Knowledge: Representation and Reasoning

Yannick Pencolé
Yannick.Pencole@anu.edu.au

09 Mar 2005

e Knowledge-based agents

e Logic in general models and entailment
e Propositional Logic: a very simple logic
e Equivalence, validity, satisfiability

e Inference rules and theorem proving in propositional logic

e Knowledge-based agents

What is an agent?

sensors

percepts

actions

actuators

Agents interact with environments through sensors and
actuators

Knowledge-based agent

Definition

A Knowledge base is a set of sentences in a formal language.

Definition
Knowledge-based agent: Agents can be viewed at the knowledge level i.e.,

what they know, regardless of how implemented
Generic knowledge-based agent:

© PERCEIVE an input
@ TELL the knowledge base what it perceives (same language)

© ASK the knowledge base for an action to return (reasoning in the KB for
a query, inference)

@ TELL the knowledge base about this action that has been executed
(update of the KB)

A good way to represent and interact with a KB is Logic.

e Logic in general models and entailment

Logic? But what is it?

Logics are formal languages for representing information such
that conclusions can be drawn. To define a logic, we need:
@ syntax: how a sentence of the logic looks like?
@ semantic: what is the meaning of the sentence?
e Given a world, is the sentence true or false?

Example

The language of arithmetic

Syntax:

X + 2 >y is a sentence;

X2 +y >y is not a sentence

Semantic:

X+2>yistrue inaworldwherex =7,y =1
X+ 2 >yisfalse inaworldwherex =0,y =6

Entailment

Entailment means that one sentence («) follows from other sentences (KB)
and is denoted:

KB F «
We say that the Knowledge Base KB entails « if and only if v is true in all
worlds where KB is true . Entailment is a relationship between sentences
(i.e. syntax) that is based on semantics.

Example

Knowledge Base = { “The car is blue” “The bicycle is green or yellow” }
KB entails sentences « like:

@ “The car is blue”
@ true
@ “The car is blue or the bicycle is yellow”

The sentence “The car is blue and the bicycle is yellow” is not entailed by KB.

v

World in Logic = Model

Definition

We say m is a model of a sentence « if « is true in the world m.
We denote by M(«) the set of models

Property

KB entails « if and only if M(KB) C M(«).

Example ‘
KB= {"The car is blue", "The bicycle is green or yellow" } a= "The car is blue"
Possible models of KB Possible models of sentence a
I (car,blue) (bicycle,blue) I(car,blue) (bicycle,blue)
(car, yellow) (bicycle,yellow) (car, yellow) (bicycle,yellow)
(car,green) (bicycle, green) (car,green) (bicycle, green)

/

not a model of KB

Inference

Definition
Inference: A sentence (3 can be inferred from another sentence
« by some inference algorithm i. This is denoted:

Oél—iﬂ

Definition
Soundness: An inference algorithm is sound if it produces
entailed sentences

Definition
Completeness: An inference algorithm is complete if it can
derive all the sentences which it entails.

Well-known logics

© Propositional logic
© First-order logic
© Default logic

© Circumscription
©@ Temporal logic

@ Modal logic

Q.

Every logic has its Pros and Cons (expressivity, soundness and
completeness of inference algorithm)

9 Propositional Logic: a very simple logic

Propositional Logic: a very simple logic

We consider a set of proposition symbols {p1, pz, - - - }.

Definition
Syntax: What is a sentence in the propositional logic?

@ any proposition symbol p; is a sentence (atomic sentence)
@ if S is a sentence then =S is a sentence

© ifS; and S; are sentences then S; A S; is a sentence

© ifS; and S; are sentences then S; V' S; is a sentence

© ifS; and S; are sentences then S; = S; is a sentence

Q if S; and S; are sentences then S; & S, is a sentence

.

P1, P1 A P2, P1 V (=P2 A p3), (P3 = Pa) A (P4 = Pa), ...

Propositional Logic: a very simple logic

Definition
Semantics: What is the meaning of a sentence? A model m is a mapping

between the proposition symbols {ps, p2, - - - } and {true, false}. Given m, we
have:

@ -Sistrueiff S is false (“not” S)

Q S1 A Sz is true iff S; is true and S; is true (S; “and” Sp)

Q S1 V Sy is true iff Sy is true or S; is true (S; “or” Sy)

@ S: = S,istrue iff Sy is false or S, is true (S; “implies” S»)
@ i.e. S; = Sy s false iff Sy is true or S, is false

@ S. < Sistrueiff Sy = S, is true and S, = Sy is true (S; “is
equivalent to” Sy)

.

Propositional Logic: a very simple logic

Example

Symbols = {abcd }
Given the model m = {a = true, b = false, ¢ = true,d = false},
then

@ —a = false,

@ a A —b = true,

aV (b A-c) = true,
d = c =true,

d = —c = true,

-d = —c = false,
-(aVvb)<d=true

e Equivalence, validity, satisfiability

Logical equivalence

Two sentences «, 3 are logically equivalent IF AND ONLY IF they are true in
the same models. « entails 8 and vice-versa.)
(enB) = (BAa) commutativity of A
(evpB) = (BVa) commutativity of v
((@AB)Avy) = (aA(BA7y)) associativity of A
((evpB)Vvy) = (aVv(BVy)) associativity of vV
—(-a) = «a double-negation elimination
(e=pB) = (-B= —a) -contraposition
(a=pB) = (~aVvp) implication elimination
(aepB) = (e=pP)A(B=«a)) biconditional elimination
—-(aAB) = (-aV-pB) DeMorgan
-(aVvpB) = (-aA-B) DeMorgan
(aA(BVY) = ((anpB)V(aAy)) distributivity of A over V
(aVv(BA7Y) = ((aVvpB)A(aVy)) distributivity of vV over A
<

Validity and satisfiability

Definition
A sentence is valid if it is true in ALL models:
av-a,a=a (ar(a=hb))=b

Deduction theorem

KB entails a (KB F «) iff the sentence KB = « is valid. Validity is then
connected to inference.

Definition

@ A sentence is satisfiable if it is true in SOME models. A valid sentence
is satisfiable, but a satisfiable sentence may be not valid.

@ A sentence is unsatisfiable if it is true in NO models:
an—-a, (aAb) < (-aAc)

Satisfiability and inference

KB entails o (KB E «) iff the sentence KB A —« is unsatisfiable.

e Inference rules and theorem proving in propositional logic

Inference, Theorem proving

Theorem proving

Given KB, can | prove the sentence a? Is « satisfiable in KB? KB F a? Is
KB A —« unsatisfiable?

Semantics: model-checking

Model (Truth table) enumeration, we check that M(KB) C M(«).

Bad news: exponential in the number of proposition symbols involved in
KB, a.

Some improved methods: Davis-Putnam-Logemann-Loveland (complete),
min-conflicts-like (incomplete) hill-climbing (incomplete).

Syntax: inference rules

@ Sound generation of new sentences from old.
@ Proof = a sequence of inference rules that finally generate «

Methods: Forward-chaining, Backward chaining, Resolution

Inference rules: examples

Example
Modus Ponens:
a,a=>b
b
And-elimination:
anb
a
Factoring:
ava
a
Logical equivalences:
—-aV-b
—(aAb)
asb
a=bAb=a)

Forward and backward chaining methods

Forward and backward chaining ‘

Proof methods that are simple and efficient. They need a
restriction on the form of KB.

KB = conjunction of Horn clauses

v

A Horn clause is
@ a propositional symbol a, or

@ something like p; - - - pn = ¢ (p; is a premisse and c the
conclusion)

.

Inference problem

Graphical Representation

Knowledge base

Q
Rulel P=Q RIT
Rule2 LAM=P p

R2
Rue3 BAL=M K\M
R3

Rule4 AANP =L

R4e> L
Rule5 AAB =L
Rule 6 A R5
Rule 7 B)

ARe BR7

Inference problem
Is the proposition Q true or not?

Forward chaining method

Forward chaining:
@ Fire any rule whose premises are satisfied in the
Knowledge Base
@ Add its conclusion to the Knowledge Base
e Management of a Working Memory (an Agenda)

© Repeat 1 and 2 until the proposition Q is true or no more
conclusion can be derived

V.

Inference rule |

a;,,an ayA---Aa,=Db
b

Forward chaining: example

Graphical Representation

Q
— RIT
Forward chaining P
A and B are known in the R2 M
knowledge base (Rules 6
and 7). R3

Agenda = {A,B}

Forward chaining: example

Graphical Representation

Forward chaining

Rule 5 can be fired since
A and B are known.

ANB =1L

Forward chaining: example

Graphical Representation

Q
Forward chaining Rllt
The agenda is updated R2
with the conclusion (head) %M
of Rule 5: R3

Agenda = {A,B, L}

Forward chaining: example

Graphical Representation

Q

rit
Forward chaining i R?2
Rule 3 can be fired since %M
B and L are known.

R4¢~> L

BAL=M
R5
ARe BR7 |

Forward chaining: example

Graphical Representation

Q
Forward chaining Rllt
The agenda is updated R2
with the conclusion (head) %M
of Rule 3: R3

Agenda = {A,B,L,M}

Forward chaining: example

Graphical Representation

Q
ri}
Forward chaining %
Rule 2 can be fired since M
M and L are known. R3
R4¢>L
MAL=P
R5
AR BR7 |

Forward chaining: example

Graphical Representation

Q
Forward chaining RIITD
The agenda is updated R2
with the conclusion (head) %M
of Rule 2: e

Agenda = {A,B,L,M,P}

Forward chaining: example

Graphical Representation

Q
Forward chaining R2
Rule 1 can be fired since %M
P is known.
R3
R4¢>L
P=Q
R5
AR6 B Rr7)

Forward chaining: example

Graphical Representation

Forward chaining

Q
The agenda is updated RIITD

with the conclusion (head)
of Rule 1: %M

L R3
Agenda = {A,B,L,M,P,Q} R4
Q has been derived. R5
STOP

Properties of the FC algorithm
The forward chaining algorithm is complete.

@ Every atomic proposition that is provable in the knowledge
base can be derived thanks to the algorithm.
@ The result is due to the fact that:

@ The knowledge base is a conjunction of Horn clauses.
@ In the worst case of FC, every clause is fired.

The forward chaining algorithm runs in linear time.

@ Every rule is fired at most once.

Backward chaining method

Problem with FC

At a given step, the choice between the firable rules is random.
FC may apply rules that are useless for the proof of Q!
Data-driven algorithm
v
Backward chaining: Goal-driven algorithm
@ To prove Q every premise of one rule which concludes Q
has to be at least proved.
@ Basically, BackwardChaining(Q) =
@ If Q is known in KB then Q is proved
@ Otherwise, selectarule Py A--- AP, = Q in KB
© Recusirvely apply BackwardChaining(P,), ... ,
BackwardChaining(P,) to prove the premises.

© Repeat 2-3 until Q is proved or no more rules can be
selected.

.

Backward chaining: example

Graphical Representation

Q

rif

To prove Q, we need to P

prove P. To prove P we R2 M

need to prove L and M

etc. So it goes until A and L R3

B are reached. A and B R4

are known in KB so Q is

proved.) RS

AR BR7 |

Backward chaining method (2)

The backward chaining algorithm is complete. \
The backward chaining algorithm runs in linear time. \

@ Every rule is fired at most once

@ In practice, it is much less than linear in size of KB: it is
linear in the size of the set of rules that are involved in the
proof of the premises of Q.

Propositional logic inference: resolution algorithm

FC and BC
FC and BC are efficient algorithms but they make the
asssumption that KB is a set of Horn clauses.

What about the general case?
Given a KB, is there an algorithm which is sound and complete?

YES, this is called a resolution algorithm based on the
resolution inference rule.

Resolution inference rule

Resolution inference rule |
gl\/...\/\/...\/gk, g’l\/...\/\/...\/g’n

OV VA AV bV VAVE V- NV VYV G

with| 4 =a|and |/ = -a|or |/ = ~a|and |{; = a
(a is an atomic sentence)

v

e} [ze]
0
V VW]V =X, W]V X Vy Vz
VV-XVYVz

.

Resolution inference rule (2): CNF

Application of the rule

The rule is applied on sentences like

(b V-eenee VUIN - ANlmVeeeee V ¢n) where ¢; are
positive/negative literals.

This form is called Conjunctive Normal Form (CNF for short).

Property

Every sentence in proposition logic is logically equivalent to a
CNF sentence.

(aVb) < (c Ad)is logically equivalent to the CNF
(ravec)A(-avd)A(-bvc)A(-bvd)A(-cV-dVaVb).

Conversion to a CNF

@ Eliminate <, replacing a < § with (a =) A (8 = «).

©Q Eliminate =, replacing a = 3 with —a Vv £3.

© Move - inwards using de Morgan’s rules
{-(anb)=(-aVv-b),=(aVvb)=(-aA-b)} and double
negation rule (——a = a)

Q Apply distributivity law (v over A) and flatten
(anb)vec=(avc)A(bve)

Resolution algorithm

Proof by contradiction: given KB, to prove «, we prove that
KB A -« is not satisfiable.

Example
Symbols:
@ Und: “The students have understood this lecture”
@ Gt: “l am a good teacher”
@ Party: “The students went to a party last night”
Knowledge base:

KB = (-Und < (-Gt Vv Party)) A Und
Query to prove: | am a good teacher

o = Gt

.

Resolution algorithm

Conversion to CNF: KB A —av — (KB A —a)enr

(KB A =a))ene =(—Party vV =Und)A
(=Gt v Und Vv Party)A
(=Und v Gt)A
Und A -Gt

y

|7Partyv7Und || 4Gt v Und v Party | | —Und v Gt || Und ||th |
y

Resolution algorithm

- Party ¥ 7 Und | | Gt v Und v | Party 21Und v Gt | | Und | |"\Gt |

Resolution algorithm

Example

|1Panyv1Und || Gt v Und v Party | | 21Und v Gt

|| Und ||th |

—-Und v 7 Gt v Und

Resolution algorithm

|7Panyv7Und || Gt v Und v Party | | Und v Gt ||Und ||th |

—-Und v 7 Gt v Und

Resolution algorithm

|7Panyv7Und || Gt v Und v Party | | Und v Gt || Und

[[-ce |

—-Und v 7 Gt v Und

Resolution algorithm

TPartyVTUnd || Gt v Und v Party | | Und v Gt || Und

[[ce |

\

—-Und v 7 Gt v Und

/

—Party v 7 Gt v 7 Und

Resolution algorithm

Example

TPartyVTUnd || Gt v Und v Party | | Und v Gt || Und

[[ce |

\

—-Und v 7 Gt v Und

/

—Party v 7 Gt v 7 Und | -1Und v Und

Resolution algorithm

Example

TPartyVTUnd || Gt v Und v Party | | Und v Gt || Und ||th |

\

—-Und v 7 Gt v Und

/

—Party v 7 Gt v 7 Und ” 1Und v Und

Empty clause
I am a good teacher

v

Logical agents apply inference to a knowledge base to derive
new information and make decisions
Basic concepts of logic:

syntax: formal structure of sentences

semantics: truth of sentences wrt models

entailment: necessary truth of one sentence given another
inference: deriving sentences from other sentences
soundess: derivations produce only entailed sentences

completeness: derivations can produce all entailed
sentences

Forward, backward chaining are linear-time, complete for Horn
clauses Resolution is complete for propositional logic
Propositional logic lacks expressive power

	Knowledge-based agents
	Logic in general models and entailment
	Propositional Logic: a very simple logic
	Equivalence, validity, satisfiability
	Inference rules and theorem proving in propositional logic

