Part I Logical agents

Outline

Contents

Ι	Logical agents	1
1	Knowledge-based agents	1
2	Logic in general models and entailment	1
3	Propositional Logic: a very simple logic	3
4	Equivalence, validity, satisfiability	4
5	Inference rules and theorem proving in propositional logic	5

1 Knowledge-based agents

What is an agent?

Agents interact with environments through sensors and actuators

Knowledge-based agent

Definition 1. A *Knowledge base* is a set of sentences in a *formal* language.

Definition 2. *Knowledge-based agent*: Agents can be viewed at the knowledge level i.e., *what they know*, regardless of how implemented

Generic knowledge-based agent:

1. PERCEIVE an input

- 2. TELL the knowledge base what it perceives (same language)
- 3. ASK the knowledge base for an action to return (reasoning in the KB for a query, inference)
- 4. TELL the knowledge base about this action that has been executed (update of the KB)

A good way to represent and interact with a KB is Logic.

2 Logic in general models and entailment

Logic? But what is it?

Logics are *formal languages* for representing information such that conclusions can be drawn. To define a logic, we need:

- 1. *syntax*: how a *sentence* of the logic looks like?
- 2. *semantic*: what is the meaning of the sentence?
 - Given a *world*, is the sentence *true* or *false*?

Example 3. The language of arithmetic

Syntax: $x + 2 \ge y$ is a sentence; $x^2 + y \ge y$ is not a sentence

Semantic: $x + 2 \ge y$ is true in a world where x = 7, y = 1 $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

Entailment means that one sentence (α) follows from other sentences (KB) and is denoted:

 $KB \vDash \alpha$

We say that the Knowledge Base KB entails α if and only if α is true in all worlds where KB is true. Entailment is a relationship between sentences (i.e. syntax) that is based on semantics.

Example 4. Knowledge Base = { "The car is blue" "The bicycle is green or yellow" }

- KB entails sentences α like:
- "The car is blue"
- true
- "The car is blue or the bicycle is yellow"

The sentence "The car is blue and the bicycle is yellow" is not entailed by KB.

World in Logic = Model

Definition 5. We say m is a model of a sentence α if α is true in the world m. We denote by $M(\alpha)$ the set of models

KB entails α if and only if $M(KB) \subseteq M(\alpha)$.

Inference

Definition 7. *Inference*: A sentence β can be inferred from another sentence α by some inference algorithm *i*. This is denoted:

 $\alpha \vdash_i \beta$

Definition 8. Soundness: An inference algorithm is sound if it produces entailed sentences

Definition 9. *Completeness*: An inference algorithm is *complete* if it can derive all the sentences which it entails.

Well-known logics

- 1. Propositional logic
- 2. First-order logic
- 3. Default logic
- 4. Circumscription
- 5. Temporal logic
- 6. Modal logic
- 7. ..

Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)

3 Propositional Logic: a very simple logic

Propositional Logic: a very simple logic

We consider a set of proposition symbols $\{p_1, p_2, \cdots\}$.

Definition 10. *Syntax*: What is a sentence in the propositional logic?

- 1. any proposition symbol p_i is a sentence (*atomic sentence*)
- 2. if S is a sentence then $\neg S$ is a sentence
- 3. if S_1 and S_2 are sentences then $S_1 \wedge S_2$ is a sentence
- 4. if S_1 and S_2 are sentences then $S_1 \vee S_2$ is a sentence
- 5. if S_1 and S_2 are sentences then $S_1 \Rightarrow S_2$ is a sentence
- 6. if S_1 and S_2 are sentences then $S_1 \Leftrightarrow S_2$ is a sentence

Example 11. $p_1, p_1 \land p_2, p_1 \lor (\neg p_2 \land p_3), (p_3 \Rightarrow p_4) \land (p_4 \Rightarrow p_3), \dots$

Propositional Logic: a very simple logic

Definition 12. Semantics: What is the meaning of a sentence? A model m is a mapping between the proposition symbols $\{p_1, p_2, \dots\}$ and $\{true, false\}$. Given m, we have:

- 1. $\neg S$ is true iff S is false ("not" S)
- 2. $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true (S_1 "and" S_2)
- 3. $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true (S_1 "or" S_2)
- 4. $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true (S_1 "implies" S_2)
 - i.e. $S_1 \Rightarrow S_2$ is false iff S_1 is true or S_2 is false
- 5. $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true (S_1 "is equivalent to" S_2)

Propositional Logic: a very simple logic

Example 13. Symbols = $\{abcd\}$

Given the model $m = \{a = true, b = false, c = true, d = false\}$, then

- $\neg a = false$,
- $a \wedge \neg b = true$,
- $a \lor (b \land \neg c) = true$,
- $d \Rightarrow c = true$,
- $d \Rightarrow \neg c = true$,
- $\neg d \Rightarrow \neg c = false$,
- $\neg(a \lor b) \Leftrightarrow d = true$

4 Equivalence, validity, satisfiability

Logical equivalence

Definition 14. Two sentences α , β are *logically equivalent* IF AND ONLY IF they are true in the same models. α entails β and vice-versa.

$(\alpha \wedge \beta)$	\equiv	$(\beta \wedge \alpha)$ commutativity of \wedge	
$(\alpha \lor \beta)$	\equiv	$(\beta \lor \alpha)$ commutativity of \lor	
$((\alpha \land \beta) \land \gamma)$	\equiv	$(\alpha \land (\beta \land \gamma))$ associativity of \land	
$((\alpha \lor \beta) \lor \gamma)$	\equiv	$(\alpha \lor (\beta \lor \gamma))$ associativity of \lor	
$\neg(\neg\alpha)$	\equiv	$\equiv \alpha$ double-negation elimination	
$(\alpha \Rightarrow \beta)$	\equiv	$(\neg \beta \Rightarrow \neg \alpha)$ contraposition	
$(\alpha \Rightarrow \beta)$	\equiv	$(\neg \alpha \lor \beta)$ implication elimination	
$(\alpha \Leftrightarrow \beta)$	\equiv	$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination	
$\neg(\alpha \land \beta)$	\equiv	$(\neg \alpha \lor \neg \beta)$ De Morgan	
$\neg(\alpha \lor \beta)$	\equiv	$(\neg \alpha \land \neg \beta)$ De Morgan	
$(\alpha \land (\beta \lor \gamma))$	\equiv	$((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor	
$(\alpha \vee (\beta \wedge \gamma))$	\equiv	$((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land	

Validity and satisfiability

Definition 15. A sentence is *valid* if it is true in *ALL models*: $a \lor \neg a, a \Rightarrow a, (a \land (a \Rightarrow b)) \Rightarrow b$

KB entails α ($KB \models \alpha$) iff the sentence $KB \Rightarrow \alpha$ is valid. Validity is then connected to inference.

- **Definition 16.** 1. A sentence is *satisfiable* if it is true in *SOME models*. A valid sentence is satisfiable, but a satisfiable sentence may be not valid.
 - 2. A sentence is *unsatisfiable* if it is true in *NO models*: $a \land \neg a, (a \land b) \Leftrightarrow (\neg a \land c)$

KB entails α ($KB \vDash \alpha$) iff the sentence $KB \land \neg \alpha$ is unsatisfiable.

5 Inference rules and theorem proving in propositional logic

Inference, Theorem proving

Given KB, can I prove the sentence α ? Is α satisfiable in KB? KB $\vDash \alpha$? Is KB $\land \neg \alpha$ unsatisfiable?

Model (Truth table) enumeration, we check that $M(KB) \subseteq M(\alpha)$.

Bad news: exponential in the number of proposition symbols involved in KB, α .

Some improved methods: Davis-Putnam-Logemann-Loveland (complete), min-conflicts-like (incomplete) hill-climbing (in-complete).

- Sound generation of new sentences from old.
- Proof = a sequence of *inference rules* that finally generate α

Methods: Forward-chaining, Backward chaining, Resolution

Inference rules: examples

Example 17. Modus Ponens:

	$\underline{a, a \Rightarrow b}$
	b
And-elimination:	a A b
	$\underline{a \wedge b}$
	a
Factoring:	$a \lor a$
	$\frac{a}{a}$
Logical equivalences:	
	$\neg a \vee \neg b$
	$\frac{\neg a \lor \neg b}{\neg (a \land b)}$
	$a \Leftrightarrow b$
	$\overline{a \Rightarrow b \land b \Rightarrow}$

a

Forward and backward chaining methods

Proof methods that are simple and efficient. They need a restriction on the form of KB.

KB =conjunction of Horn clauses

Definition 18. A Horn clause is

- a propositional symbol *a*, or
- something like $p_1 \cdots p_n \Rightarrow c$ (p_i is a *premisse* and c the *conclusion*)

Inference problem

Rule 1 $P \Rightarrow Q$ Rule 2 $L \land M \Rightarrow P$ Rule 3 $B \land L \Rightarrow M$ Rule 4 $A \land P \Rightarrow L$ Rule 5 $A \land B \Rightarrow L$ Rule 6 ARule 7 B

Is the proposition Q true or not?

Forward chaining method

Forward chaining:

- 1. Fire any rule whose premises are satisfied in the Knowledge Base
- 2. Add its conclusion to the Knowledge Base
 - Management of a Working Memory (an Agenda)
- 3. Repeat 1 and 2 until the proposition Q is true or no more conclusion can be derived

$$\frac{a_1, \cdot, a_n \quad a_1 \wedge \dots \wedge a_n \Rightarrow b}{b}$$

Forward chaining: example

A and B are known in the knowledge base (Rules 6 and 7).

$$Agenda = \{A, B\}$$

Forward chaining: example

Rule 5 can be fired since A and B are known.

$$A \wedge B \Rightarrow L$$

The agenda is updated with the conclusion (head) of Rule 5:

Forward chaining: example

Rule 3 can be fired since B and L are known.

$$B \wedge L \Rightarrow M$$

The agenda is updated with the conclusion (head) of Rule 3:

$$Agenda = \{A, B, L, M\}$$

Forward chaining: example

Rule 2 can be fired since M and L are known.

$$M \wedge L \Rightarrow P$$

The agenda is updated with the conclusion (head) of Rule 2:

$$Agenda = \{A, B, L, M, P\}$$

Forward chaining: example

Rule 1 can be fired since P is known.

$$P \Rightarrow Q$$

The agenda is updated with the conclusion (head) of Rule 1:

$$Agenda = \{A, B, L, M, P, Q\}$$

Q has been derived. STOP

Properties of the FC algorithm

Theorem 19. The forward chaining algorithm is complete.

- Every atomic proposition that is provable in the knowledge base can be derived thanks to the algorithm.
- The result is due to the fact that:
 - 1. The knowledge base is a conjunction of Horn clauses.
 - 2. In the worst case of FC, every clause is fired.

Theorem 20. The forward chaining algorithm runs in linear time.

• Every rule is fired at most once.

Backward chaining method

At a given step, the choice between the firable rules is *random*. FC may apply rules that are *useless* for the proof of *Q*! *Data-driven algorithm*

Backward chaining: Goal-driven algorithm

- To prove Q every premise of one rule which concludes Q has to be at least proved.
- Basically, BackwardChaining(Q) =
 - 1. If Q is known in KB then Q is proved
 - 2. Otherwise, select a rule $P_1 \wedge \cdots \wedge P_n \Rightarrow Q$ in KB
 - 3. Recusirvely apply BackwardChaining (P_1) , ..., BackwardChaining (P_n) to prove the premises.
 - 4. Repeat 2-3 until Q is proved or no more rules can be selected.

Backward chaining: example

To prove Q, we need to prove P. To prove P we need to prove L and M etc. So it goes until A and B are reached. A and B are known in KB so Q is proved.

Backward chaining method (2)

Theorem 21. The backward chaining algorithm is complete.

Theorem 22. The backward chaining algorithm runs in linear time.

- Every rule is fired at most once
- In practice, it is much less than linear in size of KB: it is linear in the size of the set of rules that are involved in the proof of the premises of Q.

Propositional logic inference: resolution algorithm

FC and BC are efficient algorithms but they make the asssumption that KB is a set of Horn clauses.

Given a KB, is there an algorithm which is sound and complete?

YES, this is called a *resolution algorithm* based on the resolution inference rule.

Resolution inference rule

$$\frac{\ell_{1} \vee \cdots \vee \overline{\ell_{i}} \vee \cdots \vee \ell_{k}, \qquad \ell'_{1} \vee \cdots \vee \ell'_{j} \vee \cdots \vee \ell'_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee \ell'_{1} \vee \cdots \vee \ell'_{j-1} \vee \ell'_{j+1} \vee \cdots \vee \ell'_{n}}$$
with $\overline{\ell_{i} = a}$ and $\overline{\ell_{j} = \neg a}$ or $\overline{\ell_{i} = \neg a}$ and $\overline{\ell_{j} = a}$
(*a* is an atomic sentence)
Example 23.

$$\frac{e, \neg e}{\emptyset}$$

$$\underline{v \vee \neg w \vee \neg x, w \vee \neg x \vee y \vee z}$$

Resolution inference rule (2): CNF

The rule is applied on sentences like $(\ell_1 \lor \cdots \lor \ell_k) \land \cdots \land (\ell_m \lor \cdots \lor \ell_n)$ where ℓ_i are positive/negative literals.

This form is called Conjunctive Normal Form (CNF for short).

Every sentence in proposition logic is logically equivalent to a CNF sentence.

Example 24. $(a \lor b) \Leftrightarrow (c \land d)$ is logically equivalent to the CNF $(\neg a \lor c) \land (\neg a \lor d) \land (\neg b \lor c) \land (\neg b \lor d) \land (\neg c \lor \neg d \lor a \lor b)$.

Conversion to a CNF

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
- 3. Move \neg inwards using de Morgan's rules { $\neg(a \land b) \equiv (\neg a \lor \neg b), \neg(a \lor b) \equiv (\neg a \land \neg b)$ } and double negation rule ($\neg \neg a \equiv a$)
- 4. Apply distributivity law (\lor over \land) and flatten $(a \land b) \lor c \equiv (a \lor c) \land (b \lor c)$

Resolution algorithm

Definition 25. *Proof by contradiction:* given KB, to prove α , we prove that $KB \wedge \neg \alpha$ is not satisfiable.

Example 26. Symbols:

- Und: "The students have understood this lecture"
- *Gt*: "I am a good teacher"
- *Party*: "The students went to a party last night"

Knowledge base:

$$KB = (\neg Und \Leftrightarrow (\neg Gt \lor Party)) \land Und$$

Query to prove: *I am a good teacher*

 $\alpha = Gt$

Resolution algorithm

Example 27. Conversion to CNF: $KB \land \neg \alpha \rightarrow (KB \land \neg \alpha)_{CNF}$

$$\begin{aligned} (KB \wedge \neg \alpha)_{CNF} = (\neg Party \vee \neg Und) \wedge \\ (\neg Gt \vee Und \vee Party) \wedge \\ (\neg Und \vee Gt) \wedge \\ Und \wedge \neg Gt \end{aligned}$$

Resolution algorithm

Resolution algorithm

Resolution algorithm

Resolution algorithm

Summary

Logical agents apply *inference* to a *knowledge base* to derive new information and make decisions Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power