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1 Knowledge-based agents

What is an agent?

Agents interact with environments through sensors and actuators

Knowledge-based agent

Definition 1. A Knowledge baseis a set of sentences in aformal language.

Definition 2. Knowledge-based agent: Agents can be viewed at the knowledge level i.e.,what they know, regardless of how
implemented

Generic knowledge-based agent:

1. PERCEIVEan input



2. TELL the knowledge base what it perceives (same language)

3. ASKthe knowledge base for an action to return (reasoning in the KB for a query, inference)

4. TELL the knowledge base about this action that has been executed (update of the KB)

A good way to represent and interact with aKB is Logic.

2 Logic in general models and entailment

Logic? But what is it?

Logics areformal languagesfor representing information such that conclusions can be drawn. To define a
logic, we need:

1. syntax: how asentenceof the logic looks like?

2. semantic: what is the meaning of the sentence?

• Given aworld, is the sentencetrueor false?

Example3. The language of arithmetic
Syntax:x + 2 ≥ y is a sentence;x2 + y ≥ y is not a sentence
Semantic:x + 2 ≥ y is true in a world wherex = 7, y = 1 x + 2 ≥ y is false in a world wherex = 0, y = 6

Entailment
Entailment means that one sentence (α) follows fromother sentences (KB) and is denoted:

KB � α

We say that the Knowledge BaseKB entailsα if and only ifα is true in all worlds whereKB is true . Entailment is a

relationship between sentences (i.e. syntax) that is based on semantics.

Example4. Knowledge Base ={ “The car is blue” “The bicycle is green or yellow”}
KB entails sentencesα like:

• “The car is blue”

• true

• “The car is blue or the bicycle is yellow”

The sentence “The car is blue and the bicycle is yellow” is not entailed byKB.

World in Logic = Model

Definition 5. We saym is amodelof a sentenceα if α is true in the worldm. We denote byM(α) the set
of models

KB entailsα if and only if M(KB) ⊆ M(α).

Example6.

(car,blue) (bicycle,blue)(car,blue) (bicycle,blue)

a= "The car is blue"KB= {"The car is blue", "The bicycle is green or yellow"}

Possible models of KB Possible models of sentence a 

not a model of KB

(car,green)

(car, yellow) (bicycle,yellow) (car, yellow) (bicycle,yellow)

(bicycle, green)(car,green)(bicycle, green)
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Inference

Definition 7. Inference: A sentenceβ can be inferred from another sentenceα by some inference algorithm
i. This is denoted:

α `i β

Definition 8. Soundness: An inference algorithm issoundif it produces entailed sentences

Definition 9. Completeness: An inference algorithm iscompleteif it can derive all the sentences which it
entails.

Well-known logics

1. Propositional logic

2. First-order logic

3. Default logic

4. Circumscription

5. Temporal logic

6. Modal logic

7. ..

Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)

3 Propositional Logic: a very simple logic

Propositional Logic: a very simple logic
We consider a set of proposition symbols{p1, p2, · · · }.

Definition 10. Syntax: What is a sentence in the propositional logic?

1. any proposition symbolpi is a sentence (atomic sentence)

2. if S is a sentence then¬S is a sentence

3. if S1 andS2 are sentences thenS1 ∧ S2 is a sentence

4. if S1 andS2 are sentences thenS1 ∨ S2 is a sentence

5. if S1 andS2 are sentences thenS1 ⇒ S2 is a sentence

6. if S1 andS2 are sentences thenS1 ⇔ S2 is a sentence

Example11. p1, p1 ∧ p2, p1 ∨ (¬p2 ∧ p3), (p3 ⇒ p4) ∧ (p4 ⇒ p3), ...
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Propositional Logic: a very simple logic

Definition 12. Semantics: What is the meaning of a sentence? A modelm is a mapping between the proposition symbols
{p1, p2, · · · } and{true, false}. Givenm, we have:

1. ¬S is true iff S is false (“not” S)

2. S1 ∧ S2 is true iff S1 is true andS2 is true (S1 “and” S2)

3. S1 ∨ S2 is true iff S1 is true or S2 is true (S1 “or” S2)

4. S1 ⇒ S2 is true iff S1 is false or S2 is true (S1 “implies” S2)

• i.e. S1 ⇒ S2 is false iff S1 is true or S2 is false

5. S1 ⇔ S2 is true iff S1 ⇒ S2 is true andS2 ⇒ S1 is true (S1 “is equivalent to”S2)

Propositional Logic: a very simple logic

Example13. Symbols ={abcd}
Given the modelm = {a = true, b = false, c = true, d = false}, then

• ¬a = false,

• a ∧ ¬b = true,

• a ∨ (b ∧ ¬c) = true,

• d ⇒ c = true,

• d ⇒ ¬c = true,

• ¬d ⇒ ¬c = false,

• ¬(a ∨ b) ⇔ d = true

4 Equivalence, validity, satisfiability

Logical equivalence

Definition 14. Two sentencesα, β arelogically equivalentIF AND ONLY IF they are true in the same models.α entailsβ and
vice-versa.

(α ∧ β) ≡ (β ∧ α) commutativity of∧
(α ∨ β) ≡ (β ∨ α) commutativity of∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over∧
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Validity and satisfiability

Definition 15. A sentence isvalid if it is true in ALL models:
a ∨ ¬a, a ⇒ a, (a ∧ (a ⇒ b)) ⇒ b

KB entailsα (KB � α) iff the sentenceKB ⇒ α is valid. Validity is then connected to inference.

Definition 16. 1. A sentence issatisfiableif it is true in SOME models. A valid sentence is satisfiable, but a satisfiable sentence
may be not valid.

2. A sentence isunsatisfiableif it is true in NO models:

a ∧ ¬a, (a ∧ b) ⇔ (¬a ∧ c)

KB entailsα (KB � α) iff the sentenceKB ∧ ¬α is unsatisfiable.

5 Inference rules and theorem proving in propositional logic

Inference, Theorem proving

GivenKB, can I prove the sentenceα? Isα satisfiable inKB? KB � α? IsKB ∧ ¬α unsatisfiable?

Model (Truth table) enumeration, we check thatM(KB) ⊆ M(α).
Bad news: exponential in the number of proposition symbols involved inKB, α.
Some improved methods: Davis-Putnam-Logemann-Loveland (complete), min-conflicts-like (incomplete) hill-climbing (in-

complete).

• Sound generation of new sentences from old.

• Proof = a sequence ofinference rulesthat finally generateα

Methods: Forward-chaining, Backward chaining, Resolution

Inference rules: examples

Example17. Modus Ponens:
a, a ⇒ b

b

And-elimination:
a ∧ b

a

Factoring:
a ∨ a

a

Logical equivalences:
¬a ∨ ¬b

¬(a ∧ b)

a ⇔ b

a ⇒ b ∧ b ⇒ a
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Forward and backward chaining methods

Proof methods that are simple and efficient. They need a restriction on the form ofKB.

KB = conjunction of Horn clauses

Definition 18. A Horn clauseis

• a propositional symbola, or

• something likep1 · · · pn ⇒ c (pi is apremisseandc theconclusion)

Inference problem

Rule 1 P ⇒ Q

Rule 2 L ∧M ⇒ P

Rule 3 B ∧ L ⇒ M

Rule 4 A ∧ P ⇒ L

Rule 5 A ∧B ⇒ L

Rule 6 A

Rule 7 B
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Is the propositionQ true or not?
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Forward chaining method

Forward chaining:

1. Fire any rule whose premises are satisfied in the Knowledge Base

2. Add its conclusion to the Knowledge Base

• Management of aWorking Memory(an Agenda)

3. Repeat 1 and 2 until the propositionQ is true or no more conclusion can be derived

a1, ·, an a1 ∧ · · · ∧ an ⇒ b

b

Forward chaining: example

A andB are known in the knowledge base (Rules 6 and 7).

Agenda = {A,B}
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Forward chaining: example

Rule 5 can be fired sinceA andB are known.

A ∧B ⇒ L
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Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 5:

Agenda = {A,B, L}
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Forward chaining: example

Rule 3 can be fired sinceB andL are known.

B ∧ L ⇒ M
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Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 3:

Agenda = {A,B, L, M}
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Forward chaining: example

Rule 2 can be fired sinceM andL are known.

M ∧ L ⇒ P
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Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 2:

Agenda = {A,B, L, M, P}
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Forward chaining: example

Rule 1 can be fired sinceP is known.
P ⇒ Q
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Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 1:

Agenda = {A,B, L, M, P, Q}

Q has been derived. STOP
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Properties of the FC algorithm

Theorem 19. The forward chaining algorithm is complete.

• Every atomic proposition that is provable in the knowledge base can be derived thanks to the algo-
rithm.

• The result is due to the fact that:

1. The knowledge base is a conjunction of Horn clauses.

2. In the worst case of FC, every clause is fired.
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Theorem 20. The forward chaining algorithm runs in linear time.

• Every rule is fired at most once.

Backward chaining method

At a given step, the choice between the firable rules israndom. FC may apply rules that areuselessfor the
proof ofQ! Data-driven algorithm

Backward chaining: Goal-driven algorithm

• To proveQ every premise of one rule which concludesQ has to be at least proved.

• Basically, BackwardChaining(Q) =

1. If Q is known inKB thenQ is proved

2. Otherwise, select a ruleP1 ∧ · · · ∧ Pn ⇒ Q in KB

3. Recusirvely apply BackwardChaining(P1), ... , BackwardChaining(Pn) to prove the premises.

4. Repeat 2-3 untilQ is proved or no more rules can be selected.

Backward chaining: example

To proveQ, we need to proveP . To proveP we need to proveL andM etc. So it goes untilA andB are
reached.A andB are known in KB soQ is proved.
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Backward chaining method (2)

Theorem 21. The backward chaining algorithm is complete.

Theorem 22. The backward chaining algorithm runs in linear time.

• Every rule is fired at most once

• In practice, it is much less than linear in size of KB: it is linear in the size of the set of rules that are
involved in the proof of the premises ofQ.
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Propositional logic inference: resolution algorithm

FC and BC are efficient algorithms but they make the asssumption that KB is a set of Horn clauses.

Given a KB, is there an algorithm which is sound and complete?

YES, this is called aresolution algorithmbased on the resolution inference rule.

Resolution inference rule

`1 ∨ · · · ∨ `i ∨ · · · ∨ `k, `′1 ∨ · · · ∨ `′j ∨ · · · ∨ `′n

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨ `′1 ∨ · · · ∨ `′j−1 ∨ `′j+1 ∨ · · · ∨ `′n

with `i = a and `j = ¬a or `i = ¬a and `j = a

(a is an atomic sentence)

Example23.
e , ¬e

∅
v ∨ ¬w ∨ ¬x, w ∨ ¬x ∨ y ∨ z

v ∨ ¬x ∨ y ∨ z

Resolution inference rule (2): CNF

The rule is applied on sentences like(`1∨· · · · · ·∨`k)∧· · ·∧(`m∨· · · · · ·∨`n) where`i are positive/negative
literals.

This form is calledConjunctive Normal Form(CNF for short).

Every sentence in proposition logic is logically equivalent to a CNF sentence.

Example24. (a ∨ b) ⇔ (c ∧ d) is logically equivalent to the CNF(¬a ∨ c) ∧ (¬a ∨ d) ∧ (¬b ∨ c) ∧ (¬b ∨
d) ∧ (¬c ∨ ¬d ∨ a ∨ b).

Conversion to a CNF

1. Eliminate⇔, replacingα ⇔ β with (α ⇒ β) ∧ (β ⇒ α).

2. Eliminate⇒, replacingα ⇒ β with ¬α ∨ β.

3. Move¬ inwards using de Morgan’s rules{¬(a∧ b) ≡ (¬a∨¬b), ¬(a∨ b) ≡ (¬a∧¬b)} and double
negation rule(¬¬a ≡ a)

4. Apply distributivity law (∨ over∧) and flatten(a ∧ b) ∨ c ≡ (a ∨ c) ∧ (b ∨ c)
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Resolution algorithm

Definition 25. Proof by contradiction:givenKB, to proveα, we prove thatKB ∧ ¬α is not satisfiable.

Example26. Symbols:

• Und: “The students have understood this lecture”

• Gt: “I am a good teacher”

• Party: “The students went to a party last night”

Knowledge base:
KB = (¬Und ⇔ (¬Gt ∨ Party)) ∧ Und

Query to prove:I am a good teacher
α = Gt

Resolution algorithm

Example27. Conversion to CNF:KB ∧ ¬α → (KB ∧ ¬α)CNF

(KB ∧ ¬α)CNF =(¬Party ∨ ¬Und)∧
(¬Gt ∨ Und ∨ Party)∧
(¬Und ∨Gt)∧
Und ∧ ¬Gt

Example28. UndParty Gt Und Party Und Gt Und Gt

Resolution algorithm

Example29.
UndParty Gt Und Party Und Gt Und Gt

Resolution algorithm

Example30.

UndParty Gt Und Party Und Gt Und Gt

Und Gt Und
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Resolution algorithm

Example31.

UndParty Gt Und Party Und Gt Und Gt

PartyUnd Gt Und

Resolution algorithm

Example32.

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd Gt Und

Resolution algorithm

Example33.

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd

Party

Gt Und

UndGt

Resolution algorithm
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Example34.

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd

Party Und Und

Gt Und

UndGt

Resolution algorithm

Example35.

STOP

UndParty Gt Und Party Und Gt Und Gt

Gt

Empty clause
I am a good teacher

PartyUnd

Party Und Und

Gt Und

UndGt

Summary
Logical agents applyinferenceto aknowledge baseto derive new information and make decisions
Basic concepts of logic:

• syntax: formal structure ofsentences

• semantics: truth of sentences wrtmodels

• entailment: necessary truth of one sentence given another

• inference: deriving sentences from other sentences

• soundess: derivations produce only entailed sentences

• completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for
propositional logic

Propositional logic lacks expressive power
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