KRR3: Inference in First-order logic

Yannick Pencolé Yannick.Pencole@anu.edu.au

14 Mar 2005

History		
450B.C.	Stoics	propositional logic, inference (maybe)
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	probability theory
		(propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	∃ complete algorithm for FOL :-)
1930	Herbrand	complete algorithm for FOL
		(reduce to propositional)
1931	Gödel	$\neg \exists$ complete algorithm for arithmetic :-(
1960	Davis/Putnam	"practical" algorithm
		for propositional logic
1965	Robinson	"practical" algorithm for FOL — resolution

3 Knowledge base: an example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Reduction to propositional inference

2 Unification and lifting

3 Knowledge base: an example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4 Forward chaining

Inference rule: Every instantiation of a universally quantified sentence is entailed by it.

 $\frac{\forall \mathbf{v} \ \alpha}{\mathsf{SUBST}(\{\mathbf{v}/\mathbf{g}\},\alpha)}$

for any variable v and ground term g (term without variable)

Example

 $\forall x \operatorname{King}(x) \land \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x) \text{ yields}$

 $King(John) \land Greedy(John) \Rightarrow Evil(John) [g = John]$ $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) [g = Richard]$ $King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))$ [g = Father(John)]

Inference rule: For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

 $\frac{\exists \mathbf{v} \; \alpha}{\mathsf{SUBST}(\{\mathbf{v}/\mathbf{k}\}, \alpha)}$

(日) (日) (日) (日) (日) (日) (日)

Example

 $\exists x \ Crown(x) \land OnHead(x, John) \ yields \\ Crown(C_1) \land OnHead(C_1, John) \quad [k = C_1]$

provided C_1 is a new constant symbol, called a Skolem constant.

UI

UI can be applied several times to add new sentences; the new KB is logically equivalent to the previous one. $KB = \{\forall x \ P(x)\}$ $newKB = \{\forall x \ P(x), P(Richard)\}...$

ΕI

EI can be applied once to replace the existential sentence; the new KB is not equivalent to the previous one! $KB = \{\exists x \ P(x)\}\$ $newKB = \{P(SkolemConstant)\}...$

(日) (日) (日) (日) (日) (日) (日)

Reduction to propositional inference

Example

Suppose the KB contains just the following: $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$ King(John) Greedy(John)Brother(Richard, John)

```
Instantiating the universal sentence in all possible ways, we have:

King(John) \land Greedy(John) \implies Evil(John)

King(Richard) \land Greedy(Richard) \implies Evil(Richard)

King(John)

Greedy(John)

Brother(Richard, John)
```

Propositionalisation

The new KB is propositionalised: proposition symbols are *King(John)*, *Greedy(John)*, *Evil(John)*, *King(Richard)* ····

Reduction contd.

Theorem of Herbrand (1930)

A sentence α is entailed by an FOL KB if and only if it is entailed by a *finite* subset of the propositional KB.

Complete algorithm

For n = 0 to maxDepth create a $KB_{prop,n}$ by reduction with depth-*m* terms (m = 1 ... n) if α_{prop} is entailed by $KB_{prop,n}$ (i.e. $KB_{prop,n} \models \alpha_{prop}$) then STOP.

Problem with the algorithm

If $KB \vDash \alpha$ then the algorithm stops but if $KB \nvDash \alpha$, the algorithm does not stop. If KB contains a function then the terms can have infinite depth $(maxDepth = \infty)$: Father(Father(Father(.....Father(John)....)))

Can we solve the problem?

NO. Entailement in FOL is semi-decidable Turing(1936) Church(1936)

Propositionalization seems to generate lots of irrelevant sentences.

Example

```
From KB = \{ \forall x \ King(x) \land Greedy(x) \implies Evil(x), King(John), \forall y \ Greedy(y), Brother(Richard, John) \}
```

it seems obvious that *Evil(John)*, but propositionalization produces lots of facts such as *Greedy(Richard)* that are irrelevant.

With *p k*-ary predicates and *n* constants, there are $p \cdot n^k$ instantiations. With function symbols, it gets much much worse!

Reduction to propositional inference

2 Unification and lifting

3 Knowledge base: an example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4 Forward chaining

We can get the inference immediately on the FOL KB.

Idea

We use *rules* from propositional logic that are *lifted* like the Generalised Modus Ponens.

Then we can update FC, BC and Resolution for FOL :-)

Implementation of the idea

The problem is the instantiation of the variables. We need some new operators:

- Substitution (SUBST)
- **Output** Unification (UNIFY)

to define the inference rules and to choose "clever" instantiations

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q)=\theta$

where θ is a substitution on variables of α, β such that:

 $SUBST(\theta, p) = SUBST(\theta, q)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α, β such that:

Example		
p	q	θ
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, Bill)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Elizabeth)	

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α, β such that:

Example		
p Knows(John, x) Knows(John, x) Knows(John, x) Knows(John, x)	q Knows(John, Jane) Knows(y, Bill) Knows(y, Mother(y)) Knows(x, Elizabeth)	$\frac{\theta}{\{x/Jane\}}$

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α, β such that:

Example			
p Knows(John, x) Knows(John, x) Knows(John, x) Knows(John, x)	q Knows(John, Jane) Knows(y, Bill) Knows(y, Mother(y)) Knows(x, Elizabeth)	θ {x/Jane} {x/Bill,y/John}	

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α, β such that:

Example			
p	q	θ	
Knows(John, x)	Knows(John, Jane)	{ <i>x</i> /Jane}	
Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$	
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$	
Knows $(John, x)$	Knows(x, Elizabeth)		

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α,β such that:

 $\mathsf{SUBST}(\theta, p) = \mathsf{SUBST}(\theta, q)$

Example		
p	q	θ
Knows(John, x)	Knows(John, Jane)	{ <i>x</i> /Jane}
Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows $(John, x)$	Knows(x, Elizabeth)	fail

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q)=\theta$

where θ is a substitution on variables of α, β such that:

 $SUBST(\theta, p) = SUBST(\theta, q)$

Example		
p	<i>q</i>	θ
Knows(John, x)	Knows(John, Jane)	{ <i>x</i> /Jane}
Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Elizabeth)	fail
Standardizing apart eliminates overlap of variables (renaming of variables)		

 $Knows(z_{17}, Elizabeth)$

Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

 $\mathsf{UNIFY}(p,q) = \theta$

where θ is a substitution on variables of α, β such that:

 $\mathsf{SUBST}(\theta, p) = \mathsf{SUBST}(\theta, q)$

Example			
p	q	θ	
Knows(John, x)	Knows(John, Jane)	{x/Jane}	
Knows(John, x)	Knows(y, Bill)	$\{x/Bill, y/John\}$	
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}	
Knows(John, x)	Knows(x, Elizabeth)	fail	
Standardizing apart eliminates overlap of variables (renaming of variables) $Knows(z_{17}, Elizabeth)$			

Knows(John, x) | Knows(z_{17} , Elizabeth) | {x/Elizabeth, z_{17} /John}

Generalized Modus Ponens (GMP)

Definition

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\mathsf{SUBST}(\theta, q)}$$

where
$$\theta = UNIFY(p_i, p'_i)$$
 for all *i*.
Variables are universally quantified

Example

 $\frac{\text{King(John)}, \text{ Greedy}(y) \ (\text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x))}{\text{SUBST}(\theta, \text{Evil}(x))}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

What is θ ? What is SUBST(θ , Evil(x))?

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\mathsf{SUBST}(\theta, q)}$$

where $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*. Variables are universally quantified.

Example

 $\frac{\textit{King(John)}, \textit{Greedy}(y) (\textit{King}(x) \land \textit{Greedy}(x) \Rightarrow \textit{Evil}(x))}{\texttt{SUBST}(\theta, \textit{Evil}(x))}$

What is θ ? What is SUBST(θ , Evil(x))? $\theta = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x))$ $\theta = \{x/John, y/John\}$

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\mathsf{SUBST}(\theta, q)}$$

where $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*. Variables are universally quantified.

Example

King(John), Greedy(y) (King(x) \land Greedy(x) \Rightarrow Evil(x))

 $SUBST(\theta, Evil(x))$

What is θ ? What is SUBST(θ , Evil(x))? $\theta = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x))$ $\theta = \{x/John, y/John\}$ SUBST(θ , Evil(x)) = Evil(John)

GMP is sound

Property

GMP is sound. We have:

$$p_1{}', \ p_2{}', \ \ldots, \ p_n{}' \ (p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q) \vDash \mathsf{SUBST}(\theta, q)$$

provided $\theta = \text{UNIFY}(p_i, p'_i)$ for all *i*.

Proof idea

• for a sentence p (with variables universally quantified), we have for all θ :

 $p \models \mathsf{SUBST}(\theta, p)$

 $\mathsf{SUBST}(\theta, p'_1) \land \cdots \land \mathsf{SUBST}(\theta, p'_n)$

3 because of 1 and UI, from $p_1 \land p_2 \land \ldots \land p_n \Rightarrow q$ we infer

 $\mathsf{SUBST}(\theta, p_1) \land \cdots \land \mathsf{SUBST}(\theta, p_n) \Rightarrow \mathsf{SUBST}(\theta, q)$

If $\theta = \bigcup_{i \in Y} (p_i, p'_i)$ for all *i* then from 2 and 3 we infer SUBST (θ, q)

Reduction to propositional inference

- 2 Unification and lifting
- 3 Knowledge base: an example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

4 Forward chaining

"One says that a person who gives good lectures about FOL to students is a good teacher. This group of people, studying at the ANU, have very good lectures about Logic and all of those lectures are given by Yannick who is a person."

(日) (日) (日) (日) (日) (日) (日)

We must prove that "Yannick is a good teacher"

"...a person who gives good lectures about FOL to students is a good teacher...":

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ □ ● のへで

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

"This group of people.... have very good lectures about Logic":

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...":

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick ... ":

 $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...":

 $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

".. This group of people, studying at the ANU":

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

"..This group of people, studying at the ANU": *Study*(*People*, *ANU*)

"...a person who gives good lectures about FOL to students is a good teacher ... ":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

"..This group of people, studying at the ANU": *Study*(*People*, *ANU*)

"...Yannick who is a person..":

"...a person who gives good lectures about FOL to students is a good teacher...":

 $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...":

 $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

"..This group of people, studying at the ANU": Study(People, ANU)

"..Yannick who is a person..": Person(Yannick)

Example

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick ... ":

 $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

"..This group of people, studying at the ANU": Study(People, ANU)

"..Yannick who is a person..": Person(Yannick)

People that study at the ANU, are students

Knowledge base: an example

Example

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick...": $\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)$

"..This group of people, studying at the ANU": Study(People, ANU)

"..Yannick who is a person..": Person(Yannick)

People that study at the ANU, are students $\forall x \; Study(x, ANU) \Rightarrow Students(x)$

Knowledge base: an example

Example

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

```
"...all of their lectures are given by Yannick...":

\forall x \ GoodLecturesLogic(x) \land Have(People, x) \Rightarrow Gives(Yannick, x, People)
```

"..This group of people, studying at the ANU": Study(People, ANU)

"..Yannick who is a person..": Person(Yannick)

People that study at the ANU, are students $\forall x \; Study(x, ANU) \Rightarrow Students(x)$

If the lectures about Logic are good, the lectures about FOL are good.

Knowledge base: an example

Example

"...a person who gives good lectures about FOL to students is a good teacher...": $\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)$

"This group of people.... have very good lectures about Logic": $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$

"...all of their lectures are given by Yannick ... ":

 $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

"..This group of people, studying at the ANU": *Study*(*People*, *ANU*)

"..Yannick who is a person..": Person(Yannick)

People that study at the ANU, are students $\forall x \; Study(x, ANU) \Rightarrow Students(x)$

If the lectures about Logic are good, the lectures about FOL are good: $\forall x \ GoodLecturesLogic(x) \Rightarrow GoodLecturesFOL(x)$

Reduction to propositional inference

2 Unification and lifting

3 Knowledge base: an example

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Restriction: Definite clauses

Definition

As said previously, a Horn clause is

- a predicate P(..), or
- something like $P_1(..) \cdots P_n(..) \Rightarrow C(..)$
- $\equiv \neg P_1(..) \lor \cdots \lor \neg P_n(..) \lor C(..)$

 $(P_i(..) \text{ is a premise and } C(..) \text{ the conclusion})$ The conclusion C(..) can simply be "True" (i.e. no positive literal). $\neg P_1(..) \lor \cdots \lor \neg P_n(..)$ is also a Horn clause.

Definition

A definite clause is a Horn Clause with exactly one positive literal. $\neg P_1(..) \lor \cdots \lor \neg P_n(..) \lor C(..).$

Restriction for FC

FC applies GMP and only works with Definite Clauses. The presented KB is a set of Definite Clauses.

```
function FOL-FC-Ask(KB, \alpha) returns a substitution or false
   repeat until new is empty
         new \leftarrow \{\}
         for each sentence r in KB do
               (p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)
               for each \theta such that (p_1 \land \ldots \land p_n)\theta = (p'_1 \land \ldots \land p'_n)\theta
                                for some p'_1, \ldots, p'_n in KB
                    q' \leftarrow \text{SUBST}(\theta, q)
                   if q' is not a renaming of a sentence already in KB or new then do
                          add q' to new
                          \phi \leftarrow \text{UNIFY}(q', \alpha)
                          if \phi is not fail then return \phi
         add new to KB
   return false
```

Example

Example

S1:

```
\forall x \forall y \forall z \ Person(x) \land Gives(x, y, z) \land GoodLecturesFOL(y) \land Students(z) \Rightarrow GoodTeacher(x)
```

S2: $\exists x \; Have(People, x) \land GoodLecturesLogic(x)$ We replace S2 thanks to EI, we introduce a new symbol *M*1 S2: $Have(People, M1) \land GoodLecturesLogic(M1)$

S3: $\forall x \text{ GoodLecturesLogic}(x) \land \text{Have}(\text{People}, x) \Rightarrow \text{Gives}(\text{Yannick}, x, \text{People})$

S4: Study(People, ANU)

S5: Person(Yannick)

S6: $\forall x \; Study(x, ANU) \Rightarrow Students(x)$

S7: $\forall x \text{ GoodLecturesLogic}(x) \Rightarrow \text{GoodLecturesFOL}(x)$

Forward chaining: example

Example Person(Yannick) GoodLecturesLogic(M1) Have(People,M1) Study(People, ANU) Iteration 1 S5 S2 S2 S4

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Forward chaining: example

Example

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Soundness

FC is sound for KB with Definite Clauses. (Use of GMP)

Completeness

FC is complete for KB with Definite Clauses. (Brute force)

Termination

FC always terminates for KB = Datalog (no functions). FC may not terminate for KB with Definite Clauses.

Decidability

Even on Definite Clauses, the problem is semidecidable.

Efficiency

The algorithm is brute-force. We can optimise.

Idea

- no need to match a rule on iteration k if a premise wasn't added on iteration k – 1
- match each rule whose premise contains a newly added literal

(日) (日) (日) (日) (日) (日) (日)

Algorithm RETE (managment of a working memory...)