
Part I

Logic programming: PROLOG

1 Introduction

What is Prolog?

Prolog is a programming language

The programmerdeclaresa knowledge base (KB) andasksa question. Prolog does the rest.

The KB declared in Prolog is based on Horn’s Clauses. To answer the question, Prolog uses Backward
Chaining.

2 Syntax and Examples

Constants and Variables

Definition 1. A Constantis

1. Number: 12,3.5

2. Atoms:

• any string that begins with a small letter

• any string between ” ”

• empty lists symbol[]

3. Variables:

• any string that begins with a capital letter

• any string that begins with

• wildcard pattern

Three kinds of knowledge

Definition 2. A Fact is a predicate. p(...). (i.e. p(...)). A fact can be seen as theHeadof a Horn’s
clause.

Definition 3. A Ruleis a complete Horn clause:p(..) :- q(..), ..., r(..). (i.e. q(...) ∧
· · · ∧ r(...) ⇒ p(...))

Definition 4. A Queryis a set of predicates:s(..),..,t(..). A query can be seen as theBodyof a
Horn’s clause.

My first program

Here is the KB to program:
father(charlie, david) father(henri, charlie) father(X, Z)∧father(Z, Y) ⇒ grandfather(X, Y)

father(charlie,david).
father(henri,charlie).
grandfather(X,Y) :- father(X,Z) , father(Z,Y).

My first program

My first program

My first program

2

Order of the answers

Prolog “reads” clauses from the top to the bottom and “explores” from the left to the right.

Functions

In prolog, we can also declare a function of FOL. A function has not result, it is just a functional relation.

Example5. John’wife: wife(john)
Such a term is always included in a predicate in prolog:name(wife(john),marie).
Be careful about the confusion between the functionwife(john) which represents the wife of John

and the predicatewife(john) which says that John is a wife!

Arithmetic

• Comparisons:>, <, >=, =<, =:=, = \=

• Assignation:is

– ?- X is 3+2.

– X=5

3

• Predefined functions:−, +, ∗, /, ,̂ mod, abs, min, max, sign, random, sqrt,
sin, cos, tan, log, exp...

Recursive programming

Depth-first search from a start state X:dfs(X) :- goal(X).
dfs(X) :- successor(X,S) dfs(S).

Factorial:
fact(A,B) :- fact(A,1,B). fact(A,B,C) :- A > 1, D is B*A, E is A-1, fact(E,D,C). fact(1,A,A).

Redundant inference and infinite loops

link(a,b). link(b,c). path(X,Z) :- link(X,Z). path(X,Z) :- path(X,Y), link(Y,Z).

link(a,b). link(b,c). path(X,Z) :- path(X,Y), link(Y,Z). path(X,Z) :- link(X,Z).

What is the difference between version 1 and version 2?

Proof tree: version 1

Example6.
path(a,c)

Proof tree: version 1

Example7.

path(a,c)

link(a,c)

fail

Proof tree: version 1

Example8.

path(a,c)

link(a,c)

fail

path(a,Y)

4

Proof tree: version 1

Example9.

path(a,c)

link(a,c)

fail

path(a,Y)

link(a,Y)

{Y/b}

Proof tree: version 1

Example10.

path(a,c)

link(a,c)

fail

path(a,Y) link(b,c)

link(a,Y)

{Y/b}

{ }

Proof tree: version 2

Example11.
path(a,c)

Proof tree: version 2

Example12. path(a,Y)

path(a,c)

link(Y,c)

Proof tree: version 2

5

Example13.

path(a,Y)

path(a,c)

link(Y,c)

path(a,Y’) link(Y’,Y)

Proof tree: version 2

Example14.

path(a,Y)

path(a,c)

link(Y,c)

path(a,Y’) link(Y’,Y)

path(a,Y’’) link(Y’’,Y’)

Term comparison and unification

• T1 == T2 succeeds if T1 and T2 areidentical(equality of FOL)

• T1 \ == T2 succeeds if T1 and T2 are not identical

• T1 = T2 is theUnificationof T1 and T2 (i.e. UNIFY(T1,T2) is called)

• T1 \= T2 succeeds if (i.e. UNIFY(T1,T2) has no solution)

6

Lists

The empty list is represented by:[]

A list has aHeadand aTail: [Head | Tail]

Example15. The lista, b, c is denoted in Prolog:[a |[b |[c |[]]]]

Lists: examples

Example16. 1. [X | L] = [a, b, c] →

Lists: examples

Example17. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] →

Lists: examples

Example18. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] → X = a, L =[]

3. [X | L] = [] →

Lists: examples

Example19. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] → X = a, L =[]

3. [X | L] = [] → fail

4. [X , Y] = [a,b,c] →

Lists: examples

Example20. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] → X = a, L =[]

3. [X | L] = [] → fail

4. [X , Y] = [a,b,c] → fail

5. [X, Y | L] = [a,b,c] →

7

Lists: examples

Example21. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] → X = a, L =[]

3. [X | L] = [] → fail

4. [X , Y] = [a,b,c] → fail

5. [X, Y | L] = [a,b,c] → X = a, Y = b, L = [c]

6. [X | L] = [X,Y | L2] →

Lists: examples

Example22. 1. [X | L] = [a, b, c] → X = a, L = [b,c]

2. [X | L] = [a] → X = a, L =[]

3. [X | L] = [] → fail

4. [X , Y] = [a,b,c] → fail

5. [X, Y | L] = [a,b,c] → X = a, Y = b, L = [c]

6. [X | L] = [X,Y | L2] → L = [Y|L2]

Sum of elements

Example23. sumElements([],0). sumElements([A | B], C) :- sumElements(B,D), C
is D+A. Query:

?- sumElements([1,2,3,5],N). N = 11 ; No

Wildcard pattern: ith

Example24. ith([X |],1,X). ith([| L], R, Y) :- Rm1 is R-1, ith(L,Rm1,Y).
Query:

?- ith([a,b,c,d],2,N). N = b ; No

Predicate append

append is a predefined predicate to append lists

Example25. ?- append([a,b,c], [d,e],L) L = [a,b,c,d] How to find the last element of a list??- append(, [X], [a,b,c,d]) X=
d How to create sub-lists from lists??- append(L2,L3, [b,c,a,d,e]), append(L1, [a], L2). L2 =
[b,c,a] L3 = [d,e] L1 = [b , c]

Sort
Example26. Given two sorted lists L1, L2 the predicatmerge merges the lists to build a new sorted list:

merge([], L, L). merge(L, [], L). merge([X|L1], [Y | L2], [X | L]) :- X=<Y, merge(L1,
[Y | L2], L). merge([X|L1], [Y | L2], [Y | L]) :- X>Y, merge([X | L1],L2, L).

8

Negation as failure

Prolog allows a “kind of” negation callednegation as failure. If Prolog is not able to proveP thennotP is
proved!

Example27. alive(X) :- not dead(X).
means: “Everyone is alive if not provably dead”.
Be careful thenot is NOT the¬ of FOL. If we are not able to provedead(X), we cannot say anything

about¬dead(X)

The cut

Imagine the following rules:
R1: belong(X, [X |]). R2: belong(X, [| L]) :- belong(X,L).
and the query
belong(X,[a,b,c]). Solution: X = a, X = b, X = c Proof tree: at each node of the tree, we choose R1 and THEN R2.

R1: belong(X, [X |]):- ! . R2: belong(X, [| L]) :- belong(X,L).
and the query belong(X,[a,b,c]). Solution: X = a Proof tree: We cut the complete proof tree. At each node of the

tree, we choose only the rule that are before “!” (i.e. R1)

Last example :-)

person(yannick).
study(people,anu).
have(people,m1).
goodlectureslogic(m1).
students(X) :- study(X,anu).
gives(yannick,X,people) :- goodlectureslogic(X) , have(people,X).
goodteacher(X) :- person(X), gives(X,Y,Z), goodlecturesfol(Y) , students(Z).
goodlecturesfol(X) :- goodlectureslogic(X).
Query:
?- goodteacher(Yannick).
Yes
?- goodteacher(Z).
Z = Yannick

9

	I Logic programming: Prolog
	Introduction
	Syntax and Examples

