Part I Inference in first-order logic

A brief history of reasoning

450b.c.	Stoics	propositional logic, inference (maybe)
322b.c.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	probability theory
		(propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL :-)
1930	Herbrand	complete algorithm for FOL
		(reduce to propositional)
1931	Gödel	$\neg \exists$ complete algorithm for arithmetic :-(
1960	Davis/Putnam	"practical" algorithm
		for propositional logic
1965	Robinson	"practical" algorithm for FOL — resolution

Outline

Contents

1 Reduction to propositional inference

Universal instantiation (UI)

Definition 1. Inference rule: Every instantiation of a universally quantified sentence is entailed by it.

$$\frac{\forall v \ \alpha}{\text{SUBST}(\{v/g\}, \alpha)}$$

for any variable v and ground term g (term without variable)

 $\begin{array}{l} \textit{Example 2. } \forall x \ \textit{King}(x) \land \textit{Greedy}(x) \Rightarrow \textit{Evil}(x) \ \textit{yields} \\ \textit{King}(\textit{John}) \land \textit{Greedy}(\textit{John}) \Rightarrow \textit{Evil}(\textit{John}) \ [g = \textit{John}] \ \textit{King}(\textit{Richard}) \land \textit{Greedy}(\textit{Richard}) \Rightarrow \textit{Evil}(\textit{Richard}) \ [g = \textit{Richard}] \ \textit{King}(\textit{Father}(\textit{John})) \land \textit{Greedy}(\textit{Father}(\textit{John})) \Rightarrow \textit{Evil}(\textit{Father}(\textit{John})) \ [g = \textit{Father}(\textit{John})] \end{array}$

Existential instantiation (EI)

Definition 3. Inference rule: For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists v \; \alpha}{\mathsf{SUBST}(\{v/k\}, \alpha)}$$

Example 4. $\exists x Crown(x) \land OnHead(x, John)$ yields

 $Crown(C_1) \wedge OnHead(C_1, John) \quad [k = C_1]$

provided C_1 is a new constant symbol, called a *Skolem constant*.

EI and UI

UI can be applied several times to *add* new sentences; the new KB is logically equivalent to the previous one.

 $KB = \{ \forall x \ P(x) \} \ newKB = \{ \forall x \ P(x), P(Richard) \} \dots$

EI can be applied once to *replace* the existential sentence; the new KB is *not* equivalent to the previous one! $KB = \{\exists x \ P(x)\}\ newKB = \{P(SkolemConstant)\}...$

Reduction to propositional inference

```
Example 5. Suppose the KB contains just the following:

\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) \ King(John) \ Greedy(John) \ Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have:

King(John) \land Greedy(John) \implies Evil(John) \ King(Richard) \land Greedy(Richard) \implies Evil(Richard)

King(John) \ Greedy(John) \ Brother(Richard, John)
```

The new KB is propositionalised: proposition symbols are King(John), Greedy(John), Evil(John), King(Richard) ···

Reduction contd.

A sentence α is entailed by an FOL KB if and only if it is entailed by a *finite* subset of the propositional KB.

For n = 0 to maxDepth create a $KB_{prop,n}$ by reduction with depth-*m* terms (m = 1...n) if α_{prop} is entailed by $KB_{prop,n}$ (i.e. $KB_{prop,n} \models \alpha_{prop}$) then STOP.

If $KB \vDash \alpha$ then the algorithm stops but if $KB \nvDash \alpha$, the algorithm does not stop. If KB contains a function then the terms can have infinite depth (maxDepth = ∞): Father(Father(Father(John)....)))

NO. Entailement in FOL is semi-decidable Turing(1936) Church(1936)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.

Example 6. From $KB = \{$

 $\forall x \operatorname{King}(x) \land \operatorname{Greedy}(x) \implies \operatorname{Evil}(x), \operatorname{King}(\operatorname{John}), \forall y \operatorname{Greedy}(y), \operatorname{Brother}(\operatorname{Richard}, \operatorname{John}) \}$

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant.

With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations. With function symbols, it gets much much worse!

2 Unification and lifting

Inference rules for FOL

We can get the inference immediately on the FOL KB.

We use *rules* from propositional logic that are *lifted* like the *Generalised Modus Ponens*. Then we can *update* FC, BC and Resolution for FOL :-)

The problem is the *instantiation of the variables*. We need some new operators:

- 1. Substitution (SUBST)
- 2. Unification (UNIFY)

to define the inference rules and to choose "clever" instantiations

Unification

Definition 7. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\text{UNIFY}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

Unification

Definition 8. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\mathsf{UNIFY}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) \\ \hline Knows(John,x) & Knows(y,Bill) \\ \hline Knows(John,x) & Knows(y,Mother(y)) \\ \hline Knows(John,x) & Knows(x,Elizabeth) \\ \hline \end{array}$$

Unification

Definition 10. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$UNIFY(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) & \{x/Jane\} \\ \hline Knows(John,x) & Knows(y,Bill) & \\ Knows(John,x) & Knows(y,Mother(y)) \\ \hline Knows(John,x) & Knows(x,Elizabeth) & \\ \end{array}$$

Unification

Definition 12. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\mathrm{Unify}(p,q)=\theta$$

where θ is a substitution on variables of α , β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) & \{x/Jane\} \\ Knows(John,x) & Knows(y,Bill) & \{x/Bill,y/John\} \\ Knows(John,x) & Knows(y,Mother(y)) \\ Knows(John,x) & Knows(x,Elizabeth) & \end{array}$$

Unification

Definition 14. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\text{UNIFY}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) & \{x/Jane\} \\ \hline Knows(John,x) & Knows(y,Bill) & \{x/Bill,y/John\} \\ \hline Knows(John,x) & Knows(y,Mother(y)) \\ \hline Knows(John,x) & Knows(x,Elizabeth) & \\ \end{array}$$

Unification

Definition 16. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\text{UNIFY}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

	p	q	θ
	Knows(John, x)	Knows(John, Jane)	$\{x/Jane\}$
Example 17.	Knows(John, x)	Knows(y, Bill)	${x/Bill, y/John}$
	Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
	Knows(John, x)	Knows(x, Elizabeth)	fail

Unification

Definition 18. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\mathsf{Unify}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

	p	q	θ
	Knows(John, x)	Knows(John, Jane)	$\{x/Jane\}$
Example 19.	Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$
	Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
	Knows(John, x)	Knows(x, Elizabeth)	fail

Standardizing apart eliminates overlap of variables (renaming of variables) $Knows(z_{17}, Elizabeth)$

Unification

Definition 20. Let p, q be two sentences of FOL, the result of the *Unification* is:

$$\text{UNIFY}(p,q) = \theta$$

where θ is a substitution on variables of α, β such that:

$$SUBST(\theta, p) = SUBST(\theta, q)$$

	p	q	θ
	Knows(John, x)	Knows(John, Jane)	$\{x/Jane\}$
Example 21.	Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$
	Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
	Knows(John, x)	Knows(x, Elizabeth)	fail
a		'	

Standardizing apart eliminates overlap of variables (renaming of variables) $Knows(z_{17}, Elizabeth) \quad Knows(John, x) \mid Knows(z_{17}, Elizabeth) \quad Knows(z$

Generalized Modus Ponens (GMP)

Definition 22.

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\mathsf{SUBST}(\theta, q)}$$

where $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*. Variables are universally quantified.

Example 23.

$$\frac{King(John), \ Greedy(y) \ (King(x) \land Greedy(x) \Rightarrow Evil(x))}{\mathsf{SUBST}(\theta, Evil(x))}$$

What is θ ? What is SUBST $(\theta, Evil(x))$?

Generalized Modus Ponens (GMP)

Definition 24.

$$\frac{p_1', p_2', \dots, p_n', (p_1 \wedge p_2 \wedge \dots \wedge p_n \Rightarrow q)}{\mathbf{SUBST}(\theta, q)}$$

where $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*. Variables are universally quantified.

Example 25.

$$King(John), Greedy(y) (King(x) \land Greedy(x) \Rightarrow Evil(x))$$

 $SUBST(\theta, Evil(x))$

What is θ ? What is $\text{SUBST}(\theta, Evil(x))$? $\theta = \text{UNIFY}(King(John), King(x)) = \text{UNIFY}(Greedy(y), Greedy(x)) \theta = \{x/John, y/John\}$

Generalized Modus Ponens (GMP)

Definition 26.

 $\frac{p_1', p_2', \dots, p_n', (p_1 \wedge p_2 \wedge \dots \wedge p_n \Rightarrow q)}{\mathbf{SUBST}(\theta, q)}$

where $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*. Variables are universally quantified. Example 27.

 $\frac{King(John), Greedy(y) \ (King(x) \land Greedy(x) \Rightarrow Evil(x))}{SUBST(\theta, Evil(x))}$

What is θ ? What is SUBST $(\theta, Evil(x))$? $\theta = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x)) \theta = {x/John, y/John} SUBST<math>(\theta, Evil(x)) = Evil(John)$

GMP is sound

GMP is sound. We have:

$$p_1', p_2', \ldots, p_n' \ (p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q) \vDash \text{SUBST}(\theta, q)$$

provided $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*.

1. for a sentence p (with variables universally quantified), we have for all θ :

 $p \vDash \mathsf{Subst}(\theta, p)$

2. because of 1 and UI, from p_1', p_2', \ldots, p_n' we infer

p

 $SUBST(\theta, p'_1) \land \cdots \land SUBST(\theta, p_n')$

3. because of 1 and UI, from $p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q$ we infer

 $SUBST(\theta, p_1) \land \cdots \land SUBST(\theta, p_n) \Rightarrow SUBST(\theta, q)$

4. If $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i* then from 2 and 3 we infer $\text{SUBST}(\theta, q)$

3 Knowledge base: an example

Knowledge base: an example

Example 28. "One says that a person who gives good lectures about FOL to students is a good teacher. This group of people, studying at the ANU, have very good lectures about Logic and all of those lectures are given by Yannick who is a person." We must prove that "Yannick is a good teacher"

Knowledge base: an example

Example 29. "...a person who gives good lectures about FOL to students is a good teacher...":

Knowledge base: an example

 $\begin{aligned} \textit{Example 30. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

Knowledge base: an example

 $\begin{aligned} \textit{Example 31. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic":

Knowledge base: an example

Example 32. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

Knowledge base: an example

Example 33. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick ... ":

Knowledge base: an example

Example 34. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$

Knowledge base: an example

 $\begin{aligned} \textit{Example 35. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "...This group of people, studying at the ANU":

Knowledge base: an example

 $\begin{aligned} \textit{Example 36. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "...This group of people, studying at the ANU": Study(People, ANU)

Knowledge base: an example

 $\begin{aligned} \textit{Example 37. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

- "...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$
- "...This group of people, studying at the ANU": Study(People, ANU)

".. Yannick who is a person..":

Knowledge base: an example

 $\begin{aligned} \textit{Example 38. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "..This group of people, studying at the ANU": Study(People, ANU)"..Yannick who is a person...": Person(Yannick)

Knowledge base: an example

Example 39. "...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "...This group of people, studying at the ANU": Study(People, ANU)

"..Yannick who is a person..": Person(Yannick)

People that study at the ANU, are students

Knowledge base: an example

 $Example \ 40. \quad \text{``...a person who gives good lectures about FOL to students is a good teacher...':} \quad \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "..This group of people, studying at the ANU": Study(People, ANU)"..Yannick who is a person..": Person(Yannick)People that study at the ANU, are students $\forall x \ Study(x, ANU) \Rightarrow Students(x)$

Knowledge base: an example

 $Example 41. \text{``...a person who gives good lectures about FOL to students is a good teacher...``:} \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "...This group of people, studying at the ANU": Study(People, ANU)"...Yannick who is a person.": Person(Yannick)People that study at the ANU, are students $\forall x \ Study(x, ANU) \Rightarrow Students(x)$ If the lectures about Logic are good, the lectures about FOL are good:

Knowledge base: an example

 $\begin{aligned} \textit{Example 42. "...a person who gives good lectures about FOL to students is a good teacher...": } \forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x) \end{aligned}$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$ "...This group of people, studying at the ANU": Study(People, ANU)"...Yannick who is a person..": Person(Yannick)People that study at the ANU, are students $\forall x \ Study(x, ANU) \Rightarrow Students(x)$ If the lectures about Logic are good, the lectures about FOL are good: $\forall x \ GoodLecturesLogic(x) \Rightarrow GoodLecturesFOL(x)$

4 Forward chaining

Restriction: Definite clauses

Definition 43. As said previously, a Horn clause is

- a predicate P(..), or
- something like $P_1(..) \cdots P_n(..) \Rightarrow C(..)$
- $\equiv \neg P_1(..) \lor \cdots \lor \neg P_n(..) \lor C(..)$
- $(P_i(..)$ is a *premise* and C(..) the *conclusion*)

The conclusion C(..) can simply be "True" (i.e. no positive literal). $\neg P_1(..) \lor \cdots \lor \neg P_n(..)$ is also a Horn clause.

Definition 44. A *definite clause* is a Horn Clause with *exactly* one positive literal. $\neg P_1(..) \lor \cdots \lor \neg P_n(..) \lor C(..)$.

FC applies GMP and only works with Definite Clauses. The presented KB is a set of Definite Clauses.

Forward chaining: algorithm

Example

 $\begin{array}{l} \textit{Example 45. S1: } \forall x \forall y \forall z \ \textit{Person}(x) \land \textit{Gives}(x,y,z) \land \textit{GoodLecturesFOL}(y) \land \textit{Students}(z) \Rightarrow \textit{GoodTeacher}(x) \quad \text{S2:} \\ \exists x \ \textit{Have}(\textit{People}, x) \land \textit{GoodLecturesLogic}(x) \ \text{We replace S2 thanks to EI, we introduce a new symbol } M1 \ \text{S2: } \textit{Have}(\textit{People}, M1) \land \textit{GoodLecturesLogic}(M1) \end{array}$

 $\texttt{S3:} \ \forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$

S4: Study(People, ANU)

```
S5: Person(Yannick)
```

- S6: $\forall x \ Study(x, ANU) \Rightarrow Students(x)$
- S7: $\forall x \ GoodLecturesLogic(x) \Rightarrow GoodLecturesFOL(x)$

Forward chaining: example

Forward chaining: example

Forward chaining: example

Properties of forward chaining

FC is *sound* for KB with Definite Clauses. (Use of GMP)

FC is *complete* for KB with Definite Clauses. (Brute force)

FC always terminates for KB = Datalog (no functions). FC may not terminate for KB with Definite Clauses.

Even on Definite Clauses, the problem is semidecidable.

Efficiency of FC

The algorithm is brute-force. We can optimise.

- no need to match a rule on iteration k if a premise wasn't added on iteration k-1
- match each rule whose premise contains a newly added literal

Algorithm RETE (managment of a working memory...)