KRR2: First-order logic

Yannick Pencolé
Yannick.Pencole@anu.edu.au

10 Mar 2005

Outline

(1) First-order logic, why?
(2) Syntax and semantics

Outline

(1) First-order logic, why?

2 Syntax and semantics

Pros and cons of propositional logic

Pros

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)
- Propositional logic is compositional: meaning of $a \wedge b$ is derived from meaning of a and of b
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)

Cons

Propositional logic has very limited expressive power (unlike natural language)

Expressiveness of propositional logic

Example

I want to declare:

Every friend of my sisters has a blue car

In the natural language, I need one simple sentence. What about in propositional logic?

I need symbols!! Lots of them!! Because I have a big family and my sisters are very friendly.

- Sister_1_Friend_1_Has_Blue_Car
- Sister_1_Friend_2_Has_Blue_Car
- ...
- Sister_4_Friend_23_Has_Blue_Car

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, colors, cricket games, centuries ... and me, and cars!!
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . . and blue!!
- Functions: father of, third inning of, one more than, end of . . . and friend of, sister of!!

Outline

(1) First-order logic, why?
(2) Syntax and semantics

Syntax of First-Order Logic

Basic elements

(1) Constants: KingJohn, 2, ANU, Yannick...
(2) Predicate: Sister, > \cdots
(3) Functions: Sqrt, FriendOf ...
(4) Variables: $x, y, a, b \ldots$
(5) Connectives: $\vee, \wedge, \neg, \Rightarrow$, \Leftrightarrow
(6) Equality: =
(7) Quantifiers: $\forall \exists$

Syntax of First-Order Logic

Term

A term represents an object in FOL. Its syntax is:

- a constant, or
- a variable, or
- a function of terms function $\left(\right.$ term $_{1}, \cdots$, term $\left._{n}\right)$

Atomic sentence

An atomic sentence represents an elementary relation between terms. Its syntax is:

- a predicate predicate $\left(\right.$ term $_{1}, \cdots$, term $\left._{n}\right)$
- an equality of terms term1 $=$ term $_{2}$

Example

Brother(KingJohn, RichardTheLionheart)
$>$ (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) $\operatorname{carOf}($ friendOf(oneSisterOf(Yannick) $))=\operatorname{colorOf(Ocean)}$

Syntax of First-Order Logic

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

Example

Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)
$>(1,2) \vee \leq(1,2)$
$>(1,2) \wedge \neg>(1,2)$
Sister(Marie, Yannick) \Rightarrow CarColor(FriendOf(Marie), blue)

Truth in first-order logic

Semantics

Sentences are true with respect to a model and an interpretation.

Model

Model contains objects (domain elements) and relations among them.

Interpretation

Interpretation specifies referents for

- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations

An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate.

Models for FOL: Example

Example

Models for FOL: Example

Example

Consider the interpretation in which

- Richard \rightarrow Richard the lionheart
- John \rightarrow the evil King John
- Brother \rightarrow the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Example

Example

Consider this new interpretation on the model about Yannick and his sisters in which

- Richard \rightarrow Yannick
- John \rightarrow Marie
- Brother \rightarrow the brother-sister relation

Under this interpretation, Brother(Richard, John) is true just in case Yannick and Marie are in the brother-sister relation in the model.
This interpretation is ok but the symbols are not very well-chosen!

Universal quantification

Universal quantification

Symbol: \forall
Syntax: $\forall<$ variables $><$ sentence $>$
Semantics: $\forall \quad x \quad P$ is true in a model m iff P is true with x being each possible object in the model

Example

Quantified sentence: $\forall x \quad \operatorname{Sister}(x$, Yannick $) \Rightarrow \operatorname{ColorCar}($ FriendOf(x), blue)
Roughly speaking, it is equivalent to:
Sister(Marie, Yannick) \Rightarrow ColorCar(FriendOf(Marie), Blue)
\wedge Sister(Claire, Yannick) \Rightarrow ColorCar(FriendOf(Claire), Blue)
\wedge Sister(KingJohn, Yannick) \Rightarrow ColorCar(FriendOf(KingJohn), Blue)
\wedge Sister(Blue, Yannick) \Rightarrow ColorCar(FriendOf(Blue), Blue)
\wedge Sister(Yannick, Yannick) \Rightarrow ColorCar(FriendOf(Yannick), Blue) $\wedge . .$.

A common mistake to avoid

Main connective with \forall

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall

Example

$\forall x \quad$ Sister $(x$, Yannick $) \wedge$ ColorCar (FriendOf (x), Blue $)$ means "Everyone is the sister of Yannick and every friend of everyone has a blue car"

Existential quantification

Existential quantification

Symbol: \exists
Syntax: $\exists<$ variables $><$ sentence $>$
Semantics: $\exists x \quad P$ is true in the model m iff P is true with x beging some object in the model.

Example

Quantified sentence: $\exists x \quad \operatorname{Sister}(x$, Yannick) $\wedge \operatorname{ColorCar}($ FriendOf(x), blue)
Roughly speaking, it is equivalent to:
Sister(Marie, Yannick) ^ColorCar(FriendOf(Marie), Blue)
\checkmark Sister(Claire, Yannick) ^ColorCar(FriendOf(Claire), Blue)
\vee Sister(KingJohn, Yannick) ^ColorCar(FriendOf(KingJohn), Blue)
\vee Sister(Blue, Yannick) ^ ColorCar(FriendOf(Blue), Blue)
\vee Sister(Yannick, Yannick) ^ColorCar(FriendOf(Yannick), Blue) V...

Another common mistake to avoid

Main connective with \exists

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists

Example

$$
\exists x \quad \text { Sister }(x, \text { Yannick }) \Rightarrow \text { ColorCar(FriendOf(x), Blue })
$$

This sentence is true if you find someone who is not my sister! It does not matter if this person has a blue car or not.

Properties of quantifiers

Properties

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \quad \operatorname{Loves}(x, y)$
- "There is a person who loves everyone in the world"
- $\forall y \exists x$ Loves (x, y)
- "Everyone in the world is loved by at least one person"

Quantifier duality

Each quantifier can be expressed using the other

- $\forall x \quad \operatorname{Likes}(x$, IceCream) is the same as
$\neg \exists x \quad \neg \operatorname{Likes}(x$, IceCream $)$
- $\exists x \quad$ Likes $(x$, Broccoli $)$ is the same as
$\neg \forall x \quad \neg \operatorname{Likes}(x$, Broccoli)

Fun with sentences

Example

- Brothers are siblings

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \text { Brother }(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

$$
\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)
$$

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \text { Brother }(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

$$
\forall x, y \text { Sibling }(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)
$$

- "One's mother is one's female parent"

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \text { Brother }(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

$$
\forall x, y \text { Sibling }(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)
$$

- "One's mother is one's female parent"

$$
\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))
$$

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

$$
\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)
$$

- "One's mother is one's female parent"

$$
\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\text { Female }(x) \wedge \operatorname{Parent}(x, y))
$$

- "A first cousin is a child of a parent's sibling"

Fun with sentences

Example

- Brothers are siblings

$$
\forall x, y \text { Brother }(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- "Sibling" is symmetric

$$
\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)
$$

- "One's mother is one's female parent"

$$
\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\text { Female }(x) \wedge \operatorname{Parent}(x, y))
$$

- "A first cousin is a child of a parent's sibling"
$\forall x, y \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge \operatorname{Parent}(p s, y)$

Equality

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term $_{1}$ and term ${ }_{2}$ refer to the same object.

Example

- $1=2$ is satisfiable (if the symbols 1 and 2 refer to the same object in the interpretation)
- $2=2$ is valid

Example

Definition of Sibling thanks to Parent:

$$
\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow(\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge
$$

$\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y))$

Summary

Summary

- Knowledge representation language:
- declarative, compositional, expressive, context-independent, unambiguous
- Model: set of objects, functions and their relation
- Knowledge-base in first-order logic
- careful process
(1) analyzing the domain (objects, functions, relations),
(2) choosing a vocabulary (interpretation)
(3) encoding the axioms (what is known in $K B$) to support the desired inferences

