Part I First-order logic

Outline

Contents

1 First-order logic, why?

Pros and cons of propositional logic

- Propositional logic is *declarative*: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is *compositional*: meaning of $a \wedge b$ is derived from meaning of a and of b
- Meaning in propositional logic is *context-independent* (unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power (unlike natural language)

Expressiveness of propositional logic

Example 1. I want to declare:

Every friend of my sisters has a blue car

In the natural language, I need one simple sentence. What about in propositional logic? I need symbols!! Lots of them!! Because I have a big family and my sisters are very friendly.

- Sister_1_Friend_1_Has_Blue_Car
- Sister_1_Friend_2_Has_Blue_Car
- ...
- Sister_4_Friend_23_Has_Blue_Car

First-order logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, colors, cricket games, centuries ... and me, and cars!!
- *Relations*: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ... and blue!!
- Functions: father of, third inning of, one more than, end of ... and friend of, sister of !!

2 Syntax and semantics

Syntax of First-Order Logic

- 1. Constants: $KingJohn, 2, ANU, Yannick \cdots$
- 2. Predicate: Sister, $> \cdots$
- 3. Functions: Sqrt, FriendOf \cdots
- 4. Variables: $x, y, a, b \cdots$
- 5. Connectives: $\lor, \land, \neg, \Rightarrow, \Leftrightarrow$
- 6. Equality: =
- 7. *Quantifiers*: $\forall \exists$

Syntax of First-Order Logic

A term represents an object in FOL. Its syntax is:

- a constant, or
- a variable, or
- a function of terms $function(term_1, \cdots, term_n)$

An atomic sentence represents an elementary relation between terms. Its syntax is:

- a predicate $predicate(term_1, \cdots, term_n)$
- an equality of terms $term_1 = term_2$

```
\begin{array}{l} \textit{Example 2. } Brother(KingJohn, RichardTheLionheart) \\ > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \\ carOf(friendOf(oneSisterOf(Yannick))) = colorOf(Ocean) \end{array}
```

Syntax of First-Order Logic

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$

Example 3. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) >(1,2) $\lor \le$ (1,2) >(1,2) $\land \neg >$ (1,2) Sister(Marie, Yannick) \Rightarrow CarColor(FriendOf(Marie), blue)

Truth in first-order logic

Sentences are true with respect to a model and an interpretation.

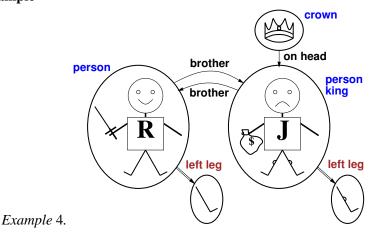
Model contains objects (domain elements) and relations among them.

Interpretation specifies referents for

- *constant symbols* → objects
- predicate symbols → relations
- function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate.

Models for FOL: Example



Models for FOL: Example

Example 5. Consider the interpretation in which

- $Richard \rightarrow Richard$ the lionheart
- $John \rightarrow$ the evil King John
- $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Example

Example 6. Consider this new interpretation on the model about Yannick and his sisters in which

- $Richard \rightarrow Yannick$
- $John \rightarrow Marie$
- $\mathit{Brother} \to \texttt{the brother-sister relation}$

Under this interpretation, Brother(Richard, John) is true just in case Yannick and Marie are in the brother-sister relation in the model.

This interpretation is ok but the symbols are not very well-chosen!

Universal quantification

Symbol: \forall Syntax: \forall < variables > < sentence > Semantics: \forall x P is true in a model m iff P is true with x being each possible object in the model

Example 7. *Quantified sentence:* $\forall x$ *Sister*(x, Yannick) \Rightarrow *ColorCar*(*FriendOf*(x), *blue*) *Roughly speaking*, it is equivalent to:

 $Sister(Marie, Yannick) \Rightarrow ColorCar(FriendOf(Marie), Blue) \land Sister(Claire, Yannick) \Rightarrow ColorCar(FriendOf(Claire), Blue) \land Sister(KingJohn, Yannick) \Rightarrow ColorCar(FriendOf(KingJohn), Blue) \land Sister(Blue, Yannick) \Rightarrow ColorCar(FriendOf(Blue), Blue) \land Sister(Yannick, Yannick) \Rightarrow ColorCar(FriendOf(Yannick), Blue) \land ...$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with \forall

Example 8.

 $\forall x \; Sister(x, Yannick) \land ColorCar(FriendOf(x), Blue)$

means "Everyone is the sister of Yannick and every friend of everyone has a blue car"

Existential quantification

Symbol: \exists

Syntax: $\exists < variables > \ < sentence >$

Semantics: $\exists x \mid P$ is true in the model m iff P is true with x beging some object in the model.

Example 9. Quantified sentence: $\exists x \; Sister(x, Yannick) \land ColorCar(FriendOf(x), blue)$ *Roughly speaking*, it is equivalent to:

 $Sister(Marie, Yannick) \land ColorCar(FriendOf(Marie), Blue) \lor Sister(Claire, Yannick) \land ColorCar(FriendOf(Claire), Blue) \lor Sister(KingJohn, Yannick) \land ColorCar(FriendOf(KingJohn), Blue) \lor Sister(Blue, Yannick) \land ColorCar(FriendOf(Blue), Blue) \lor Sister(Yannick, Yannick) \land ColorCar(FriendOf(Yannick), Blue) \lor ...$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists

Example 10.

 $\exists x \; Sister(x, Yannick) \Rightarrow ColorCar(FriendOf(x), Blue)$

This sentence is true if you find someone who is not my sister! It does not matter if this person has a blue car or not.

Properties of quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is } not \text{ the same as } \forall y \exists x$
 - $= \exists x \forall y \quad Loves(x, y)$
 - "There is a person who loves everyone in the world"
 - $\forall y \exists x \quad Loves(x, y)$
 - "Everyone in the world is loved by at least one person"

Each quantifier can be expressed using the other

- $\forall x \ Likes(x, IceCream)$ is the same as $\neg \exists x \ \neg Likes(x, IceCream)$
- $\exists x \ Likes(x, Broccoli)$ is the same as $\neg \forall x \ \neg Likes(x, Broccoli)$

Fun with sentencesExample 11.• Brothers are siblingsFun with sentencesExample 12.• Brothers are siblings $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$ Fun with sentencesExample 13.• Brothers are siblings $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$ • "Sibling" is symmetric

Fun with sentences

<i>Example</i> 14. • Brothers are siblings	$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
• "Sibling" is symmetric	$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

Fun with sentences

<i>Example</i> 15. • Brothers are siblings	
	$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$
• "Sibling" is symmetric	$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$
• "One's mother is one's female parent"	

Fun with sentences

<i>Example</i> 16. • Brothers are site	lings $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
• "Sibling" is symmetric	$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

• "One's mother is one's female parent"

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$

Fun with sentences

<i>Example</i> 17. • Brothers are siblings	$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$
• "Sibling" is symmetric	$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$
• "One's mother is one's female parent"	

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$

• "A first cousin is a child of a parent's sibling"

Fun with sentences

Example 18. • Brothers are siblings

 $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$

• "Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

• "One's mother is one's female parent"

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$

• "A first cousin is a child of a parent's sibling"

 $\forall x, y \ FirstCousin(x, y) \Leftrightarrow \exists p, ps \ Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.

Example 19. • 1 = 2 is satisfiable (if the symbols 1 and 2 refer to the same object in the interpretation)

• 2 = 2 is valid

Example 20. Definition of *Sibling* thanks to *Parent*:

$$\forall x, y \ Sibling(x, y) \Leftrightarrow (\neg (x = y) \land \exists m, f \ \neg (m = f) \land$$

$$Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y))$$

Summary

- Knowledge representation language:
 - declarative, compositional, expressive, context-independent, unambiguous
- Model: set of objects, functions and their relation
- Knowledge-base in first-order logic
 - careful process
 - 1. analyzing the *domain* (objects, functions, relations),
 - 2. choosing a vocabulary (interpretation)
 - 3. encoding the axioms (what is known in KB) to support the desired inferences