Part I

Inference in first-order logic

A brief history of reasoning

450в.С.	Stoics	propositional logic, inference (maybe)
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	probability theory
		(propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL :-)
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	$\neg \exists$ complete algorithm for arithmetic :-(
1960	Davis/Putnam	"practical" algorithm
		for propositional logic
1965	Robinson	"practical" algorithm for FOL - resolution

Outline

Contents

1 Reduction to propositional inference

Universal instantiation (UI)

Definition 1. Inference rule: Every instantiation of a universally quantified sentence is entailed by it.

$$
\frac{\forall v \alpha}{\operatorname{SuBST}(\{v / g\}, \alpha)}
$$

for any variable v and ground term g (term without variable)
Example 2. $\forall x \operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x)$ yields
$\operatorname{King}(J o h n) \wedge G r e e d y(J o h n) \Rightarrow \operatorname{Evil}(J o h n) \quad[g=$ John $] \operatorname{King}($ Richard $) \wedge G r e e d y($ Richard $) \Rightarrow$ Evil $($ Richard $) \quad[g=$ $\operatorname{Richard}] \operatorname{King}($ Father $(J o h n)) \wedge \operatorname{Greedy}($ Father $(J o h n)) \Rightarrow \operatorname{Evil}(F a t h e r(J o h n)) \quad[g=$ Father $(J o h n)]$

Existential instantiation (EI)

Definition 3. Inference rule: For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\operatorname{SuBSt}(\{v / k\}, \alpha)}
$$

Example 4. $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x, J o h n)$ yields
$\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}\right.$, John $) \quad\left[k=C_{1}\right]$
provided C_{1} is a new constant symbol, called a Skolem constant.

EI and UI

UI can be applied several times to add new sentences; the new KB is logically equivalent to the previous one.
$K B=\{\forall x P(x)\}$ new $K B=\{\forall x P(x), P($ Richard $)\} \ldots$
EI can be applied once to replace the existential sentence; the new KB is not equivalent to the previous one! $K B=\{\exists x P(x)\}$ new $K B=\{P($ SkolemConstant $)\} \ldots$

Reduction to propositional inference

Example 5. Suppose the KB contains just the following:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x) \operatorname{King}(J o h n)$ Greedy (John) Brother (Richard, John) Instantiating the universal sentence in all possible ways, we have: $\operatorname{King}(J o h n) \wedge \operatorname{Greedy}(J o h n) \quad \Longrightarrow \quad \operatorname{Evil}(J o h n) \operatorname{King}($ Richard $) \wedge$ Greedy $($ Richard $) \quad \Longrightarrow \quad$ Evil(Richard) King(John) Greedy(John) Brother(Richard, John)

The new KB is propositionalised: proposition symbols are King(John), Greedy (John), Evil(John), King(Richard) . .

Reduction contd.

A sentence α is entailed by an FOL KB if and only if it is entailed by a finite subset of the propositional KB.
For $n=0$ to maxDepth \quad create a $K B_{\text {prop, } n}$ by reduction with depth- m terms $(m=1 \ldots n) \quad$ if $\alpha_{\text {prop }}$ is entailed by $K B_{\text {prop }, n}$ (i.e. $K B_{\text {prop }, n} \vDash \alpha_{\text {prop }}$) then STOP.

If $K B \vDash \alpha$ then the algorithm stops but if $K B \not \forall \alpha$, the algorithm does not stop. If $K B$ contains a function then the terms can have infinite depth $(\operatorname{maxDepth}=\infty)$: Father $($ Father $($ Father $(\ldots .$. Father $(J o h n) . . .))$.

NO. Entailement in FOL is semi-decidable Turing(1936) Church(1936)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
Example 6. From $K B=\{$
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Longrightarrow \operatorname{Evil}(x), \operatorname{King}(J o h n), \forall y \operatorname{Greedy}(y)$, Brother $(\operatorname{Richard}$, John $)\}$ it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy (Richard) that are irrelevant.

With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations. With function symbols, it gets much much worse!

2 Unification and lifting

Inference rules for FOL

We can get the inference immediately on the FOL KB.
We use rules from propositional logic that are lifted like the Generalised Modus Ponens. Then we can update FC, BC and Resolution for FOL :-)

The problem is the instantiation of the variables. We need some new operators:

1. Substitution (SUbst)

2. Unification (UnIFY)

to define the inference rules and to choose "clever" instantiations

Unification

Definition 7. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

$$
\operatorname{SubSt}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

Unification

Definition 8. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

	$\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$		
	p	q	θ
Example 9.	Knows $($ John,$x)$	Knows $($ John, Jane $)$	
	Knows $($ John,$x)$	Knows $(y$, Bill $)$	
Knows $($ John,$x)$	Knows $(y$, Mother $(y))$		
Knows $($ John,$x)$	Knows $(x$, Elizabeth $)$		

Unification

Definition 10. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

		$\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$	
	p	q	θ
Example 11.	Knows(John, x)	Knows(John, Jane)	$\{x /$ Jane $\}$
	Knows(John, x)	Knows(y, Bill)	
	Knows(John, x)	Knows(y, Mother(y))	
	Knows(John, x)	Knows(x, Elizabeth)	

Unification

Definition 12. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

$$
\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

	p	q	θ
Example 13.	Knows $($ John, $x)$	Knows(John, Jane)	$\{x /$ Jane $\}$
	Knows $($ John,$x)$	Knows $(y$, Bill $)$	$\{x /$ Bill, $y /$ John $\}$
	Knows $($ John $x)$	Knows $(y$, Mother $(y))$	
	Knows $($ (x, Elizabeth $)$		

Unification

Definition 14. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNify}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

	$\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$		
Example 15.	p	q	θ
	Knows(John, x)	Knows(John, Jane)	\{x/Jane $\}$
	Knows(John, x)	Knows(y, Bill)	\{x/Bill, y/John $\}$
	Knows(John, x)	Knows(y, Mother (y))	\{y/John, x/Mother(John) \}
	Knows(John, x)	Knows(x, Elizabeth)	

Unification

Definition 16. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

$$
\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

	p	q	θ
Example 17.	Knows $($ John, $x)$	Knows(John, Jane)	$\{x /$ Jane $\}$
	Knows $($ John,$x)$	Knows $(y$, Bill $)$	$\{x /$ Bill,y/John $\}$
	Knows $(J o h n, x)$	Knows $(y$, Mother $(y))$	$\{y /$ John, x/Mother $($ John $)\}$
	Knows $(J o h n, x)$	Knows $(x$, Elizabeth $)$	fail

Unification

Definition 18. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

$$
\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

Example 19.	p	q	θ
	Knows(John, x)	Knows(John, Jane)	\{x/Jane $\}$
	Knows(John, x)	Knows(y, Bill)	\{x/Bill, y/John $\}$
	Knows(John, x)	Knows(y, Mother (y))	\{y/John, x/Mother(John) $\}$
	Knows(John, x)	Knows(x, Elizabeth)	fail

Standardizing apart eliminates overlap of variables (renaming of variables) Knows (z_{17}, Elizabeth)

Unification

Definition 20. Let p, q be two sentences of FOL, the result of the Unification is:

$$
\operatorname{UNIFY}(p, q)=\theta
$$

where θ is a substitution on variables of α, β such that:

	$\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$		
Example 21.	p	q	θ
	Knows(John, x)	Knows(John, Jane)	$\{x /$ Jane $\}$
	Knows(John, x)	Knows(y, Bill)	$\{x /$ Bill, y/John $\}$
	Knows(John, x)	Knows(y, Mother (y))	$\{y /$ John, $x /$ Mother (John) $\}$
	Knows(John, x)	Knows(x, Elizabeth)	fail

Standardizing apart eliminates overlap of variables (renaming of variables) Knows $\left(z_{17}\right.$, Elizabeth $)$ Knows $($ John,$x) \mid K n o w s\left(z_{17}\right.$, Elizab

Generalized Modus Ponens (GMP)

Definition 22.

$$
\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}, \quad\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{\operatorname{SUBST}(\theta, q)}
$$

where $\theta=\operatorname{Unify}\left(p_{i}, p_{i}^{\prime}\right)$ for all i.
Variables are universally quantified.
Example 23.

$$
\frac{\operatorname{King}(J o h n), \operatorname{Greed}(y)(\operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x))}{\operatorname{SuBST}(\theta, \operatorname{Evil}(x))}
$$

What is θ ? What is $\operatorname{SubSt}(\theta, \operatorname{Evil}(x))$?

Generalized Modus Ponens (GMP)

Definition 24.

$$
\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{\operatorname{SUBST}(\theta, q)}
$$

where $\theta=\operatorname{UNiFY}\left(p_{i}, p_{i}^{\prime}\right)$ for all i.
Variables are universally quantified.
Example 25.

$$
\frac{\operatorname{King}(\operatorname{John}), \operatorname{Greedy}(y)(\operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x))}{\operatorname{SuBST}(\theta, \operatorname{Evil}(x))}
$$

What is θ ? What is $\operatorname{SUBSt}(\theta, \operatorname{Evil}(x)) ? \quad \theta=\operatorname{Unify}(\operatorname{King}(\operatorname{John}), \operatorname{King}(x))=\operatorname{Unify}(\operatorname{Greedy}(y), \operatorname{Greedy}(x)) \theta=$ \{x/John, y/John $\}$

Generalized Modus Ponens (GMP)

Definition 26.

$$
\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}, \quad\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{\operatorname{SUBST}(\theta, q)}
$$

where $\theta=\operatorname{Unify}\left(p_{i}, p_{i}^{\prime}\right)$ for all i.
Variables are universally quantified.

Example 27.

$$
\frac{\operatorname{King}(\operatorname{John}), \operatorname{Greedy}(y)(\operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x))}{\operatorname{SubSt}(\theta, \operatorname{Evil}(x))}
$$

What is θ ? What is $\operatorname{Subst}(\theta, \operatorname{Evil}(x))$? $\theta=\operatorname{Unify}(\operatorname{King}(\operatorname{John}), \operatorname{King}(x))=\operatorname{Unify}(\operatorname{Greedy}(y), \operatorname{Greedy}(x)) \theta=$ $\{x / \operatorname{John}, y / \operatorname{John}\} \quad \operatorname{SUBST}(\theta, \operatorname{Evil}(x))=\operatorname{Evil}(J o h n)$

GMP is sound

GMP is sound. We have:

$$
p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash \operatorname{SUBST}(\theta, q)
$$

provided $\theta=\operatorname{UNIFY}\left(p_{i}, p_{i}^{\prime}\right)$ for all i.

1. for a sentence p (with variables universally quantified), we have for all θ :

$$
p \vDash \operatorname{Subst}(\theta, p)
$$

2. because of 1 and UI, from $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}$ we infer

$$
\operatorname{SUBST}\left(\theta, p_{1}^{\prime}\right) \wedge \cdots \wedge \operatorname{SUBST}\left(\theta, p_{n}{ }^{\prime}\right)
$$

3. because of 1 and UI, from $p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q$ we infer

$$
\operatorname{SuBSt}\left(\theta, p_{1}\right) \wedge \cdots \wedge \operatorname{SuBSt}\left(\theta, p_{n}\right) \Rightarrow \operatorname{SuBST}(\theta, q)
$$

4. If $\theta=\operatorname{Unify}\left(p_{i}, p_{i}^{\prime}\right)$ for all i then from 2 and 3 we infer $\operatorname{Subst}(\theta, q)$

3 Knowledge base: an example

Knowledge base: an example

Example 28. "One says that a person who gives good lectures about FOL to students is a good teacher. This group of people, studying at the ANU, have very good lectures about Logic and all of those lectures are given by Yannick who is a person." We must prove that "Yannick is a good teacher"

Knowledge base: an example

Example 29. "...a person who gives good lectures about FOL to students is a good teacher...":

Knowledge base: an example

Example 30."...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{GoodLecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

Knowledge base: an example

Example 31."...a person who gives good lectures about FoL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{Good} \operatorname{LecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)
"This group of people.... have very good lectures about Logic":

Knowledge base: an example

Example 32."...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{GoodLecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

Knowledge base: an example

Example 33. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge G o o d L e c t u r e s F O L(y) \wedge$
Students $(z) \Rightarrow$ GoodTeacher (x)
"This group of people.... have very good lectures about Logic": $\exists x \operatorname{Have}($ People,$x) \wedge \operatorname{GoodLecturesLogic}(x)$
"....all of their lectures are given by Yannick...":

Knowledge base: an example

Example 34. "...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge G o o d L e c t u r e s F O L(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": \existsx Have(People, x)^GoodLecturesLogic(x)
```

"...all of their lectures are given by Yannick...": $\forall x$ GoodLecturesLogic $(x) \wedge \operatorname{Have}($ People,$x) \Rightarrow \operatorname{Gives}($ Yannick,x, People $)$

Knowledge base: an example

Example 35. "...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge G o o d L e c t u r e s F O L(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)
"This group of people.... have very good lectures about Logic": $\exists x \operatorname{Have}($ People,$x) \wedge \operatorname{GoodLecturesLogic}(x)$
"...all of their lectures are given by Yannick...": $\forall x$ GoodLecturesLogic $(x) \wedge \operatorname{Have}($ People,$x) \Rightarrow \operatorname{Gives}($ Yannick,x, People $)$
"..This group of people, studying at the ANU":

Knowledge base: an example

Example 36. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge G o o d L e c t u r e s F O L(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": \existsx Have(People, x)^GoodLecturesLogic(x)
"...all of their lectures are given by Yannick...": }\forallx\mathrm{ GoodLecturesLogic (x)^Have(People, x) = Gives(Yannick, x, People)
"..This group of people, studying at the ANU": Study(People, ANU)
```


Knowledge base: an example

Example 37. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge G o o d L e c t u r e s F O L(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": }\existsx\operatorname{Have}(People,x)^GoodLecturesLogic(x
"...all of their lectures are given by Yannick...": }\forallx\mathrm{ GoodLecturesLogic(x)^Have(People, x ) = Gives(Yannick, x,People)
"..This group of people, studying at the ANU": Study(People, ANU)
"..Yannick who is a person.":
```


Knowledge base: an example

Example 38. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{Good} \operatorname{LecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)
"This group of people.... have very good lectures about Logic": $\exists x \operatorname{Have}($ People,$x) \wedge \operatorname{GoodLecturesLogic}(x)$

```
"...all of their lectures are given by Yannick..": }\forallx\mathrm{ GoodLecturesLogic (x) ^ Have(People, x) = Gives(Yannick, x, People)
    "..This group of people, studying at the ANU": Study(People, ANU)
    "..Yannick who is a person..": Person(Yannick)
```


Knowledge base: an example

Example 39. "...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{GoodLecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)
"This group of people.... have very good lectures about Logic": $\exists x \operatorname{Have}($ People,$x) \wedge \operatorname{GoodLecturesLogic~}(x)$
"...all of their lectures are given by Yannick...": $\forall x$ GoodLecturesLogic $(x) \wedge$ Have (People, $x) \Rightarrow$ Gives (Yannick, x, People)
"..This group of people, studying at the ANU": Study (People, ANU)
"..Yannick who is a person.".: Person(Yannick)
People that study at the ANU, are students

Knowledge base: an example

Example 40."...a person who gives good lectures about FoL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{Good} \operatorname{LecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": \(\exists x \operatorname{Have}(\) People,\(x) \wedge \operatorname{GoodLecturesLogic~}(x)\)
"...all of their lectures are given by Yannick..": \(\forall x \operatorname{Good} \operatorname{LecturesLogic}(x) \wedge \operatorname{Have}(\) People, \(x) \Rightarrow \operatorname{Gives}(\) Yannick, \(x\), People \()\)
"..This group of people, studying at the ANU": Study (People, ANU)
"..Yannick who is a person..": Person(Yannick)
People that study at the ANU, are students \(\forall x \operatorname{Study}(x, A N U) \Rightarrow \operatorname{Students}(x)\)
```


Knowledge base: an example

Example 41."... a person who gives good lectures about FoL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{Good} \operatorname{LecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": \existsx Have (People, x) ^GoodLecturesLogic(x)
"...all of their lectures are given by Yannick...":}\forallx\mathrm{ GoodLecturesLogic (x) ^ Have(People, x ) = Gives(Yannick, x, People)
"..This group of people, studying at the ANU": Study(People, ANU)
"..Yannick who is a person..": Person(Yannick)
People that study at the ANU, are students }\forallx\operatorname{Study}(x,ANU)=>\operatorname{Students}(x
If the lectures about Logic are good, the lectures about FOL are good:
```


Knowledge base: an example

Example 42. "...a person who gives good lectures about FOL to students is a good teacher..": $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{Good} \operatorname{LecturesFOL}(y) \wedge$ Students $(z) \Rightarrow$ GoodTeacher (x)

```
"This group of people.... have very good lectures about Logic": \existsx Have (People, x) ^GoodLecturesLogic(x)
"...all of their lectures are given by Yannick...":}\forallx\mathrm{ GoodLecturesLogic (x) ^ Have(People, x) = Gives(Yannick, x, People)
".TThis group of people, studying at the ANU": Study(People, ANU)
".Yannick who is a person..": Person(Yannick)
People that study at the ANU, are students }\forallx\operatorname{Study}(x,ANU)=>\operatorname{Students}(x
If the lectures about Logic are good, the lectures about FOL are good: }\forallx\mathrm{ GoodLecturesLogic (x) = GoodLecturesFOL(x)
```


4 Forward chaining

Restriction: Definite clauses

Definition 43. As said previously, a Horn clause is

- a predicate $P(.$.$) , or$
- something like $P_{1}(..) \cdots P_{n}(..) \Rightarrow C(.$.
- $\equiv \neg P_{1}(..) \vee \cdots \vee \neg P_{n}(..) \vee C(.$.
($P_{i}(.$.$) is a premise and C(.$.$\left.) the conclusion \right)$
The conclusion $C(.$.$) can simply be "True" (i.e. no positive literal). \neg P_{1}(..) \vee \cdots \vee \neg P_{n}(.$.$) is also a Horn clause.$
Definition 44. A definite clause is a Horn Clause with exactly one positive literal. $\neg P_{1}(..) \vee \cdots \vee \neg P_{n}(..) \vee C(.).$.

FC applies GMP and only works with Definite Clauses. The presented KB is a set of Definite Clauses.

Forward chaining: algorithm

```
function FOL-FC-Ask \((K B, \alpha)\) returns a substitution or false
    repeat until new is empty
        new \(\leftarrow\}\)
        for each sentence \(r\) in \(K B\) do
            \(\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow\) Standardize- \(\operatorname{APART}(r)\)
            for each \(\theta\) such that \(\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta\)
                        for some \(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\) in \(K B\)
                        \(q^{\prime} \leftarrow \operatorname{Subst}(\theta, q)\)
                if \(q^{\prime}\) is not a renaming of a sentence already in \(K B\) or new then do
                    add \(q^{\prime}\) to new
                            \(\phi \leftarrow \operatorname{Unify}\left(q^{\prime}, \alpha\right)\)
                            if \(\phi\) is not fail then return \(\phi\)
        add new to \(K B\)
    return false
```


Example

Example 45. S1: $\forall x \forall y \forall z \operatorname{Person}(x) \wedge \operatorname{Gives}(x, y, z) \wedge \operatorname{GoodLecturesFOL}(y) \wedge \operatorname{Students}(z) \Rightarrow \operatorname{GoodTeacher}(x) \quad$ S2:
$\exists x$ Have (People, $x) \wedge$ GoodLecturesLogic (x) We replace S 2 thanks to EI, we introduce a new symbol M1 S2: Have (People, M1)^ GoodLecturesLogic(M1)

S3: $\forall x$ GoodLecturesLogic $(x) \wedge$ Have (People, $x) \Rightarrow$ Gives (Yannick, x, People)
S4: Study(People, ANU)
S5: Person(Yannick)
S6: $\forall x \operatorname{Study}(x, A N U) \Rightarrow \operatorname{Students}(x)$
S7: $\forall x$ GoodLecturesLogic $(x) \Rightarrow$ GoodLecturesFOL (x)

Forward chaining: example

Forward chaining: example

Forward chaining: example

Properties of forward chaining

FC is sound for KB with Definite Clauses. (Use of GMP)
FC is complete for KB with Definite Clauses. (Brute force)
FC always terminates for $\mathrm{KB}=$ Datalog (no functions). FC may not terminate for KB with Definite Clauses.
Even on Definite Clauses, the problem is semidecidable.

Efficiency of FC

The algorithm is brute-force. We can optimise.

- no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
- match each rule whose premise contains a newly added literal

Algorithm RETE (managment of a working memory...)

