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A brief history of reasoning

History

450B.C. Stoics propositional logic, inference (maybe)
322B.C. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory

(propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL :-)
1930 Herbrand complete algorithm for FOL

(reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic :-(
1960 Davis/Putnam “practical” algorithm

for propositional logic
1965 Robinson “practical” algorithm for FOL — resolution
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Universal instantiation (UI)

Definition

Inference rule: Every instantiation of a universally quantified
sentence is entailed by it.

∀v α

SUBST({v/g}, α)

for any variable v and ground term g (term without variable)

Example

∀x King(x) ∧Greedy(x) ⇒ Evil(x) yields

King(John) ∧Greedy(John) ⇒ Evil(John) [g = John]
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard) [g = Richard ]
King(Father(John)) ∧Greedy(Father(John)) ⇒ Evil(Father(John))
[g = Father(John)]



Existential instantiation (EI)

Definition

Inference rule: For any sentence α, variable v , and constant
symbol k that does not appear elsewhere in the knowledge
base:

∃v α

SUBST({v/k}, α)

Example

∃x Crown(x) ∧OnHead(x , John) yields
Crown(C1) ∧OnHead(C1, John) [k = C1]

provided C1 is a new constant symbol, called a Skolem constant.



EI and UI

UI

UI can be applied several times to add new sentences; the new
KB is logically equivalent to the previous one.
KB = {∀x P(x)}
newKB = {∀x P(x), P(Richard)}...

EI

EI can be applied once to replace the existential sentence; the
new KB is not equivalent to the previous one!
KB = {∃x P(x)}
newKB = {P(SkolemConstant)}...



Reduction to propositional inference

Example

Suppose the KB contains just the following:
∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways, we have:
King(John) ∧Greedy(John) =⇒ Evil(John)
King(Richard) ∧Greedy(Richard) =⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

Propositionalisation

The new KB is propositionalised: proposition symbols are
King(John), Greedy(John), Evil(John), King(Richard) · · ·



Reduction contd.

Theorem of Herbrand (1930)

A sentence α is entailed by an FOL KB if and only if it is entailed by a finite
subset of the propositional KB.

Complete algorithm

For n = 0 to maxDepth
create a KBprop,n by reduction with depth-m terms (m = 1 . . . n)
if αprop is entailed by KBprop,n (i.e. KBprop,n � αprop) then STOP.

Problem with the algorithm

If KB � α then the algorithm stops but if KB 6� α, the algorithm does not stop.
If KB contains a function then the terms can have infinite depth
(maxDepth = ∞): Father(Father(Father(.....Father(John)....)))

Can we solve the problem?

NO. Entailement in FOL is semi-decidable Turing(1936) Church(1936)



Problems with propositionalization

Propositionalization seems to generate lots of irrelevant
sentences.

Example

From KB = {
∀x King(x) ∧ Greedy(x) =⇒ Evil(x),
King(John),
∀y Greedy(y),
Brother(Richard , John)}

it seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant.

With p k-ary predicates and n constants, there are p · nk

instantiations. With function symbols, it gets much much worse!



Outline

1 Reduction to propositional inference

2 Unification and lifting

3 Knowledge base: an example

4 Forward chaining



Inference rules for FOL

We can get the inference immediately on the FOL KB.

Idea

We use rules from propositional logic that are lifted like the
Generalised Modus Ponens.
Then we can update FC, BC and Resolution for FOL :-)

Implementation of the idea

The problem is the instantiation of the variables. We need
some new operators:

1 Substitution (SUBST)
2 Unification (UNIFY)

to define the inference rules and to choose “clever”
instantiations



Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)



Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example

p q θ

Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y , Bill)
Knows(John, x) Knows(y , Mother(y))
Knows(John, x) Knows(x , Elizabeth)



Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y , Bill)
Knows(John, x) Knows(y , Mother(y))
Knows(John, x) Knows(x , Elizabeth)



Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example
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Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
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Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y , Bill) {x/Bill, y/John}
Knows(John, x) Knows(y , Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x , Elizabeth) fail

Standardizing apart eliminates overlap of variables (renaming of variables)
Knows(z17, Elizabeth)



Unification

Definition

Let p, q be two sentences of FOL, the result of the Unification is:

UNIFY(p, q) = θ

where θ is a substitution on variables of α, β such that:

SUBST(θ, p) = SUBST(θ, q)

Example

p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y , Bill) {x/Bill, y/John}
Knows(John, x) Knows(y , Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x , Elizabeth) fail

Standardizing apart eliminates overlap of variables (renaming of variables)
Knows(z17, Elizabeth)

Knows(John, x) Knows(z17, Elizabeth) {x/Elizabeth, z17/John}



Generalized Modus Ponens (GMP)

Definition

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

SUBST(θ, q)

where θ = UNIFY(pi , p′
i ) for all i .

Variables are universally quantified.

Example

King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What is θ? What is SUBST(θ, Evil(x))?



Generalized Modus Ponens (GMP)

Definition

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

SUBST(θ, q)

where θ = UNIFY(pi , p′
i ) for all i .

Variables are universally quantified.

Example

King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What is θ? What is SUBST(θ, Evil(x))?
θ = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x))
θ = {x/John, y/John}



Generalized Modus Ponens (GMP)

Definition

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

SUBST(θ, q)

where θ = UNIFY(pi , p′
i ) for all i .

Variables are universally quantified.

Example

King(John), Greedy(y) (King(x) ∧Greedy(x) ⇒ Evil(x))

SUBST(θ, Evil(x))

What is θ? What is SUBST(θ, Evil(x))?
θ = UNIFY(King(John), King(x)) = UNIFY(Greedy(y), Greedy(x))
θ = {x/John, y/John}
SUBST(θ, Evil(x)) = Evil(John)



GMP is sound

Property

GMP is sound. We have:

p1
′, p2

′, . . . , pn
′ (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q) � SUBST(θ, q)

provided θ = UNIFY(pi , p′
i ) for all i .

Proof idea

1 for a sentence p (with variables universally quantified), we have for all θ:

p � SUBST(θ, p)

2 because of 1 and UI, from p1
′, p2

′, . . . , pn
′ we infer

SUBST(θ, p′
1) ∧ · · · ∧ SUBST(θ, pn

′)

3 because of 1 and UI, from p1 ∧ p2 ∧ . . . ∧ pn ⇒ q we infer

SUBST(θ, p1) ∧ · · · ∧ SUBST(θ, pn) ⇒ SUBST(θ, q)

4 If θ = UNIFY(pi , p′
i ) for all i then from 2 and 3 we infer SUBST(θ, q) �



Outline

1 Reduction to propositional inference

2 Unification and lifting

3 Knowledge base: an example

4 Forward chaining



Knowledge base: an example

Example

“One says that a person who gives good lectures about FOL to
students is a good teacher. This group of people, studying at
the ANU, have very good lectures about Logic and all of those
lectures are given by Yannick who is a person.”

We must prove that “Yannick is a good teacher”
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GoodTeacher(x)
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Knowledge base: an example

Example
“...a person who gives good lectures about FOL to students is a good teacher...”:

∀x∀y∀z Person(x) ∧Gives(x , y , z) ∧GoodLecturesFOL(y) ∧ Students(z) ⇒
GoodTeacher(x)

“This group of people.... have very good lectures about Logic”:

∃x Have(People, x) ∧GoodLecturesLogic(x)

“...all of their lectures are given by Yannick...”:

∀x GoodLecturesLogic(x) ∧ Have(People, x) ⇒ Gives(Yannick , x , People)

“..This group of people, studying at the ANU”:

Study(People, ANU)

“..Yannick who is a person..”:

Person(Yannick)

People that study at the ANU, are students

∀x Study(x , ANU) ⇒ Students(x)

If the lectures about Logic are good, the lectures about FOL are good:
∀x GoodLecturesLogic(x) ⇒ GoodLecturesFOL(x)
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Restriction: Definite clauses

Definition

As said previously, a Horn clause is

a predicate P(..), or

something like P1(..) · · ·Pn(..) ⇒ C(..)

≡ ¬P1(..) ∨ · · · ∨ ¬Pn(..) ∨ C(..)

(Pi(..) is a premise and C(..) the conclusion)
The conclusion C(..) can simply be “True” (i.e. no positive literal).
¬P1(..) ∨ · · · ∨ ¬Pn(..) is also a Horn clause.

Definition

A definite clause is a Horn Clause with exactly one positive literal.
¬P1(..) ∨ · · · ∨ ¬Pn(..) ∨ C(..).

Restriction for FC

FC applies GMP and only works with Definite Clauses. The presented KB is
a set of Definite Clauses.



Forward chaining: algorithm



Example

Example

S1:
∀x∀y∀z Person(x) ∧Gives(x , y , z) ∧GoodLecturesFOL(y) ∧ Students(z) ⇒
GoodTeacher(x)

S2: ∃x Have(People, x) ∧GoodLecturesLogic(x)
We replace S2 thanks to EI, we introduce a new symbol M1
S2: Have(People, M1) ∧GoodLecturesLogic(M1)

S3:
∀x GoodLecturesLogic(x) ∧ Have(People, x) ⇒ Gives(Yannick , x , People)

S4: Study(People, ANU)

S5: Person(Yannick)

S6: ∀x Study(x , ANU) ⇒ Students(x)

S7: ∀x GoodLecturesLogic(x) ⇒ GoodLecturesFOL(x)



Forward chaining: example

Example

GoodLecturesLogic(M1)

S5 S2

Have(People,M1) Study(People, ANU)Person(Yannick)

S4S2
Iteration 1



Forward chaining: example

Example

GoodLecturesLogic(M1)

Gives(Yannick,M1,People)

S5

S7
{ x / M1 }

S3

{ x / M1 }

S2

Have(People,M1) Study(People, ANU)

Students(People)GoodLecturesFOL(M1)

Person(Yannick)

S4S2

{ x/ People}

S6

Iteration 1

Iteration 2



Forward chaining: example

Example

GoodTeacher(Yannick)

GoodLecturesLogic(M1)

Gives(Yannick,M1,People)

S5

S7
{ x / M1 }

S3

{ x / M1 }

S2

S1
{ x / Yannick, y / M1, z / People }

Have(People,M1) Study(People, ANU)

Students(People)GoodLecturesFOL(M1)

Person(Yannick)

S4S2

{ x/ People}

S6

Iteration 1

Iteration 2

Iteration 3



Properties of forward chaining

Soundness

FC is sound for KB with Definite Clauses. (Use of GMP)

Completeness

FC is complete for KB with Definite Clauses. (Brute force)

Termination

FC always terminates for KB = Datalog (no functions). FC may
not terminate for KB with Definite Clauses.

Decidability

Even on Definite Clauses, the problem is semidecidable.



Efficiency of FC

Efficiency

The algorithm is brute-force. We can optimise.

Idea

no need to match a rule on iteration k if a premise wasn’t
added on iteration k − 1

match each rule whose premise contains a newly added
literal

Algorithm RETE (managment of a working memory...)
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