
Part I

Inference in first-order logic
A brief history of reasoning

450B.C. Stoics propositional logic, inference (maybe)
322B.C. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory

(propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 G̈odel ∃ complete algorithm for FOL :-)
1930 Herbrand complete algorithm for FOL

(reduce to propositional)
1931 G̈odel ¬∃ complete algorithm for arithmetic :-(
1960 Davis/Putnam “practical” algorithm

for propositional logic
1965 Robinson “practical” algorithm for FOL —resolution

Outline

Contents

1 Reduction to propositional inference

Universal instantiation (UI)

Definition 1. Inference rule: Every instantiation of a universally quantified sentence is entailed by it.

∀v α

SUBST({v/g}, α)

for anyvariablev andground termg (term without variable)

Example2. ∀x King(x) ∧Greedy(x) ⇒ Evil(x) yields
King(John)∧Greedy(John) ⇒ Evil(John) [g = John] King(Richard)∧Greedy(Richard) ⇒ Evil(Richard) [g =

Richard] King(Father(John)) ∧Greedy(Father(John)) ⇒ Evil(Father(John)) [g = Father(John)]

Existential instantiation (EI)

Definition 3. Inference rule: For any sentenceα, variablev, and constant symbolk that does not appear
elsewhere in the knowledge base:

∃v α

SUBST({v/k}, α)

Example4. ∃x Crown(x) ∧OnHead(x, John) yields
Crown(C1) ∧OnHead(C1, John) [k = C1]
providedC1 is a new constant symbol, called aSkolem constant.

EI and UI

UI can be applied several times toadd new sentences; the new KB is logically equivalent to the previous
one.

KB = {∀x P (x)} newKB = {∀x P (x), P (Richard)}...

EI can be applied once toreplacethe existential sentence; the new KB isnotequivalent to the previous one!
KB = {∃x P (x)} newKB = {P (SkolemConstant)}...

Reduction to propositional inference
Example5. Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) ⇒ Evil(x) King(John) Greedy(John) Brother(Richard, John)
Instantiating the universal sentence inall possibleways, we have:
King(John) ∧ Greedy(John) =⇒ Evil(John) King(Richard) ∧ Greedy(Richard) =⇒ Evil(Richard)

King(John) Greedy(John) Brother(Richard, John)

The new KB ispropositionalised: proposition symbols areKing(John), Greedy(John), Evil(John), King(Richard) · · ·

Reduction contd.

A sentenceα is entailed by an FOL KB if and only if it is entailed by afinitesubset of the propositional KB.

For n = 0 to maxDepth create aKBprop,n by reduction with depth-m terms(m = 1 . . . n) if αprop is entailed by
KBprop,n (i.e. KBprop,n � αprop) then STOP.

If KB � α then the algorithm stops but ifKB 6� α, the algorithm does not stop. IfKB contains a function then the terms can
have infinite depth (maxDepth = ∞): Father(Father(Father(.....Father(John)....)))

NO. Entailement in FOL is semi-decidable Turing(1936) Church(1936)

Problems with propositionalization
Propositionalization seems to generate lots of irrelevant sentences.

Example6. FromKB = {
∀x King(x)∧Greedy(x) =⇒ Evil(x), King(John), ∀y Greedy(y), Brother(Richard, John)}
it seems obvious thatEvil(John), but propositionalization produces lots of facts such asGreedy(Richard)

that are irrelevant.

With p k-ary predicates andn constants, there arep · nk instantiations. With function symbols, it gets
much much worse!

2 Unification and lifting

Inference rules for FOL
We can get the inference immediately on the FOL KB.

We userules from propositional logic that arelifted like the Generalised Modus Ponens. Then we can
updateFC, BC and Resolution for FOL :-)

The problem is theinstantiation of the variables. We need some new operators:

2

1. Substitution(SUBST)

2. Unification(UNIFY)

to define the inference rules and to choose “clever” instantiations

Unification

Definition 7. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Unification

Definition 8. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example9.

p q θ

Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y, Bill)
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, Elizabeth)

Unification

Definition 10. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example11.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill)
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, Elizabeth)

Unification

Definition 12. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

3

Example13.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill) {x/Bill, y/John}
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, Elizabeth)

Unification

Definition 14. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example15.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill) {x/Bill, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, Elizabeth)

Unification

Definition 16. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example17.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill) {x/Bill, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, Elizabeth) fail

Unification

Definition 18. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example19.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill) {x/Bill, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, Elizabeth) fail

Standardizing aparteliminates overlap of variables (renaming of variables)Knows(z17, Elizabeth)

4

Unification

Definition 20. Let p, q be two sentences of FOL, the result of theUnification is:

UNIFY(p, q) = θ

whereθ is a substitution on variables ofα, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example21.

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, Bill) {x/Bill, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, Elizabeth) fail

Standardizing aparteliminates overlap of variables (renaming of variables)Knows(z17, Elizabeth) Knows(John, x) Knows(z17, Elizabeth) {x/Elizabeth, z17/John}

Generalized Modus Ponens (GMP)

Definition 22.
p1

′, p2
′, . . . , pn

′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)
SUBST(θ, q)

whereθ = UNIFY(pi, p
′
i) for all i.

Variables are universally quantified.

Example23.
King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What isθ? What is SUBST(θ, Evil(x))?

Generalized Modus Ponens (GMP)

Definition 24.
p1

′, p2
′, . . . , pn

′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)
SUBST(θ, q)

whereθ = UNIFY(pi, p
′
i) for all i.

Variables are universally quantified.

Example25.
King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What is θ? What is SUBST(θ, Evil(x))? θ = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x)) θ =
{x/John, y/John}

Generalized Modus Ponens (GMP)

Definition 26.
p1

′, p2
′, . . . , pn

′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)
SUBST(θ, q)

whereθ = UNIFY(pi, p
′
i) for all i.

Variables are universally quantified.

5

Example27.
King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What is θ? What is SUBST(θ, Evil(x))? θ = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x)) θ =
{x/John, y/John} SUBST(θ, Evil(x)) = Evil(John)

GMP is sound

GMP is sound. We have:
p1

′, p2
′, . . . , pn

′ (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q) � SUBST(θ, q)

providedθ = UNIFY(pi, p
′
i) for all i.

1. for a sentencep (with variables universally quantified), we have for allθ:

p � SUBST(θ, p)

2. because of 1 and UI, fromp1
′, p2

′, . . . , pn
′ we infer

SUBST(θ, p′
1) ∧ · · · ∧ SUBST(θ, pn

′)

3. because of 1 and UI, fromp1 ∧ p2 ∧ . . . ∧ pn ⇒ q we infer

SUBST(θ, p1) ∧ · · · ∧ SUBST(θ, pn) ⇒ SUBST(θ, q)

4. If θ = UNIFY(pi, p
′
i) for all i then from 2 and 3 we infer SUBST(θ, q) �

3 Knowledge base: an example

Knowledge base: an example

Example28. “One says that a person who gives good lectures about FOL to students is a good teacher. This
group of people, studying at the ANU, have very good lectures about Logic and all of those lectures are
given by Yannick who is a person.” We must prove that “Yannick is a good teacher”

Knowledge base: an example
Example29. “...a person who gives good lectures about FOL to students is a good teacher...”:

Knowledge base: an example
Example30. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

Knowledge base: an example
Example31. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:

Knowledge base: an example
Example32. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

6

Knowledge base: an example
Example33. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:

Knowledge base: an example
Example34. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)

Knowledge base: an example
Example35. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:

Knowledge base: an example
Example36. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)

Knowledge base: an example
Example37. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:

Knowledge base: an example
Example38. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

7

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:Person(Y annick)

Knowledge base: an example
Example39. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:Person(Y annick)
People that study at the ANU, are students

Knowledge base: an example
Example40. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:Person(Y annick)
People that study at the ANU, are students∀x Study(x, ANU) ⇒ Students(x)

Knowledge base: an example
Example41. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:Person(Y annick)
People that study at the ANU, are students∀x Study(x, ANU) ⇒ Students(x)
If the lectures about Logic are good, the lectures about FOL are good:

Knowledge base: an example
Example42. “...a person who gives good lectures about FOL to students is a good teacher...”:∀x∀y∀z Person(x)∧Gives(x, y, z)∧GoodLecturesFOL(y)∧
Students(z) ⇒ GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
“..This group of people, studying at the ANU”:Study(People, ANU)
“..Yannick who is a person..”:Person(Y annick)
People that study at the ANU, are students∀x Study(x, ANU) ⇒ Students(x)
If the lectures about Logic are good, the lectures about FOL are good: ∀x GoodLecturesLogic(x) ⇒ GoodLecturesFOL(x)

8

4 Forward chaining

Restriction: Definite clauses

Definition 43. As said previously, aHorn clauseis

• a predicateP (..), or

• something likeP1(..) · · ·Pn(..) ⇒ C(..)

• ≡ ¬P1(..) ∨ · · · ∨ ¬Pn(..) ∨ C(..)

(Pi(..) is apremiseandC(..) theconclusion)
The conclusionC(..) can simply be “True” (i.e. no positive literal).¬P1(..) ∨ · · · ∨ ¬Pn(..) is also a Horn clause.

Definition 44. A definite clauseis a Horn Clause withexactlyone positive literal.¬P1(..) ∨ · · · ∨ ¬Pn(..) ∨ C(..).

FC applies GMP and only works with Definite Clauses. The presented KB is a set of Definite Clauses.

Forward chaining: algorithm

Example
Example45. S1:∀x∀y∀z Person(x) ∧Gives(x, y, z) ∧GoodLecturesFOL(y) ∧ Students(z) ⇒ GoodTeacher(x) S2:
∃x Have(People, x)∧GoodLecturesLogic(x) We replace S2 thanks to EI, we introduce a new symbolM1 S2:Have(People, M1)∧
GoodLecturesLogic(M1)

S3:∀x GoodLecturesLogic(x) ∧Have(People, x) ⇒ Gives(Y annick, x, People)
S4:Study(People, ANU)
S5:Person(Y annick)
S6:∀x Study(x, ANU) ⇒ Students(x)
S7:∀x GoodLecturesLogic(x) ⇒ GoodLecturesFOL(x)

Forward chaining: example

Example46.
GoodLecturesLogic(M1)

S5 S2

Have(People,M1) Study(People, ANU)Person(Yannick)

S4S2
Iteration 1

9

Forward chaining: example

Example47.
GoodLecturesLogic(M1)

Gives(Yannick,M1,People)

S5

S7
{ x / M1 }

S3

{ x / M1 }

S2

Have(People,M1) Study(People, ANU)

Students(People)GoodLecturesFOL(M1)

Person(Yannick)

S4S2

{ x/ People}

S6

Iteration 1

Iteration 2

Forward chaining: example

Example48.

GoodTeacher(Yannick)

GoodLecturesLogic(M1)

Gives(Yannick,M1,People)

S5

S7
{ x / M1 }

S3

{ x / M1 }

S2

S1
{ x / Yannick, y / M1, z / People }

Have(People,M1) Study(People, ANU)

Students(People)GoodLecturesFOL(M1)

Person(Yannick)

S4S2

{ x/ People}

S6

Iteration 1

Iteration 2

Iteration 3

Properties of forward chaining

FC issoundfor KB with Definite Clauses. (Use of GMP)

FC iscompletefor KB with Definite Clauses. (Brute force)

FC always terminates for KB = Datalog (no functions). FCmay not terminatefor KB with Definite Clauses.

Even on Definite Clauses, the problem issemidecidable.

Efficiency of FC

The algorithm is brute-force. We can optimise.

• no need to match a rule on iterationk if a premise wasn’t added on iterationk − 1

• match each rule whose premise contains a newly added literal

Algorithm RETE (managment of a working memory...)

10

	Reduction to propositional inference
	Unification and lifting
	Knowledge base: an example
	Forward chaining

