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What is an agent?

Agents interact with environments through sensors and
actuators



Knowledge-based agent

Definition

A Knowledge base is a set of sentences in a formal language.

Definition

Knowledge-based agent: Agents can be viewed at the knowledge level i.e.,
what they know, regardless of how implemented
Generic knowledge-based agent:

1 PERCEIVE an input

2 TELL the knowledge base what it perceives (same language)

3 ASK the knowledge base for an action to return (reasoning in the KB for
a query, inference)

4 TELL the knowledge base about this action that has been executed
(update of the KB)

A good way to represent and interact with a KB is Logic.
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Logic? But what is it?

Principle

Logics are formal languages for representing information such
that conclusions can be drawn. To define a logic, we need:

1 syntax: how a sentence of the logic looks like?
2 semantic: what is the meaning of the sentence?

Given a world, is the sentence true or false?

Example

The language of arithmetic
Syntax:
x + 2 ≥ y is a sentence;
x2 + y ≥ y is not a sentence
Semantic:
x + 2 ≥ y is true in a world where x = 7, y = 1
x + 2 ≥ y is false in a world where x = 0, y = 6



Entailment

Entailment means that one sentence (α) follows from other sentences (KB)
and is denoted:

KB � α

We say that the Knowledge Base KB entails α if and only if α is true in all

worlds where KB is true . Entailment is a relationship between sentences

(i.e. syntax) that is based on semantics.

Example
Knowledge Base = { “The car is blue” “The bicycle is green or yellow” }
KB entails sentences α like:

“The car is blue”

true

“The car is blue or the bicycle is yellow”

The sentence “The car is blue and the bicycle is yellow” is not entailed by KB.



World in Logic = Model

Definition

We say m is a model of a sentence α if α is true in the world m.
We denote by M(α) the set of models

Property

KB entails α if and only if M(KB) ⊆ M(α).

Example

(car,blue) (bicycle,blue)(car,blue) (bicycle,blue)

a= "The car is blue"KB= {"The car is blue", "The bicycle is green or yellow"}

Possible models of KB Possible models of sentence a 

not a model of KB

(car,green)

(car, yellow) (bicycle,yellow) (car, yellow) (bicycle,yellow)

(bicycle, green)(car,green)(bicycle, green)



Inference

Definition

Inference: A sentence β can be inferred from another sentence
α by some inference algorithm i . This is denoted:

α `i β

Definition

Soundness: An inference algorithm is sound if it produces
entailed sentences

Definition

Completeness: An inference algorithm is complete if it can
derive all the sentences which it entails.



Well-known logics

1 Propositional logic
2 First-order logic
3 Default logic
4 Circumscription
5 Temporal logic
6 Modal logic
7 ..

Every logic has its Pros and Cons (expressivity, soundness and
completeness of inference algorithm)
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Propositional Logic: a very simple logic

We consider a set of proposition symbols {p1, p2, · · · }.

Definition
Syntax: What is a sentence in the propositional logic?

1 any proposition symbol pi is a sentence (atomic sentence)

2 if S is a sentence then ¬S is a sentence

3 if S1 and S2 are sentences then S1 ∧ S2 is a sentence

4 if S1 and S2 are sentences then S1 ∨ S2 is a sentence

5 if S1 and S2 are sentences then S1 ⇒ S2 is a sentence

6 if S1 and S2 are sentences then S1 ⇔ S2 is a sentence

Example
p1, p1 ∧ p2, p1 ∨ (¬p2 ∧ p3), (p3 ⇒ p4) ∧ (p4 ⇒ p3), ...



Propositional Logic: a very simple logic

Definition
Semantics: What is the meaning of a sentence? A model m is a mapping
between the proposition symbols {p1, p2, · · · } and {true, false}. Given m, we
have:

1 ¬S is true iff S is false (“not” S)

2 S1 ∧ S2 is true iff S1 is true and S2 is true (S1 “and” S2)

3 S1 ∨ S2 is true iff S1 is true or S2 is true (S1 “or” S2)

4 S1 ⇒ S2 is true iff S1 is false or S2 is true (S1 “implies” S2)

i.e. S1 ⇒ S2 is false iff S1 is true or S2 is false

5 S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true (S1 “is
equivalent to” S2)



Propositional Logic: a very simple logic

Example

Symbols = {abcd}
Given the model m = {a = true, b = false, c = true, d = false},
then

¬a = false,

a ∧ ¬b = true,

a ∨ (b ∧ ¬c) = true,

d ⇒ c = true,

d ⇒ ¬c = true,

¬d ⇒ ¬c = false,

¬(a ∨ b) ⇔ d = true
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Logical equivalence

Definition

Two sentences α, β are logically equivalent IF AND ONLY IF they are true in
the same models. α entails β and vice-versa.

Logical equivalent sentences

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧



Validity and satisfiability

Definition

A sentence is valid if it is true in ALL models:
a ∨ ¬a, a ⇒ a, (a ∧ (a ⇒ b)) ⇒ b

Deduction theorem

KB entails α (KB � α) iff the sentence KB ⇒ α is valid. Validity is then
connected to inference.

Definition

1 A sentence is satisfiable if it is true in SOME models. A valid sentence
is satisfiable, but a satisfiable sentence may be not valid.

2 A sentence is unsatisfiable if it is true in NO models:
a ∧ ¬a, (a ∧ b) ⇔ (¬a ∧ c)

Satisfiability and inference

KB entails α (KB � α) iff the sentence KB ∧ ¬α is unsatisfiable.
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Inference, Theorem proving

Theorem proving

Given KB, can I prove the sentence α? Is α satisfiable in KB? KB � α? Is
KB ∧ ¬α unsatisfiable?

Semantics: model-checking

Model (Truth table) enumeration, we check that M(KB) ⊆ M(α).
Bad news: exponential in the number of proposition symbols involved in
KB, α.
Some improved methods: Davis-Putnam-Logemann-Loveland (complete),
min-conflicts-like (incomplete) hill-climbing (incomplete).

Syntax: inference rules

Sound generation of new sentences from old.

Proof = a sequence of inference rules that finally generate α

Methods: Forward-chaining, Backward chaining, Resolution



Inference rules: examples

Example

Modus Ponens:
a, a ⇒ b

b
And-elimination:

a ∧ b
a

Factoring:
a ∨ a

a
Logical equivalences:

¬a ∨ ¬b
¬(a ∧ b)

a ⇔ b
a ⇒ b ∧ b ⇒ a



Forward and backward chaining methods

Forward and backward chaining

Proof methods that are simple and efficient. They need a
restriction on the form of KB.

KB = conjunction of Horn clauses

Definition

A Horn clause is

a propositional symbol a, or

something like p1 · · ·pn ⇒ c (pi is a premisse and c the
conclusion)



Inference problem

Knowledge base

Rule 1 P ⇒ Q

Rule 2 L ∧M ⇒ P

Rule 3 B ∧ L ⇒ M

Rule 4 A ∧ P ⇒ L

Rule 5 A ∧ B ⇒ L

Rule 6 A

Rule 7 B

Graphical Representation

�������� ������

������

��������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�


�
�
�����

���
���
���
���

R2

R3

R5

R4

R1

M

L

P

Q

A B R7R6

Inference problem

Is the proposition Q true or not?



Forward chaining method

Idea

Forward chaining:
1 Fire any rule whose premises are satisfied in the

Knowledge Base
2 Add its conclusion to the Knowledge Base

Management of a Working Memory (an Agenda)

3 Repeat 1 and 2 until the proposition Q is true or no more
conclusion can be derived

Inference rule

a1, ·, an a1 ∧ · · · ∧ an ⇒ b
b



Forward chaining: example

Forward chaining

A and B are known in the
knowledge base (Rules 6
and 7).

Agenda = {A, B}

Graphical Representation
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Forward chaining: example

Forward chaining

Rule 5 can be fired since
A and B are known.

A ∧ B ⇒ L

Graphical Representation
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Forward chaining: example

Forward chaining

The agenda is updated
with the conclusion (head)
of Rule 5:

Agenda = {A, B, L}

Graphical Representation
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Forward chaining: example

Forward chaining

Rule 3 can be fired since
B and L are known.

B ∧ L ⇒ M

Graphical Representation
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Forward chaining: example

Forward chaining

The agenda is updated
with the conclusion (head)
of Rule 3:

Agenda = {A, B, L, M}

Graphical Representation
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Forward chaining: example

Forward chaining

Rule 2 can be fired since
M and L are known.

M ∧ L ⇒ P

Graphical Representation
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Forward chaining: example

Forward chaining

The agenda is updated
with the conclusion (head)
of Rule 2:

Agenda = {A, B, L, M, P}

Graphical Representation
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Forward chaining: example

Forward chaining

Rule 1 can be fired since
P is known.

P ⇒ Q

Graphical Representation
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Forward chaining: example

Forward chaining

The agenda is updated
with the conclusion (head)
of Rule 1:

Agenda = {A, B, L, M, P, Q}

Q has been derived.
STOP

Graphical Representation
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Properties of the FC algorithm

Theorem

The forward chaining algorithm is complete.

Every atomic proposition that is provable in the knowledge
base can be derived thanks to the algorithm.
The result is due to the fact that:

1 The knowledge base is a conjunction of Horn clauses.
2 In the worst case of FC, every clause is fired.

Theorem

The forward chaining algorithm runs in linear time.

Every rule is fired at most once.



Backward chaining method

Problem with FC

At a given step, the choice between the firable rules is random.
FC may apply rules that are useless for the proof of Q!
Data-driven algorithm

Idea

Backward chaining: Goal-driven algorithm

To prove Q every premise of one rule which concludes Q
has to be at least proved.
Basically, BackwardChaining(Q) =

1 If Q is known in KB then Q is proved
2 Otherwise, select a rule P1 ∧ · · · ∧ Pn ⇒ Q in KB
3 Recusirvely apply BackwardChaining(P1), ... ,

BackwardChaining(Pn) to prove the premises.
4 Repeat 2-3 until Q is proved or no more rules can be

selected.



Backward chaining: example

Backward chaining

To prove Q, we need to
prove P. To prove P we
need to prove L and M
etc. So it goes until A and
B are reached. A and B
are known in KB so Q is
proved.

Graphical Representation
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Backward chaining method (2)

Theorem

The backward chaining algorithm is complete.

Theorem

The backward chaining algorithm runs in linear time.

Every rule is fired at most once

In practice, it is much less than linear in size of KB: it is
linear in the size of the set of rules that are involved in the
proof of the premises of Q.



Propositional logic inference: resolution algorithm

FC and BC

FC and BC are efficient algorithms but they make the
asssumption that KB is a set of Horn clauses.

What about the general case?

Given a KB, is there an algorithm which is sound and complete?

Answer

YES, this is called a resolution algorithm based on the
resolution inference rule.



Resolution inference rule

Resolution inference rule

`1 ∨ · · · ∨ `i ∨ · · · ∨ `k , `′1 ∨ · · · ∨ `′j ∨ · · · ∨ `′n

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨ `′1 ∨ · · · ∨ `′j−1 ∨ `′j+1 ∨ · · · ∨ `′n

with `i = a and `j = ¬a or `i = ¬a and `j = a

(a is an atomic sentence)

Example

e , ¬e
∅

v ∨ ¬w ∨ ¬x , w ∨ ¬x ∨ y ∨ z
v ∨ ¬x ∨ y ∨ z



Resolution inference rule (2): CNF

Application of the rule

The rule is applied on sentences like
(`1 ∨ · · · · · · ∨ `k ) ∧ · · · ∧ (`m ∨ · · · · · · ∨ `n) where `i are
positive/negative literals.
This form is called Conjunctive Normal Form (CNF for short).

Property

Every sentence in proposition logic is logically equivalent to a
CNF sentence.

Example

(a ∨ b) ⇔ (c ∧ d) is logically equivalent to the CNF
(¬a ∨ c) ∧ (¬a ∨ d) ∧ (¬b ∨ c) ∧ (¬b ∨ d) ∧ (¬c ∨ ¬d ∨ a ∨ b).



Conversion to a CNF

Method
1 Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α).
2 Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β.
3 Move ¬ inwards using de Morgan’s rules
{¬(a ∧ b) ≡ (¬a ∨ ¬b), ¬(a ∨ b) ≡ (¬a ∧ ¬b)} and double
negation rule (¬¬a ≡ a)

4 Apply distributivity law (∨ over ∧) and flatten
(a ∧ b) ∨ c ≡ (a ∨ c) ∧ (b ∨ c)



Resolution algorithm

Definition

Proof by contradiction: given KB, to prove α, we prove that
KB ∧ ¬α is not satisfiable.

Example

Symbols:

Und : “The students have understood this lecture”

Gt : “I am a good teacher”

Party : “The students went to a party last night”

Knowledge base:

KB = (¬Und ⇔ (¬Gt ∨ Party)) ∧ Und

Query to prove: I am a good teacher

α = Gt



Resolution algorithm

Example

Conversion to CNF: KB ∧ ¬α → (KB ∧ ¬α)CNF

(KB ∧ ¬α)CNF =(¬Party ∨ ¬Und)∧
(¬Gt ∨ Und ∨ Party)∧
(¬Und ∨Gt)∧
Und ∧ ¬Gt

Example

UndParty Gt Und Party Und Gt Und Gt



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt

Und Gt Und



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt

PartyUnd Gt Und



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd Gt Und



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd

Party

Gt Und

UndGt



Resolution algorithm

Example

UndParty Gt Und Party Und Gt Und Gt

GtPartyUnd

Party Und Und

Gt Und

UndGt



Resolution algorithm

Example

STOP

UndParty Gt Und Party Und Gt Und Gt

Gt

Empty clause
I am a good teacher

PartyUnd

Party Und Und

Gt Und

UndGt



Summary

Logical agents apply inference to a knowledge base to derive
new information and make decisions
Basic concepts of logic:

syntax: formal structure of sentences

semantics: truth of sentences wrt models

entailment: necessary truth of one sentence given another

inference: deriving sentences from other sentences

soundess: derivations produce only entailed sentences

completeness: derivations can produce all entailed
sentences

Forward, backward chaining are linear-time, complete for Horn
clauses Resolution is complete for propositional logic
Propositional logic lacks expressive power
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