Knowledge: Representation and Reasoning

Yannick Pencolé
Yannick.Pencole@anu.edu.au

09 Mar 2005
Outline

1. Knowledge-based agents
2. Logic in general models and entailment
3. Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
5. Inference rules and theorem proving in propositional logic
Outline

1. Knowledge-based agents
2. Logic in general models and entailment
3. Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
5. Inference rules and theorem proving in propositional logic
What is an agent?

Agents interact with environments through sensors and actuators.
Knowledge-based agent

Definition
A Knowledge base is a set of sentences in a formal language.

Definition
Knowledge-based agent: Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
Generic knowledge-based agent:
1. PERCEIVE an input
2. TELL the knowledge base what it perceives (same language)
3. ASK the knowledge base for an action to return (reasoning in the KB for a query, inference)
4. TELL the knowledge base about this action that has been executed (update of the KB)

A good way to represent and interact with a KB is Logic.
Outline

1. Knowledge-based agents
2. Logic in general models and entailment
3. Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
5. Inference rules and theorem proving in propositional logic
Logic? But what is it?

Principle

Logics are formal languages for representing information such that conclusions can be drawn. To define a logic, we need:

1. **syntax**: how a sentence of the logic looks like?
2. **semantic**: what is the meaning of the sentence?

 - Given a **world**, is the sentence **true** or **false**?

Example

The language of arithmetic

Syntax:

- \(x + 2 \geq y \) is a sentence;
- \(x^2 + y \geq y \) is not a sentence

Semantic:

- \(x + 2 \geq y \) is **true** in a world where \(x = 7, y = 1 \)
- \(x + 2 \geq y \) is **false** in a world where \(x = 0, y = 6 \)
Entailment means that one sentence (\(\alpha\)) follows from other sentences (\(KB\)) and is denoted:

\[KB \models \alpha \]

We say that the Knowledge Base \(KB\) entails \(\alpha\) if and only if \(\alpha\) is true in all worlds where \(KB\) is true. Entailment is a relationship between sentences (i.e. syntax) that is based on semantics.

Example

Knowledge Base = \{ “The car is blue” “The bicycle is green or yellow” \}
\(KB\) entails sentences \(\alpha\) like:

- “The car is blue”
- true
- “The car is blue or the bicycle is yellow”

The sentence “The car is blue and the bicycle is yellow” is not entailed by \(KB\).
Definition

We say \(m \) is a **model** of a sentence \(\alpha \) if \(\alpha \) is true in the world \(m \). We denote by \(M(\alpha) \) the set of models.

Property

\(KB \) entails \(\alpha \) if and only if \(M(KB) \subseteq M(\alpha) \).

Example

\(KB = \{ "The \ car \ is \ blue", "The \ bicycle \ is \ green \ or \ yellow" \} \)

Possible models of \(KB \)

- (car, blue)
- (bicycle, blue)
- (car, yellow)
- (bicycle, yellow)
- (car, green)
- (bicycle, green)

Possible models of sentence \(a \)

- (car, blue)
- (bicycle, blue)
- (car, yellow)
- (bicycle, yellow)

(car, green)
(bicycle, green)

not a model of \(KB \)
Inference

Definition

Inference: A sentence β can be inferred from another sentence α by some inference algorithm i. This is denoted:

$$\alpha \vdash_i \beta$$

Definition

Soundness: An inference algorithm is **sound** if it produces entailed sentences.

Definition

Completeness: An inference algorithm is **complete** if it can derive all the sentences which it entails.
Well-known logics

1. Propositional logic
2. First-order logic
3. Default logic
4. Circumscription
5. Temporal logic
6. Modal logic
7. ..

Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)
Outline

1. Knowledge-based agents

2. Logic in general models and entailment

3. Propositional Logic: a very simple logic

4. Equivalence, validity, satisfiability

5. Inference rules and theorem proving in propositional logic
Propositional Logic: a very simple logic

We consider a set of proposition symbols \(\{p_1, p_2, \cdots \} \).

Definition

Syntax: What is a sentence in the propositional logic?

1. any proposition symbol \(p_i \) is a sentence (*atomic sentence*)
2. if \(S \) is a sentence then \(\neg S \) is a sentence
3. if \(S_1 \) and \(S_2 \) are sentences then \(S_1 \land S_2 \) is a sentence
4. if \(S_1 \) and \(S_2 \) are sentences then \(S_1 \lor S_2 \) is a sentence
5. if \(S_1 \) and \(S_2 \) are sentences then \(S_1 \Rightarrow S_2 \) is a sentence
6. if \(S_1 \) and \(S_2 \) are sentences then \(S_1 \Leftrightarrow S_2 \) is a sentence

Example

\(p_1, p_1 \land p_2, p_1 \lor (\neg p_2 \land p_3), (p_3 \Rightarrow p_4) \land (p_4 \Rightarrow p_3), \ldots \)
Propositional Logic: a very simple logic

Definition

Semantics: What is the meaning of a sentence? A model \(m \) is a mapping between the proposition symbols \(\{ p_1, p_2, \cdots \} \) and \(\{ true, false \} \). Given \(m \), we have:

1. \(\neg S \) is *true* iff \(S \) is *false* ("not" \(S \))
2. \(S_1 \land S_2 \) is *true* iff \(S_1 \) is *true* and \(S_2 \) is *true* (\(S_1 \) "and" \(S_2 \))
3. \(S_1 \lor S_2 \) is *true* iff \(S_1 \) is *true* or \(S_2 \) is *true* (\(S_1 \) "or" \(S_2 \))
4. \(S_1 \Rightarrow S_2 \) is *true* iff \(S_1 \) is *false* or \(S_2 \) is *true* (\(S_1 \) "implies" \(S_2 \))
 - i.e. \(S_1 \Rightarrow S_2 \) is *false* iff \(S_1 \) is *true* or \(S_2 \) is *false*
5. \(S_1 \Leftrightarrow S_2 \) is *true* iff \(S_1 \Rightarrow S_2 \) is *true* and \(S_2 \Rightarrow S_1 \) is *true* (\(S_1 \) "is equivalent to" \(S_2 \))
Propositional Logic: a very simple logic

Example

Symbols = \{abcd\}
Given the model \(m = \{a = true, b = false, c = true, d = false\} \), then

- \(\neg a = false \),
- \(a \land \neg b = true \),
- \(a \lor (b \land \neg c) = true \),
- \(d \Rightarrow c = true \),
- \(d \Rightarrow \neg c = true \),
- \(\neg d \Rightarrow \neg c = false \),
- \(\neg (a \lor b) \iff d = true \)
Outline

1. Knowledge-based agents
2. Logic in general models and entailment
3. Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
5. Inference rules and theorem proving in propositional logic
Logical equivalence

Definition

Two sentences \(\alpha, \beta \) are **logically equivalent** IF AND ONLY IF they are true in the same models. \(\alpha \) entails \(\beta \) and vice-versa.

Logical equivalent sentences

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \Leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

Definition

A sentence is **valid** if it is true in **ALL** models:

\[a \lor \neg a, \ a \Rightarrow a, \ (a \land (a \Rightarrow b)) \Rightarrow b \]

Deduction theorem

\(KB \) entails \(\alpha \) (\(KB \models \alpha \)) iff the sentence \(KB \Rightarrow \alpha \) is valid. Validity is then connected to inference.

Definition

1. A sentence is **satisfiable** if it is true in **SOME** models. A valid sentence is satisfiable, but a satisfiable sentence may be not valid.

2. A sentence is **unsatisfiable** if it is true in **NO** models:

\[a \land \neg a, \ (a \land b) \leftrightarrow (\neg a \land c) \]

Satisfiability and inference

\(KB \) entails \(\alpha \) (\(KB \models \alpha \)) iff the sentence \(KB \land \neg \alpha \) is unsatisfiable.
1. Knowledge-based agents
2. Logic in general models and entailment
3. Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
5. Inference rules and theorem proving in propositional logic
Inference, Theorem proving

Theorem proving

Given KB, can I prove the sentence α? Is α satisfiable in KB? $KB \models \alpha$? Is $KB \land \neg \alpha$ unsatisfiable?

Semantics: model-checking

Model (Truth table) enumeration, we check that $M(KB) \subseteq M(\alpha)$. Bad news: exponential in the number of proposition symbols involved in KB, α. Some improved methods: Davis-Putnam-Logemann-Loveland (complete), min-conflicts-like (incomplete) hill-climbing (incomplete).

Syntax: inference rules

- Sound generation of new sentences from old.
- Proof = a sequence of **inference rules** that finally generate α

Methods: Forward-chaining, Backward chaining, Resolution
Inference rules: examples

Example

Modus Ponens:
\[
\frac{a, a \Rightarrow b}{b}
\]

And-elimination:
\[
\frac{a \land b}{a}
\]

Factoring:
\[
\frac{a \lor a}{a}
\]

Logical equivalences:
\[
\frac{\neg a \lor \neg b}{(a \land b)}
\]
\[
\frac{a \iff b}{a \Rightarrow b \land b \Rightarrow a}
\]
Forward and backward chaining methods

Forward and backward chaining

Proof methods that are simple and efficient. They need a restriction on the form of KB.

$$KB = \text{conjunction of Horn clauses}$$

Definition

A Horn clause is
- a propositional symbol a, or
- something like $p_1 \cdots p_n \Rightarrow c$ (p_i is a premisse and c the conclusion)
Inference problem

Knowledge base

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>$P \Rightarrow Q$</td>
</tr>
<tr>
<td>Rule 2</td>
<td>$L \land M \Rightarrow P$</td>
</tr>
<tr>
<td>Rule 3</td>
<td>$B \land L \Rightarrow M$</td>
</tr>
<tr>
<td>Rule 4</td>
<td>$A \land P \Rightarrow L$</td>
</tr>
<tr>
<td>Rule 5</td>
<td>$A \land B \Rightarrow L$</td>
</tr>
<tr>
<td>Rule 6</td>
<td>A</td>
</tr>
<tr>
<td>Rule 7</td>
<td>B</td>
</tr>
</tbody>
</table>

Graphical Representation

Inference problem

Is the proposition Q true or not?
Forward chaining method

Idea

Forward chaining:

1. Fire any rule whose premises are satisfied in the Knowledge Base
2. Add its conclusion to the Knowledge Base
 - Management of a *Working Memory* (an Agenda)
3. Repeat 1 and 2 until the proposition Q is true or no more conclusion can be derived

Inference rule

\[
\begin{align*}
a_1, \ldots, a_n \quad a_1 \land \cdots \land a_n \Rightarrow b \\
\hline
b
\end{align*}
\]
Forward chaining: example

A and B are known in the knowledge base (Rules 6 and 7).

\[\text{Agenda} = \{A, B\} \]
Forward chaining: example

Rule 5 can be fired since A and B are known.

$A \land B \Rightarrow L$
Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 5:

\[\text{Agenda} = \{A, B, L\} \]
Forward chaining: example

Rule 3 can be fired since B and L are known.

$B \land L \Rightarrow M$
Forward chaining: example

Forward chaining
The agenda is updated with the conclusion (head) of Rule 3:

\[\text{Agenda} = \{ A, B, L, M \} \]
Forward chaining: example

Rule 2 can be fired since M and L are known.

$M \land L \Rightarrow P$
Forward chaining: example

The agenda is updated with the conclusion (head) of Rule 2:

\[\text{Agenda} = \{A, B, L, M, P\} \]
Forward chaining: example

Rule 1 can be fired since P is known.

$P \Rightarrow Q$
Forward chaining: example

Forward chaining
The agenda is updated with the conclusion (head) of Rule 1:

\[\text{Agenda} = \{A, B, L, M, P, Q\} \]

Q has been derived.
STOP
Properties of the FC algorithm

Theorem

The forward chaining algorithm is complete.

- Every atomic proposition that is provable in the knowledge base can be derived thanks to the algorithm.
- The result is due to the fact that:
 1. The knowledge base is a conjunction of Horn clauses.
 2. In the worst case of FC, every clause is fired.

Theorem

The forward chaining algorithm runs in linear time.

- Every rule is fired at most once.
Backward chaining method

Problem with FC

At a given step, the choice between the firable rules is random. FC may apply rules that are useless for the proof of \(Q \! \! \).

Data-driven algorithm

Idea

Backward chaining: Goal-driven algorithm

- To prove \(Q \) every premise of one rule which concludes \(Q \) has to be at least proved.
- Basically, \(\text{BackwardChaining}(Q) = \)
 1. If \(Q \) is known in \(KB \) then \(Q \) is proved
 2. Otherwise, select a rule \(P_1 \land \cdots \land P_n \Rightarrow Q \) in KB
 3. Recursively apply \(\text{BackwardChaining}(P_1) \), \ldots , \(\text{BackwardChaining}(P_n) \) to prove the premises.
 4. Repeat 2-3 until \(Q \) is proved or no more rules can be selected.
Backward chaining: example

To prove Q, we need to prove P. To prove P we need to prove L and M etc. So it goes until A and B are reached. A and B are known in KB so Q is proved.
Theorem

The backward chaining algorithm is complete.

Theorem

The backward chaining algorithm runs in linear time.

- Every rule is fired at most once
- In practice, it is much less than linear in size of KB: it is linear in the size of the set of rules that are involved in the proof of the premises of \(Q \).
FC and BC

FC and BC are efficient algorithms but they make the assumption that KB is a set of Horn clauses.

What about the general case?

Given a KB, is there an algorithm which is sound and complete?

Answer

YES, this is called a resolution algorithm based on the resolution inference rule.
Resolution inference rule

\[
\ell_1 \lor \cdots \lor \boxed{\ell_i} \lor \cdots \lor \ell_k, \quad \ell'_1 \lor \cdots \lor \boxed{\ell'_j} \lor \cdots \lor \ell'_n
\]

\[
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor \ell'_1 \lor \cdots \lor \ell'_{j-1} \lor \ell'_{j+1} \lor \cdots \lor \ell'_n
\]

with \(\ell_i = a \) and \(\boxed{\ell_j = \neg a} \) or \(\ell_i = \neg a \) and \(\boxed{\ell_j = a} \)

(a is an atomic sentence)

Example

\[
\emptyset
\]

\[
\begin{align*}
\emptyset & \quad \checkmark & \\checkmark & \checkmark \checkmark \\
\checkmark & \\\checkmark & \\\checkmark & \checkmark & \checkmark
\end{align*}
\]

\[
\ell \lor \neg \ell \lor \neg w \lor \neg x, \quad w \lor \neg x \lor y \lor z
\]

\[
\ell \lor \neg x \lor y \lor z
\]
Resolution inference rule (2): CNF

Application of the rule

The rule is applied on sentences like
\((\ell_1 \lor \cdots \lor \ell_k) \land \cdots \land (\ell_m \lor \cdots \lor \ell_n)\) where \(\ell_i\) are positive/negative literals.
This form is called Conjunctive Normal Form (CNF for short).

Property

Every sentence in proposition logic is logically equivalent to a CNF sentence.

Example

\((a \lor b) \iff (c \land d)\) is logically equivalent to the CNF
\((\neg a \lor c) \land (\neg a \lor d) \land (\neg b \lor c) \land (\neg b \lor d) \land (\neg c \lor \neg d \lor a \lor b)\).
Conversion to a CNF

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eliminate \iff, replacing $\alpha \iff \beta$ with $(\alpha \implies \beta) \land (\beta \implies \alpha)$.</td>
</tr>
<tr>
<td>2. Eliminate \implies, replacing $\alpha \implies \beta$ with $\neg \alpha \lor \beta$.</td>
</tr>
</tbody>
</table>
| 3. Move \neg inwards using de Morgan’s rules
$\neg (a \land b) \equiv (\neg a \lor \neg b), \neg (a \lor b) \equiv (\neg a \land \neg b)$} and double negation rule ($\neg\neg a \equiv a$). |
| 4. Apply distributivity law (\lor over \land) and flatten
$(a \land b) \lor c \equiv (a \lor c) \land (b \lor c)$. |
Resolution algorithm

Definition

Proof by contradiction: given KB, to prove α, we prove that $KB \land \neg \alpha$ is not satisfiable.

Example

Symbols:
- Und: “The students have understood this lecture”
- Gt: “I am a good teacher”
- $Party$: “The students went to a party last night”

Knowledge base:

$$KB = (\neg Und \iff (\neg Gt \lor Party)) \land Und$$

Query to prove: *I am a good teacher*

$$\alpha = Gt$$
Resolution algorithm

Example

Conversion to CNF: $KB \land \neg \alpha \rightarrow (KB \land \neg \alpha)_{CNF}$

$$(KB \land \neg \alpha)_{CNF} = (\neg Party \lor \neg Und) \land (\neg Gt \lor Und \lor Party) \land (\neg Und \lor Gt) \land Und \land \neg Gt$$

Example

\[
\begin{array}{c}
\neg Party \lor \neg Und \\
\neg Gt \lor Und \lor Party \\
\neg Und \lor Gt \\
Und \\
\neg Gt
\end{array}
\]
Resolution algorithm

Example

\[\neg \text{Party} \lor \neg \text{Und} \]

\[\neg \text{Gt} \lor \text{Und} \lor \text{Party} \]

\[\neg \text{Und} \lor \text{Gt} \]

\[\text{Und} \]

\[\neg \text{Gt} \]
Resolution algorithm

Example

\[\neg \text{Party} \lor \neg \text{Und} \]
\[\neg \text{Gt} \lor \text{Und} \lor \text{Party} \]
\[\neg \text{Und} \lor \text{Gt} \]
\[\text{Und} \]
\[\neg \text{Gt} \]

\[\neg \text{Und} \lor \neg \text{Gt} \lor \text{Und} \]
Resolution algorithm

Example

\[\neg \text{Party} \lor \neg \text{Und} \]
\[\neg \text{Gt} \lor \text{Und} \lor \text{Party} \]
\[\neg \text{Und} \lor \text{Gt} \]
\[\text{Und} \]
\[\neg \text{Gt} \]
Resolution algorithm

Example

\[\neg \text{Party} \lor \neg \text{Und} \]
\[\neg \text{Gt} \lor \text{Und} \lor \text{Party} \]
\[\neg \text{Und} \lor \text{Gt} \]
\[\text{Und} \]
\[\neg \text{Gt} \]

\[\neg \text{Und} \lor \neg \text{Gt} \lor \text{Und} \]
\[\neg \text{Party} \]
\[\text{Gt} \]
Resolution algorithm

Example
Resolution algorithm

Example
Resolution algorithm

Example

\[\neg \text{Party} \lor \neg \text{Und} \]
\[\neg \text{Gt} \lor \text{Und} \lor \text{Party} \]
\[\neg \text{Und} \lor \neg \text{Gt} \]
\[\text{Und} \]
\[\neg \text{Gt} \]

\[\neg \text{Und} \lor \neg \text{Gt} \lor \text{Und} \]
\[\neg \text{Party} \]
\[\text{Gt} \]

\[\neg \text{Party} \lor \neg \text{Gt} \lor \neg \text{Und} \]
\[\neg \text{Und} \lor \text{Und} \]

Empty clause

I am a good teacher

STOP
Logical agents apply **inference** to a **knowledge base** to derive new information and make decisions.

Basic concepts of logic:

- **syntax**: formal structure of **sentences**
- **semantics**: truth of sentences wrt models
- **entailment**: necessary truth of one sentence given another
- **inference**: deriving sentences from other sentences
- **soundness**: derivations produce only entailed sentences
- **completeness**: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses. Resolution is complete for propositional logic. Propositional logic lacks expressive power.