\text{Out}(m_3, u) \land \text{In}(a_2, v) \Rightarrow u = v\)
- \(\text{In}(2(m_1, u) \land \text{In}(m_3, v) \Rightarrow u = v\)
Knowledge representation: observations

Example

Only the inputs and the output of the circuit are observable.

- $ln1(m1, 3)$: “The input 1 of the multiplier 1 is 3”
- $ln2(m1, 2)$
- $ln1(m2, 2)$
- $ln2(m2, 3)$
- $ln1(m3, 2)$
- $ln2(m3, 3)$
- $Out(a1, 10)$
- $Out(a2, 12)$
Main idea

Definition

A **State** of the system SD, $COMP$ is a sentence Φ_Δ with $\Delta \subseteq COMP$ like:

$$\bigwedge_{c \in \Delta} Ab(c) \land \bigwedge_{c \not\in \Delta} \neg Ab(c)$$

The component of Δ are abnormal.

Example

1. $\Delta = \{a_1, m_2\}$;
 $\Phi_\Delta = Ab(a_1) \land Ab(m_2) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_3)$

2. $\Delta = \emptyset$; $\Phi_\Delta = \neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$: state where every component has a normal behaviour

3. $\Delta = \{a_1, a_2, m_1, m_2, m_3\}$;
 $\Phi_\Delta = Ab(a_1) \land Ab(a_2) \land Ab(m_1) \land Ab(m_2) \land Ab(m_3)$: where every component has an abnormal behaviour
A **Diagnosis** of the system $SD, COMP$ is a state Φ_Δ such that:

$$SD, OBS, \Phi_\Delta \text{ is satisfiable}$$

The state is **possible** according to SD, OBS (consistency-based).

A diagnosis exists iff:

$$SD, OBS \text{ is satisfiable}$$

If not, the model is not well-designed or incomplete.
Detection of abnormalities

Normal behaviour of the system:

\[SD, \Phi_\emptyset \]

where \(\Phi_\emptyset = \bigwedge_{c \in COMP} \neg Ab(c) \).

How to detect abnormal observations OBS?

Check the satisfiability of:

\[SD, \Phi_\emptyset, OBS \]
Detection of abnormalities: example

In the presented example, SD, OBS, Φ_\emptyset is unsatisfiable so OBS is an abnormal observations.
Identification of abnormalities

Definition

If we have detected that the observations are abnormal, we need to **identify** which components are faulty. We need satisfiability back!!

\[SD, OBS \models Ab(?) \lor \ldots \lor Ab(?) \]

- Which abnormalities are entailed by \(SD, OBS \)?
- Use of inference algorithms to solve that problem.
Identification of abnormalities: example

Example

\[SD, OBS \models \text{Ab}(a_1) \lor \text{Ab}(m_1) \lor (\text{Ab}(m_2) \land \text{Ab}(a_2)) \lor (\text{Ab}(m_2) \land \text{Ab}(m_3)) \]
Identification of abnormalities: example

Example

\[SD, OBS \models Ab(a_1) \lor Ab(m_1) \lor (Ab(m_2) \land Ab(a_2)) \lor (Ab(m_2) \land Ab(m_3)) \]

From that, we guess the following set of states are diagnoses:

1. \(Ab(a_1) \land \neg Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3) \)
 - only \(a_1 \) and \(m_1 \) are faulty

2. \(\neg Ab(a_1) \land Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3) \)
 - only \(a_2 \) is faulty

3. \(Ab(a_1) \land Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3) \)
 - \(a_1, a_2, \) and \(m_1 \) are faulty

4. \(Ab(a_1) \land Ab(a_2) \land Ab(m_1) \land Ab(m_2) \land Ab(m_3) \)
 - everything can be faulty!!!

5. ...

But the following state is not a diagnosis state:

1. \(\neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land Ab(m_3) \)
 - if \(m_3 \) is faulty there must another faulty component (\(m_2 \) at least)
Failure knowledge

Definition

Failure knowledge: piece of knowledge about the behaviour of components when they are faulty

Example

- “When faulty, the output of the additioner 2 is always 0”
- \(Ab(a2) \Rightarrow Out(a2, 0) \)
- “Faulty additioners behave like substracters”
- \(Add(x) \land Ab(x) \land ln1(x, u) \land ln2(x, v) \land Subtract(u, v, w) \Rightarrow Out(x, w) \)
Identification of abnormalities: example 2

Example

\[SD, \{ Ab(a_2) \Rightarrow Out(a_2, 0) \}, \text{OBS} \models \]
\[(Ab(a_1) \land \neg Ab(a_2)) \lor (\neg Ab(a_2) \land Ab(m_1)) \lor (\neg Ab(a_2) \land Ab(m_2) \land Ab(m_3)) \]

Not satisfiable!!
Identification of abnormalities: example 2

Example

\(SD, \{\text{Ab}(a2) \Rightarrow \text{Out}(a2, 0)\}, \text{OBS} \vdash (\text{Ab}(a1) \land \neg \text{Ab}(a2)) \lor (\neg \text{Ab}(a2) \land \text{Ab}(m1)) \lor (\neg \text{Ab}(a2) \land \text{Ab}(m2) \land \text{Ab}(m3))\)

From that, we guess the following set of states are diagnoses:

1. \(\text{Ab}(a1) \land \neg \text{Ab}(a2) \land \text{Ab}(m1) \land \neg \text{Ab}(m2) \land \neg \text{Ab}(m3)\)
 - only a1 and m1 are faulty

2. \(\neg \text{Ab}(a1) \land \neg \text{Ab}(a2) \land \neg \text{Ab}(m1) \land \text{Ab}(m2) \land \text{Ab}(m3)\)
 - m1 and m2 are faulty

3. \(\text{Ab}(a1) \land \neg \text{Ab}(a2) \land \text{Ab}(m1) \land \neg \text{Ab}(m2) \land \neg \text{Ab}(m3)\)
 - m1 and a1 are faulty

4. ...

But the following state is not a diagnosis state:

1. \(\neg \text{Ab}(a1) \land \text{Ab}(a2) \land \neg \text{Ab}(m1) \land \text{Ab}(m2) \land \text{Ab}(m3)\)
 - any hypothesis where a2 is faulty is not a diagnosis any more
Problem

For \(n \) components, the number of potential diagnoses is \(2^n \). We need a clever representation.

Definition

A Partial Diagnosis is a conjunction \(\Phi \) of \(Ab \) literals such that every state \(\Phi' \) covered by \(\Phi \) is a diagnosis.

Example

- \(\Phi = Ab(a1) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \) is a diagnosis so it is a partial diagnosis.
- \(\Phi = Ab(a1) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \) is a partial diagnosis because it covers the two diagnoses:
 - \(\Phi' = Ab(a1) \land \neg Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \)
 - \(\Phi' = Ab(a1) \land Ab(a2) \land Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3) \)
Diagnosis representation: Kernel Diagnosis

Definition

A **Kernel Diagnosis** is a partial diagnosis that is covered by only itself. Kernel diagnoses provide a very economical way to implicitly represent all the diagnoses.

Example

Example 1:
- $Ab(a1)$ is a kernel diagnosis for example 1. Every conjunction covered by $Ab(a1)$ is a partial diagnosis. The empty clause \emptyset is not a kernel diagnosis because it covers $\neg Ab(a1)$ which is not a partial diagnosis.
- $Ab(m1)$, $Ab(m2) \land Ab(a2)$, $Ab(m2) \land Ab(m3)$ are the other kernel diagnoses of example 1.

Example 2:
- $Ab(a1) \land \neg Ab(a2)$, $\neg Ab(a2) \land Ab(m1)$, $\neg Ab(a2) \land Ab(m2) \land Ab(m3)$
Diagnosis representation: Preferences

A diagnosis is an hypothesis (it may be true) and not a conclusion. So we may decide to prefer some of these diagnoses.

Preference criteria

- Diagnoses with a minimal number of abnormal components
- Diagnoses with a set of abnormal components that is minimal: minimal diagnoses
 - i.e. if I remove one component from this set (it becomes normal) the corresponding state is not a diagnosis anymore
- Diagnoses that “explain in the best way” the observations: explanation
Example 1:

- **2 diagnoses with minimal cardinality**
 1. $\neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$
 2. $\neg Ab(a_1) \land \neg Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$

- **4 minimal diagnoses**
 1. $Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$
 (same as above)
 2. $\neg Ab(a_1) \land \neg Ab(a_2) \land Ab(m_1) \land \neg Ab(m_2) \land \neg Ab(m_3)$
 (same as above)
 3. $\neg Ab(a_1) \land Ab(a_2) \land Ab(m_1) \land Ab(m_2) \land \neg Ab(m_3)$
 4. $\neg Ab(a_1) \land \neg Ab(a_2) \land \neg Ab(m_1) \land Ab(m_2) \land Ab(m_3)$
A diagnosis Φ_Δ for an observed system $(SD, COMP, OBS)$ is an explanation for an elementary observation $o \in OBS$ iff

$$SD, \Phi_\Delta \models o$$

Preferences

1. select diagnoses that explain all the observations of OBS
2. select diagnoses that explain a biggest subset of OBS
3. select diagnoses that explain the biggest subset of OBS
Example: example

Example 1:
All the diagnoses that cover the following sentence (which is not a partial diagnosis) are explanations of Out(a2, 12)

$$\neg Ab(m2) \land \neg Ab(m3) \land \neg Ab(a2)$$

for instance:

$$Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$$
Be careful between Deduction and Abduction

Diagnosis reasoning is generally close to Abduction

Model-based diagnosis for static systems

- Description of a model with FOL (structural/behavioural model)
- Use of Failure knowledge in the model

Diagnosis:

- Detection is satisfiability problem
- Identification consists in retrieving the satisfiability

Diagnosis representation:

- Kernel diagnosis: an efficient way to represent all the diagnoses.

Diagnosis preference:

- Minimal diagnoses, Explanations