Knowledge: Representation and Reasoning

Yannick Pencolé
Yannick.Pencole@anu.edu.au

09 Mar 2005

Outline

(1) Knowledge-based agents
(2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic

4 Equivalence, validity, satisfiability
(5. Inference rules and theorem proving in propositional logic

Outline

(1) Knowledge-based agents
2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
(5) Inference rules and theorem proving in propositional logic

What is an agent?

Agents interact with environments through sensors and actuators

Knowledge-based agent

Definition

A Knowledge base is a set of sentences in a formal language.

Definition

Knowledge-based agent: Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
Generic knowledge-based agent:
(1) PERCEIVE an input
(2) TELL the knowledge base what it perceives (same language)
(3) ASK the knowledge base for an action to return (reasoning in the KB for a query, inference)
(4) TELL the knowledge base about this action that has been executed (update of the KB)

A good way to represent and interact with a $K B$ is Logic.

Outline

(1) Knowledge-based agents
(2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic

4 Equivalence, validity, satisfiability
(5) Inference rules and theorem proving in propositional logic

Logic? But what is it?

Principle

Logics are formal languages for representing information such that conclusions can be drawn. To define a logic, we need:
(1) syntax: how a sentence of the logic looks like?
(2) semantic: what is the meaning of the sentence?

- Given a world, is the sentence true or false?

Example

The language of arithmetic
Syntax:
$x+2 \geq y$ is a sentence;
$x 2+y \geq y$ is not a sentence
Semantic:
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

Entailment means that one sentence (α) follows from other sentences (KB) and is denoted:

$$
K B \vDash \alpha
$$

We say that the Knowledge Base $K B$ entails α if and only if α is true in all worlds where $K B$ is true. Entailment is a relationship between sentences (i.e. syntax) that is based on semantics.

Example

Knowledge Base = $\{$ "The car is blue" "The bicycle is green or yellow" $\}$ $K B$ entails sentences α like:

- "The car is blue"
- true
- "The car is blue or the bicycle is yellow"

The sentence "The car is blue and the bicycle is yellow" is not entailed by $K B$.

World in Logic = Model

Definition

We say m is a model of a sentence α if α is true in the world m. We denote by $M(\alpha)$ the set of models

Property

$K B$ entails α if and only if $M(K B) \subseteq M(\alpha)$.

Example

$$
\begin{gathered}
\mathrm{KB}=\{\text { "The car is blue", "The bicycle is green or yellow" }\} \\
\text { Possible models of KB }
\end{gathered}
$$

(car,blue)	(bicycle,blue)
(car, yellow)	(bicycle,yellow)
(car,green)	(bicycle, green)

$a=$ "The car is blue"
Possible models of sentence a

Inference

Definition

Inference: A sentence β can be inferred from another sentence α by some inference algorithm i. This is denoted:

$$
\alpha \vdash_{i} \beta
$$

Definition

Soundness: An inference algorithm is sound if it produces entailed sentences

Definition

Completeness: An inference algorithm is complete if it can derive all the sentences which it entails.

Well-known logics

(1) Propositional logic
(2) First-order logic
(3) Default logic
(4) Circumscription
(5) Temporal logic
(6) Modal logic
(3 ..
Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)

Outline

(1) Knowledge-based agents
2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic
4) Equivalence, validity, satisfiability
(5) Inference rules and theorem proving in propositional logic

Propositional Logic: a very simple logic

We consider a set of proposition symbols $\left\{p_{1}, p_{2}, \cdots\right\}$.

Definition

Syntax: What is a sentence in the propositional logic?
(1) any proposition symbol p_{i} is a sentence (atomic sentence)
(2) if S is a sentence then $\neg S$ is a sentence
(3) if S_{1} and S_{2} are sentences then $S_{1} \wedge S_{2}$ is a sentence
(4) if S_{1} and S_{2} are sentences then $S_{1} \vee S_{2}$ is a sentence
(5) if S_{1} and S_{2} are sentences then $S_{1} \Rightarrow S_{2}$ is a sentence
(6) if S_{1} and S_{2} are sentences then $S_{1} \Leftrightarrow S_{2}$ is a sentence

Example

$$
p_{1}, p_{1} \wedge p_{2}, p_{1} \vee\left(\neg p_{2} \wedge p_{3}\right),\left(p_{3} \Rightarrow p_{4}\right) \wedge\left(p_{4} \Rightarrow p_{3}\right), \ldots
$$

Propositional Logic: a very simple logic

Definition

Semantics: What is the meaning of a sentence? A model m is a mapping between the proposition symbols $\left\{p_{1}, p_{2}, \cdots\right\}$ and $\{$ true, false $\}$. Given m, we have:
(1) $\neg S$ is true iff S is false ("not" S)
(2) $S_{1} \wedge S_{2}$ is true iff S_{1} is true and S_{2} is true (S_{1} "and" S_{2})
(3) $S_{1} \vee S_{2}$ is true iff S_{1} is true or S_{2} is true (S_{1} "or" S_{2})
(4) $S_{1} \Rightarrow S_{2}$ is true iff S_{1} is false or S_{2} is true (S_{1} "implies" S_{2})

- i.e. $S_{1} \Rightarrow S_{2}$ is false iff S_{1} is true or S_{2} is false
(5) $S_{1} \Leftrightarrow S_{2}$ is true iff $S_{1} \Rightarrow S_{2}$ is true and $S_{2} \Rightarrow S_{1}$ is true (S_{1} "is equivalent to" S_{2})

Propositional Logic: a very simple logic

Example

Symbols $=\{$ abcd $\}$
Given the model $m=\{a=$ true, $b=$ false, $c=$ true,$d=$ false $\}$, then

- $\neg a=$ false,
- $a \wedge \neg b=$ true,
- $a \vee(b \wedge \neg c)=$ true,
- $d \Rightarrow c=$ true,
- $d \Rightarrow \neg c=$ true,
- $\neg d \Rightarrow \neg c=$ false,
- $\neg(a \vee b) \Leftrightarrow d=$ true

Outline

(1) Knowledge-based agents
2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic

4 Equivalence, validity, satisfiability
(5) Inference rules and theorem proving in propositional logic

Logical equivalence

Definition

Two sentences α, β are logically equivalent IF AND ONLY IF they are true in the same models. α entails β and vice-versa.

Logical equivalent sentences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Validity and satisfiability

Definition

A sentence is valid if it is true in ALL models:
$a \vee \neg a, a \Rightarrow a,(a \wedge(a \Rightarrow b)) \Rightarrow b$

Deduction theorem

$K B$ entails $\alpha(K B \vDash \alpha)$ iff the sentence $K B \Rightarrow \alpha$ is valid. Validity is then connected to inference.

Definition

(1) A sentence is satisfiable if it is true in SOME models. A valid sentence is satisfiable, but a satisfiable sentence may be not valid.
(2) A sentence is unsatisfiable if it is true in NO models:

$$
a \wedge \neg a,(a \wedge b) \Leftrightarrow(\neg a \wedge c)
$$

Satisfiability and inference

$K B$ entails $\alpha(K B \vDash \alpha)$ iff the sentence $K B \wedge \neg \alpha$ is unsatisfiable.

Outline

(1) Knowledge-based agents
(2) Logic in general models and entailment
(3) Propositional Logic: a very simple logic
4. Equivalence, validity, satisfiability
(5) Inference rules and theorem proving in propositional logic

Inference, Theorem proving

Theorem proving

Given $K B$, can I prove the sentence α ? Is α satisfiable in $K B$? $K B \vDash \alpha$? Is $K B \wedge \neg \alpha$ unsatisfiable?

Semantics: model-checking

Model (Truth table) enumeration, we check that $M(K B) \subseteq M(\alpha)$.
Bad news: exponential in the number of proposition symbols involved in $K B, \alpha$.
Some improved methods: Davis-Putnam-Logemann-Loveland (complete), min-conflicts-like (incomplete) hill-climbing (incomplete).

Syntax: inference rules

- Sound generation of new sentences from old.
- Proof = a sequence of inference rules that finally generate α

Methods: Forward-chaining, Backward chaining, Resolution

Inference rules: examples

Example

Modus Ponens:

$$
\frac{a, a \Rightarrow b}{b}
$$

And-elimination:

$$
\frac{a \wedge b}{a}
$$

Factoring:

$$
\frac{a \vee a}{a}
$$

Logical equivalences:

$$
\begin{gathered}
\frac{\neg a \vee \neg b}{\neg(a \wedge b)} \\
\frac{a \Leftrightarrow b}{a \Rightarrow b \wedge b \Rightarrow a}
\end{gathered}
$$

Forward and backward chaining methods

Forward and backward chaining
Proof methods that are simple and efficient. They need a restriction on the form of $K B$.

$$
K B=\text { conjunction of Horn clauses }
$$

Definition

A Horn clause is

- a propositional symbol a, or
- something like $p_{1} \cdots p_{n} \Rightarrow c$ (p_{i} is a premisse and c the conclusion)

Inference problem

Graphical Representation

Knowledge base

Rule $1 P \Rightarrow Q$
Rule $2 L \wedge M \Rightarrow P$
Rule $3 B \wedge L \Rightarrow M$
Rule $4 A \wedge P \Rightarrow L$
Rule $5 A \wedge B \Rightarrow L$
Rule $6 A$
Rule 7 B

Inference problem

 Is the proposition Q true or not?
Forward chaining method

Idea

Forward chaining:
(1) Fire any rule whose premises are satisfied in the Knowledge Base
(2) Add its conclusion to the Knowledge Base

- Management of a Working Memory (an Agenda)
(3) Repeat 1 and 2 until the proposition Q is true or no more conclusion can be derived

Inference rule

$$
\frac{a_{1}, \cdot, a_{n} \quad a_{1} \wedge \cdots \wedge a_{n} \Rightarrow b}{b}
$$

Forward chaining: example

Graphical Representation

Forward chaining

A and B are known in the knowledge base (Rules 6 and 7).

Agenda $=\{A, B\}$

Forward chaining: example

Graphical Representation

Forward chaining

Rule 5 can be fired since A and B are known.

$$
A \wedge B \Rightarrow L
$$

Forward chaining: example

Graphical Representation

Forward chaining

The agenda is updated with the conclusion (head) of Rule 5:

$$
\text { Agenda }=\{A, B, L\}
$$

Forward chaining: example

Graphical Representation

Forward chaining

Rule 3 can be fired since B and L are known.

$$
B \wedge L \Rightarrow M
$$

Forward chaining: example

Graphical Representation

Forward chaining

The agenda is updated with the conclusion (head) of Rule 3:

$$
\text { Agenda }=\{A, B, L, M\}
$$

Forward chaining: example

Graphical Representation

Forward chaining

Rule 2 can be fired since M and L are known.

$$
M \wedge L \Rightarrow P
$$

Forward chaining: example

Graphical Representation

Forward chaining

The agenda is updated with the conclusion (head) of Rule 2:

Agenda $=\{A, B, L, M, P\}$

Forward chaining: example

Graphical Representation

Forward chaining

Rule 1 can be fired since P is known.

$$
P \Rightarrow Q
$$

Forward chaining: example

Graphical Representation

Forward chaining

The agenda is updated with the conclusion (head) of Rule 1:

Agenda $=\{A, B, L, M, P, Q\}$
Q has been derived. STOP

Properties of the FC algorithm

Theorem

The forward chaining algorithm is complete.

- Every atomic proposition that is provable in the knowledge base can be derived thanks to the algorithm.
- The result is due to the fact that:
(1) The knowledge base is a conjunction of Horn clauses.
(2) In the worst case of FC, every clause is fired.

Theorem

The forward chaining algorithm runs in linear time.

- Every rule is fired at most once.

Backward chaining method

Problem with FC

At a given step, the choice between the firable rules is random. FC may apply rules that are useless for the proof of Q ! Data-driven algorithm

Idea

Backward chaining: Goal-driven algorithm

- To prove Q every premise of one rule which concludes Q has to be at least proved.
- Basically, BackwardChaining $(Q)=$
(1) If Q is known in $K B$ then Q is proved
(2) Otherwise, select a rule $P_{1} \wedge \cdots \wedge P_{n} \Rightarrow Q$ in KB
(3) Recusirvely apply BackwardChaining $\left(P_{1}\right), \ldots$, BackwardChaining $\left(P_{n}\right)$ to prove the premises.
(4) Repeat 2-3 until Q is proved or no more rules can be selected.

Backward chaining: example

Graphical Representation

Backward chaining

To prove Q, we need to prove P. To prove P we need to prove L and M etc. So it goes until A and B are reached. A and B are known in KB so Q is proved.

Backward chaining method (2)

Theorem

The backward chaining algorithm is complete.

Theorem

The backward chaining algorithm runs in linear time.

- Every rule is fired at most once
- In practice, it is much less than linear in size of KB: it is linear in the size of the set of rules that are involved in the proof of the premises of Q.

Propositional logic inference: resolution algorithm

FC and BC

FC and BC are efficient algorithms but they make the asssumption that KB is a set of Horn clauses.

What about the general case?
Given a KB, is there an algorithm which is sound and complete?

Answer

YES, this is called a resolution algorithm based on the resolution inference rule.

Resolution inference rule

Resolution inference rule

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{i} \vee \cdots \vee \ell_{k}, \quad \ell_{1}^{\prime} \vee \cdots \vee \ell_{j}^{\prime} \vee \cdots \vee \ell_{n}^{\prime}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee \ell_{1}^{\prime} \vee \cdots \vee \ell_{j-1}^{\prime} \vee \ell_{j+1}^{\prime} \vee \cdots \vee \ell_{n}^{\prime}}
$$

$$
\text { with } \ell_{i}=a \text { and } \ell_{j}=\neg a \text { or } \ell_{i}=\neg a \text { and } \ell_{j}=a
$$

(a is an atomic sentence)

Example

$$
\begin{gathered}
\frac{e,, \neg e}{\emptyset} \\
\frac{v \vee \boxed{\neg W} \vee \neg x, \boxed{w} \vee \neg x \vee y \vee z}{v \vee \neg x \vee y \vee z}
\end{gathered}
$$

Resolution inference rule (2): CNF

Application of the rule

The rule is applied on sentences like
$\left(\ell_{1} \vee \cdots \cdots \vee \ell_{k}\right) \wedge \cdots \wedge\left(\ell_{m} \vee \cdots \cdots \vee \ell_{n}\right)$ where ℓ_{i} are
positive/negative literals.
This form is called Conjunctive Normal Form (CNF for short).

Property

Every sentence in proposition logic is logically equivalent to a CNF sentence.

Example

$(a \vee b) \Leftrightarrow(c \wedge d)$ is logically equivalent to the CNF $(\neg a \vee c) \wedge(\neg a \vee d) \wedge(\neg b \vee c) \wedge(\neg b \vee d) \wedge(\neg c \vee \neg d \vee a \vee b)$.

Conversion to a CNF

Method

(1) Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.
(2) Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.
(3) Move \neg inwards using de Morgan's rules $\{\neg(a \wedge b) \equiv(\neg a \vee \neg b), \neg(a \vee b) \equiv(\neg a \wedge \neg b)\}$ and double negation rule $(\neg \neg a \equiv a)$
(4) Apply distributivity law $(\vee$ over $\wedge)$ and flatten $(a \wedge b) \vee c \equiv(a \vee c) \wedge(b \vee c)$

Resolution algorithm

Definition

Proof by contradiction: given $K B$, to prove α, we prove that $K B \wedge \neg \alpha$ is not satisfiable.

Example

Symbols:

- Und: "The students have understood this lecture"
- Gt: "I am a good teacher"
- Party: "The students went to a party last night" Knowledge base:

$$
K B=(\neg \text { Und } \Leftrightarrow(\neg G t \vee \text { Party })) \wedge \text { Und }
$$

Query to prove: I am a good teacher

$$
\alpha=G t
$$

Resolution algorithm

Example

Conversion to CNF: $K B \wedge \neg \alpha \rightarrow(K B \wedge \neg \alpha)_{C N F}$

$$
\begin{aligned}
(K B \wedge \neg \alpha)_{C N F}= & (\neg \text { Party } \vee \neg \text { Und }) \wedge \\
& (\neg G t \vee \text { Und } \vee \text { Party }) \wedge \\
& (\neg \text { Und } \vee G t) \wedge \\
& U n d \wedge \neg G t
\end{aligned}
$$

Example

Resolution algorithm

Example

Resolution algorithm

Example

Resolution algorithm

Example

Resolution algorithm

Example

Resolution algorithm

Example

Resolution algorithm

Example

Resolution algorithm

Example

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions
Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic Propositional logic lacks expressive power

