
Part I

Inference in first-order logic

1 Backward chaining

Substitution and Composition

Definition 1. Givenp a sentence andθ1, θ2 two substitutions, thecompositionof θ1 andθ2 is the substitutionθ = COMPOSE(θ1, θ2)
such that:

SUBST(θ, p) = SUBST(θ1, SUBST(θ2, p)) = SUBST(θ2, SUBST(θ1, p))

Example2. Sentencep is P (y) ∧Q(x) ⇒ R(z)
Considerθ1 = {y/Toto, z/T iti}, θ2 = {x/Tata}
SUBST(θ1, p) = P (Toto) ∧Q(x) ⇒ R(Titi)
SUBST(θ2, p) = P (y) ∧Q(Tata) ⇒ R(z)
SUBST(COMPOSE(θ1, θ2), p) = P (Toto) ∧Q(Tata) ⇒ R(Titi)

Backward chaining: main idea

Definition 3. Given a definite clausep1 ∧ · · · ∧ pn ⇒ c, c is called theHead. p1 ∧ · · · ∧ pn is called the
Body.

Goal-drivenalgorithm.

1. Unification of the goal with the head of a rule

2. Propagation of the substitution to the body. Every premise of the body is a new goal

3. Apply BC recursively on the new goals...

Based on a depth-first search (DFS).

Backward chaining: algorithm

Backward chaining: DFS-tree

Example4.

Study(People, ANU)

Students(People)

S4

S6

S1

Person(Yannick)

S5

S7

S2

GoodLecturesLogic(M1) Have(People,M1)

S2

S3

GoodTeacher(Yannick)

GoodLecturesFOL(y)

GoodLecturesLogic(M1)

S2

Gives(Yannick,M1,People)

{ x / Yannick }

{ }

{ y / M1 }

{ z / People }
compose compose

{ }{ }{ }

Answer = { x / Yannick, y / M1, z / People }

Properties of BC

Depth-first recursive proof search: space islinear in size of the proof.

Incompletedue to infinite loops (DFS). To fix that, we have to check the current goal against every goal in
the stack.

Inefficientdue to repeated subgoals. To fix that we must use a cache of previous results (memoization)

So what? If BC is not so good, why do we talk about it? Well, it is widely used and with good optimisations
it works! (linear algorithm): PROLOG

2 Resolution

Another Knowledge base

Example5. Everyone who loves all animals is loved by someone. Anyone who kills an animal is loved by
no one. Jack loves all animals. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity
kill the cat?

Another Knowledge base
Example6. “Everyone who loves all animals is loved by someone.”∀x [∀y Animal(y) ⇒ Loves(x, y)] ⇒ [∃y Loves(y, x)] “Anyone who kills an animal

is loved by no one..” ∀x[∃yAnimal(y) ∧ Kills(x, y)] ⇒ [∀z ¬Loves(z, x)] “Jack loves all animals”∀x Animal(x) ⇒ Loves(Jack, x)
“Either Jack or Curiosity killed the cat, who is named Tuna”Kills(Jack, Tuna) ∨ Kills(Curiosity, Tuna) Tuna is a cat Cat(Tuna) A cat is an

animal ∀x Cat(x) ⇒ Animal(x) Question: Did Curiosity kill the cat?Kills(Curiosity, Tuna)

Conjunctive Normal Form for FOL

A sentence in aConjunctive Normal Formis a conjunction of clauses, each clause is a disjunction of literals.

Every sentence in FOL (without equality) is logically equivalent to a FOL-CNF sentence.

Example7. “Everyone who loves all animals is loved by someone”∀x [∀y Animal(y) ⇒ Loves(x, y)] ⇒ [∃y Loves(y, x)]
has the following CNF
[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)].

2

Conversion to CNF

1. Elimination of implications

• A ⇒ B ≡ ¬A ∨B

2. Move¬ inwards

3. Standardize variables

4. Skolemisation

5. Drop the universal quantifiers

6. Distribute∨ over∧

Move¬ inwards and variable standardization

¬∀x p ≡ ∃x ¬p

¬∃x p ≡ ∀x ¬p

(∀x P (x)) ∨ (∃x Q(x))

x is used twice but it does not represent the same thing (two diffrent scopes). To avoid confusion, we rename:

(∀x P (x)) ∨ (∃y Q(y))

Skolemization

Definition 8. Skolemisationis the process of removing existential quantifiers by elimination.

• Simple case = Existential Instanciation

• Complex case = Use ofSkolem functions

Example9. Simple case:∃x P (x)
Using EI, we have:P (A)
Complex case:∀x [∃y P (x, y)]
Using EI, we have:∀x P (x,A) wrong
Use of a Skolem functionF (x): ∀x P (x, F (x))
(y in is the scope ofx)

3

Conversion to CNF: example
Example10. ∀x [∀y Animal(y) ⇒ Loves(x, y)] ⇒ [∃y Loves(y, x)]

1. Eliminate implications:∀x [¬∀y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃y Loves(y, x)]

2. Move¬ inwards

• ∀x [∃y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃y Loves(y, x)]

• ∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃y Loves(y, x)] (De Morgan)

• ∀x [∃y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃y Loves(y, x)] (double negation)

3. Standardize variables:∀x [∃y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃z Loves(z, x)]

4. Skolemization:∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ [Loves(G(x), x)]

5. Drop universal quantifiers:[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ [Loves(G(x), x)]

6. Distribute∨ over∧: [Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]

Resolution: inference rule

`1 ∨ · · · ∨ `i ∨ · · · ∨ `k, `′1 ∨ · · · ∨ `′j ∨ · · · ∨ `′n

SUBST(θ, `1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨ `′1 ∨ · · · ∨ `′j−1 ∨ `′j+1 ∨ · · · ∨ `′n)

with θ a substitution such that UNIFY(`i ,¬ `′j) = θ

Example11.

[Animal(F (x)) ∨ Loves(G(x), x)] [¬Loves(u, v) ∨ ¬Kills(u, v)]

Animal(F (x)) ∨ ¬Kills(G(x), x)

θ = {u/G(x), v/x}

Resolution algorithm

Definition 12. Proof by contradiction:givenKB, to proveα, we prove thatKB ∧ ¬α is not satisfiable.

Resolution: example

Resolution Proof that Curios-
ity has killed the cat:

• ¬α is¬Kills(Curiosity, Tuna)

• Use of the factoring rule to inferLoves(G(Jack), Jack)

4

Dealing with equality

There are several ways to deal witht1 = t2. One of them isParamodulation:

`1 ∨ · · · ∨ `k ∨ t1 = t2, `′
1 ∨ · · · ∨ `′

n[t3]
SUBST(θ, `1 ∨ · · · ∨ `′

n[y])

where
UNIFY (t1, t3) = θ

This inference rule can be used during the resolution algorithm.

Example13.
Father(John) = Father(Richard) Male(Father(x))

Male(Father(Richard))

θ = {x/John} = UNIFY(Father(John), Father(x))

Theorem provers

Unlike logic programming language,Theorem proverscover FOL (no restriction on Definite Clauses). Their algorithm is based on
resolution.

Theorem prover: OTTER

Using the resolution algorithm in a “clever” way.

• Unit preference: Inference of sentences with a minimal number of literals (more chance to get the empty clause)

• Set of support: What is the set of clauses in KB that will beuseful?

• Input resolution: Always using a sentence from KB orα to apply the resolution rule.

• Subsumption: Elimination of sentences that are subsumed by (more specific than) an existing sentence in the KB.

Completeness of resolution

5

Resolution can find a contradiction in S’

There is a resolution proof for the contradiction in S

Herbrand’s theorem

Some set S’ of ground instances is unsatisfiable

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Lifting lemma

Ground resolution
 theorem

Summary

6

• Propositionalisation: very slow

• Unificationtechniques: much more efficient

• Generalised Modus Ponens: FC and BC on Definite clauses

– FC for deductive databases

– BC for logic programming

• Entailement problem is semi-decidable

• Generalisedresolution: complete proof system (CNF)

To Infinity and Beyond!

Using theorem proving to automatically prove everything...

To prove everything, we need to prove everything in arithmetic...

Logic for arithmetic:0, S(..),×, +, Expt (extension of FOL, more expressive)

Gödel said (after a proof on 30 pages):
“Whatever your logic is, if your logic can express arithmetic, whatever your KB is, I can exhibit a sentence in your logic such

that the sentence is entailed by KB but there’s no way to prove it by inference thanks to your KB”

Sorry for the inconvenience...

7

	I Inference in first-order logic
	Backward chaining
	Resolution

