# Knowledge: Representation and Reasoning

### Yannick Pencolé Yannick.Pencole@anu.edu.au

09 Mar 2005



- 2 Logic in general models and entailment
- Propositional Logic: a very simple logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving in propositional logic



- Logic in general models and entailment
- 3 Propositional Logic: a very simple logic
- 4 Equivalence, validity, satisfiability
  - Inference rules and theorem proving in propositional logic

# What is an agent?



Agents interact with environments through sensors and actuators

# Knowledge-based agent

#### Definition

A Knowledge base is a set of sentences in a formal language.

#### Definition

Knowledge-based agent: Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented Generic knowledge-based agent:

- PERCEIVE an input
- TELL the knowledge base what it perceives (same language)
- ASK the knowledge base for an action to return (reasoning in the KB for a query, inference)
- TELL the knowledge base about this action that has been executed (update of the KB)

A good way to represent and interact with a KB is Logic.

### Knowledge-based agents

### 2 Logic in general models and entailment

- 3 Propositional Logic: a very simple logic
- 4 Equivalence, validity, satisfiability
  - Inference rules and theorem proving in propositional logic

# Logic? But what is it?

### Principle

Logics are formal languages for representing information such that conclusions can be drawn. To define a logic, we need:

- syntax: how a sentence of the logic looks like?
- semantic: what is the meaning of the sentence?
  - Given a world, is the sentence true or false?

### Example

The language of arithmetic

Syntax:

 $x + 2 \ge y$  is a sentence;

 $x^2 + y \ge y$  is not a sentence Semantic:

 $x + 2 \ge y$  is true in a world where x = 7, y = 1

 $x + 2 \ge y$  is false in a world where x = 0, y = 6

Entailment means that one sentence ( $\alpha$ ) follows from other sentences (*KB*) and is denoted:

 $K\!B \vDash \alpha$ 

We say that the Knowledge Base *KB* entails  $\alpha$  if and only if  $\alpha$  is true in all worlds where *KB* is true. Entailment is a relationship between sentences (i.e. syntax) that is based on semantics.

#### Example

Knowledge Base = { "The car is blue" "The bicycle is green or yellow" } *KB* entails sentences  $\alpha$  like:

- "The car is blue"
- true
- "The car is blue or the bicycle is yellow"

The sentence "The car is blue and the bicycle is yellow" is not entailed by KB.

# World in Logic = Model

#### Definition

We say *m* is a model of a sentence  $\alpha$  if  $\alpha$  is true in the world *m*. We denote by  $M(\alpha)$  the set of models

#### Property

*KB* entails  $\alpha$  if and only if  $M(KB) \subseteq M(\alpha)$ .

### Example



### Definition

Inference: A sentence  $\beta$  can be inferred from another sentence  $\alpha$  by some inference algorithm *i*. This is denoted:

 $\alpha \vdash_i \beta$ 

### Definition

Soundness: An inference algorithm is sound if it produces entailed sentences

#### Definition

Completeness: An inference algorithm is complete if it can derive all the sentences which it entails.

# Well-known logics

- Propositional logic
- Pirst-order logic
- Oefault logic
- Oircumscription
- Temporal logic
- Modal logic
- 0..

Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)

- Knowledge-based agents
- 2 Logic in general models and entailment
- Propositional Logic: a very simple logic
  - 4 Equivalence, validity, satisfiability
  - 5 Inference rules and theorem proving in propositional logic

# Propositional Logic: a very simple logic

We consider a set of proposition symbols  $\{p_1, p_2, \cdots\}$ .



#### Example

 $p_1, p_1 \land p_2, p_1 \lor (\neg p_2 \land p_3), (p_3 \Rightarrow p_4) \land (p_4 \Rightarrow p_3), \dots$ 

### Definition

Semantics: What is the meaning of a sentence? A model *m* is a mapping between the proposition symbols  $\{p_1, p_2, \dots\}$  and  $\{true, false\}$ . Given *m*, we have:

- $\bigcirc \neg S$  is *true* iff S is *false* ("not" S)
- 2  $S_1 \wedge S_2$  is true iff  $S_1$  is true and  $S_2$  is true ( $S_1$  "and"  $S_2$ )
- **3**  $S_1 \vee S_2$  is true iff  $S_1$  is true or  $S_2$  is true ( $S_1$  "or"  $S_2$ )
- $S_1 \Rightarrow S_2$  is true iff  $S_1$  is false or  $S_2$  is true ( $S_1$  "implies"  $S_2$ )

• i.e.  $S_1 \Rightarrow S_2$  is false iff  $S_1$  is true or  $S_2$  is false

### Example

Symbols = {abcd} Given the model  $m = \{a = true, b = false, c = true, d = false\}$ , then

- $\neg a = false$ ,
- $a \wedge \neg b = true$ ,
- $a \lor (b \land \neg c) = true$ ,
- $d \Rightarrow c = true$ ,
- $d \Rightarrow \neg c = true$ ,
- $\neg d \Rightarrow \neg c = false$ ,
- $\neg(a \lor b) \Leftrightarrow d = true$

- Knowledge-based agents
- 2 Logic in general models and entailment
- 3 Propositional Logic: a very simple logic
- Equivalence, validity, satisfiability
  - Inference rules and theorem proving in propositional logic

# Logical equivalence

#### Definition

Two sentences  $\alpha$ ,  $\beta$  are logically equivalent IF AND ONLY IF they are true in the same models.  $\alpha$  entails  $\beta$  and vice-versa.

#### Logical equivalent sentences

| $(\alpha \wedge \beta)$               | $\equiv$ | $(\beta \wedge \alpha)$ commutativity of $\wedge$                                         |
|---------------------------------------|----------|-------------------------------------------------------------------------------------------|
| $(\alpha \lor \beta)$                 | $\equiv$ | $(\beta \lor \alpha)$ commutativity of $\lor$                                             |
| $((\alpha \land \beta) \land \gamma)$ | $\equiv$ | $(\alpha \land (\beta \land \gamma))$ associativity of $\land$                            |
| $((\alpha \lor \beta) \lor \gamma)$   | $\equiv$ | $(\alpha \lor (\beta \lor \gamma))$ associativity of $\lor$                               |
| $\neg(\neg\alpha)$                    | $\equiv$ | $\alpha$ double-negation elimination                                                      |
| $(\alpha \Rightarrow \beta)$          | $\equiv$ | $(\neg \beta \Rightarrow \neg \alpha)$ contraposition                                     |
| $(\alpha \Rightarrow \beta)$          | $\equiv$ | $(\neg \alpha \lor \beta)$ implication elimination                                        |
| $(\alpha \Leftrightarrow \beta)$      | $\equiv$ | $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination |
| $\neg(\alpha \land \beta)$            | $\equiv$ | $(\neg \alpha \lor \neg \beta)$ De Morgan                                                 |
| $\neg(\alpha \lor \beta)$             | $\equiv$ | $(\neg \alpha \land \neg \beta)$ De Morgan                                                |
| $(\alpha \land (\beta \lor \gamma))$  | $\equiv$ | $((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of $\land$ over $\lor$ |
| $(\alpha \lor (\beta \land \gamma))$  | ≡        | $((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of $\lor$ over $\land$  |

# Validity and satisfiability

#### Definition

A sentence is valid if it is true in ALL models:  $a \lor \neg a, a \Rightarrow a, (a \land (a \Rightarrow b)) \Rightarrow b$ 

#### Deduction theorem

KB entails  $\alpha$  (KB  $\models \alpha$ ) iff the sentence KB  $\Rightarrow \alpha$  is valid. Validity is then connected to inference.

#### Definition



A sentence is satisfiable if it is true in SOME models. A valid sentence is satisfiable, but a satisfiable sentence may be not valid.

A sentence is unsatisfiable if it is true in NO models:

 $a \wedge \neg a$ ,  $(a \wedge b) \Leftrightarrow (\neg a \wedge c)$ 

#### Satisfiability and inference

*KB* entails  $\alpha$  (*KB*  $\models \alpha$ ) iff the sentence *KB*  $\land \neg \alpha$  is unsatisfiable.

- Knowledge-based agents
- 2 Logic in general models and entailment
- 3 Propositional Logic: a very simple logic
- 4 Equivalence, validity, satisfiability

Inference rules and theorem proving in propositional logic

(日) (日) (日) (日) (日) (日) (日)

# Inference, Theorem proving

#### Theorem proving

Given *KB*, can I prove the sentence  $\alpha$ ? Is  $\alpha$  satisfiable in *KB*? *KB*  $\vDash \alpha$ ? Is *KB*  $\land \neg \alpha$  unsatisfiable?

#### Semantics: model-checking

Model (Truth table) enumeration, we check that  $M(KB) \subseteq M(\alpha)$ . Bad news: exponential in the number of proposition symbols involved in  $KB, \alpha$ .

Some improved methods: Davis-Putnam-Logemann-Loveland (complete), min-conflicts-like (incomplete) hill-climbing (incomplete).

#### Syntax: inference rules

- Sound generation of new sentences from old.
- Proof = a sequence of inference rules that finally generate  $\alpha$

Methods: Forward-chaining, Backward chaining, Resolution

# Inference rules: examples

| Example               |                                         |
|-----------------------|-----------------------------------------|
| Modus Ponens:         |                                         |
|                       | $\frac{a,a \Rightarrow b}{b}$           |
| And-elimination:      | 5                                       |
| And Chimination.      | $a \wedge b$                            |
|                       | а                                       |
| Factoring:            | a∨a                                     |
|                       | $\frac{a + a}{a}$                       |
| Logical equivalences: |                                         |
| 0                     | $\neg a \lor \neg b$                    |
|                       | $\overline{\neg(a \wedge b)}$           |
|                       | $a \Leftrightarrow b$                   |
|                       | $a \Rightarrow b \land b \Rightarrow a$ |

#### Forward and backward chaining

Proof methods that are simple and efficient. They need a restriction on the form of *KB*.

KB = conjunction of Horn clauses

#### Definition

- A Horn clause is
  - a propositional symbol a, or
  - something like p<sub>1</sub> · · · p<sub>n</sub> ⇒ c (p<sub>i</sub> is a premisse and c the conclusion)

# Inference problem



#### Inference problem

Is the proposition Q true or not?

# Idea Forward chaining Fire any rule whose premises are satisfied in the **Knowledge Base** Add its conclusion to the Knowledge Base Management of a Working Memory (an Agenda) Repeat 1 and 2 until the proposition Q is true or no more conclusion can be derived Inference rule

$$a_1, \cdot, a_n \quad a_1 \wedge \cdots \wedge a_n \Rightarrow b$$

b

(日) (日) (日) (日) (日) (日) (日)

# Forward chaining A and B are known in the knowledge base (Rules 6 and 7). Agenda = $\{A, B\}$

### **Graphical Representation**











### **Graphical Representation**

B<sub>R7</sub>

R3



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



$$Agenda = \{A, B, L, M, P\}$$

### **Graphical Representation**





# Forward chaining The agenda is updated with the conclusion (head) of Rule 1: $Agenda = \{A, B, L, M, P, Q\}$ Q has been derived. STOP

### **Graphical Representation**



#### Theorem

The forward chaining algorithm is complete.

- Every atomic proposition that is provable in the knowledge base can be derived thanks to the algorithm.
- The result is due to the fact that:
  - The knowledge base is a conjunction of Horn clauses.

(日) (日) (日) (日) (日) (日) (日)

In the worst case of FC, every clause is fired.

#### Theorem

The forward chaining algorithm runs in linear time.

• Every rule is fired at most once.

### Problem with FC

At a given step, the choice between the firable rules is random. FC may apply rules that are *useless* for the proof of *Q*! Data-driven algorithm

#### Idea

### Backward chaining: Goal-driven algorithm

- To prove Q every premise of one rule which concludes Q has to be at least proved.
- Basically, BackwardChaining(Q) =
  - If Q is known in KB then Q is proved
  - **2** Otherwise, select a rule  $P_1 \land \cdots \land P_n \Rightarrow Q$  in KB
  - Secusirvely apply BackwardChaining( $P_1$ ), ..., BackwardChaining( $P_n$ ) to prove the premises.
  - Repeat 2-3 until Q is proved or no more rules can be selected.

## Backward chaining: example

#### **Backward chaining**

To prove Q, we need to prove P. To prove P we need to prove L and Metc. So it goes until A and B are reached. A and Bare known in KB so Q is proved.

### **Graphical Representation**



#### Theorem

The backward chaining algorithm is complete.

#### Theorem

The backward chaining algorithm runs in linear time.

- Every rule is fired at most once
- In practice, it is much less than linear in size of KB: it is linear in the size of the set of rules that are involved in the proof of the premises of Q.

## FC and BC

FC and BC are efficient algorithms but they make the asssumption that KB is a set of Horn clauses.

#### What about the general case?

Given a KB, is there an algorithm which is sound and complete?

(日) (日) (日) (日) (日) (日) (日)

#### Answer

YES, this is called a resolution algorithm based on the resolution inference rule.

## Resolution inference rule

## Resolution inference rule

$$\ell_{1} \vee \cdots \vee \ell_{i} \vee \cdots \vee \ell_{k}, \qquad \ell'_{1} \vee \cdots \vee \ell'_{j} \vee \cdots \vee \ell'_{n}$$

$$\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee \ell'_{1} \vee \cdots \vee \ell'_{j-1} \vee \ell'_{j+1} \vee \cdots \vee \ell'_{n}$$

$$\ell_{i} = a \text{ and } \ell_{j} = \neg a \text{ or } \ell_{i} = \neg a \text{ and } \ell_{j} = a$$

$$a \text{ is an atomic sentence}$$

## Example

W

## Application of the rule

The rule is applied on sentences like  $(\ell_1 \lor \cdots \lor \lor \ell_k) \land \cdots \land (\ell_m \lor \cdots \lor \lor \ell_n)$  where  $\ell_i$  are positive/negative literals. This form is called Conjunctive Normal Form (CNF for short).

#### Property

Every sentence in proposition logic is logically equivalent to a CNF sentence.

#### Example

 $(a \lor b) \Leftrightarrow (c \land d)$  is logically equivalent to the CNF  $(\neg a \lor c) \land (\neg a \lor d) \land (\neg b \lor c) \land (\neg b \lor d) \land (\neg c \lor \neg d \lor a \lor b).$ 

#### Method

- **1** Eliminate  $\Leftrightarrow$ , replacing  $\alpha \Leftrightarrow \beta$  with  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ .
- 2 Eliminate  $\Rightarrow$ , replacing  $\alpha \Rightarrow \beta$  with  $\neg \alpha \lor \beta$ .
- Move ¬ inwards using de Morgan's rules {¬(a ∧ b) ≡ (¬a ∨ ¬b), ¬(a ∨ b) ≡ (¬a ∧ ¬b)} and double negation rule (¬¬a ≡ a)

Apply distributivity law (∨ over ∧) and flatten (a ∧ b) ∨ c ≡ (a ∨ c) ∧ (b ∨ c)

#### Definition

**Proof by contradiction:** given *KB*, to prove  $\alpha$ , we prove that *KB*  $\land \neg \alpha$  is not satisfiable.

#### Example

Symbols:

- Und: "The students have understood this lecture"
- Gt: "I am a good teacher"
- *Party*: "The students went to a party last night" Knowledge base:

$$KB = (\neg Und \Leftrightarrow (\neg Gt \lor Party)) \land Und$$

Query to prove: I am a good teacher

$$\alpha = \mathbf{G}\mathbf{t}$$

#### Example

Conversion to CNF:  $KB \land \neg \alpha \rightarrow (KB \land \neg \alpha)_{CNF}$ 

$$(KB \land \neg \alpha)_{CNF} = (\neg Party \lor \neg Und) \land (\neg Gt \lor Und \lor Party) \land (\neg Und \lor Gt) \land Und \land \neg Gt$$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Example

・ロ> < 回> < 回> < 回> < 回> < 回> < 回> < 回</li>

## Example



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

## Example



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

## Example



## Example



## Example



## Example



Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic Propositional logic lacks expressive power