Design of indicators for the detection of time shift failures in (max, +)-linear systems

Alexandre Sahuguède*, Euriell Le Corronc, Yannick Pencolé

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

July 11, 2017

Motivations

Time shift failure detection...

- Time shift failures: unexpected delays in an assembly line, slowing down of a conveyor belt in a luggage conveyor...
- Detection: is the flow of timed observations resulting from a normal or an abnormal behavior of the system?

..in (max, +)-linear systems

- Discrete Event Systems characterized by delay and synchronization phenomena
- Graphical representation by Timed Event Graph (TEG, subclass of Timed Petri Net for which each place has exactly one upstream and one downstream transition)
- Linear modelling using idempotent semiring theory

¹F. Baccelli and al.: Synchronization and Linearity. Wiley and sons, 1992.

Outline

- (max, +)-linear systems
 - Idempotent semiring
 - Models of (max, +)-linear systems
- Detection of time shift failures
 - Problem statement
 - Time comparison between flows
 - Single Output Indicator
 - Multiple Outputs Indicator
- Conclusions and perspectives

Idempotent semiring

Definition. Idempotent semiring

Set $\mathcal D$ endowed with two inner operations

- ullet \oplus o associative, commutative, idempotent $(a \oplus a = a)$ neutral element arepsilon
- ⊗ → associative, distributes over the sum neutral element e

Kleene star operator: $\forall a \in \mathcal{D}, a^* = \bigoplus_{i>0} a^i$ with $a^0 = e$.

Example. Idempotent semiring $\mathcal{M}_{in}^{\mathsf{ax}} \llbracket \gamma, \delta \rrbracket$

Set of formal series with two commutative variables γ and δ , Boolean coefficients in \mathbb{B} , exponents in \mathbb{Z} , and for which each element is an equivalence class modulo $\gamma^* \otimes (\delta^{-1})^*$

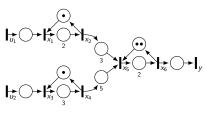
 \rightarrow Used to model (max, +)-linear systems

Models of (max, +)-linear systems

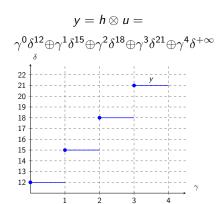
$(\mathit{max}, +)$ -linear system on $\mathcal{M}^{\mathit{ax}}_{\mathit{in}} \llbracket \gamma, \delta rbracket$

- A series s of $\mathcal{M}_{in}^{ax}[\![\gamma,\delta]\!]$: cumulative flow of events γ over time δ
- In $\gamma^n \delta^t \in s$, the n^{th} event occurs at earliest at time t

A TEG of an assembly line



$$u = \begin{pmatrix} \gamma^0 \delta^2 \oplus \gamma^1 \delta^3 \oplus \gamma^2 \delta^5 \oplus \gamma^4 \delta^{+\infty} \\ \gamma^0 \delta^2 \oplus \gamma^1 \delta^3 \oplus \gamma^2 \delta^5 \oplus \gamma^4 \delta^{+\infty} \end{pmatrix}$$



Problem statement

In a (max, +)-linear system, from observations of the system and with the knowledge of its behavior, are we able to know if a time shift failure happens in the system?

- Assume that the flow of inputs u is observed
- Assume that the functional mode of the system is known by the transfer function h
- The expected flow of output \tilde{y} is computed $(\tilde{y} = h \otimes u)$
- Assume that the real flow of output y is observed

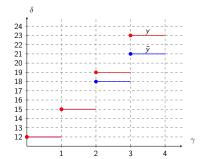
By the use of mathematical operators of $\mathcal{M}_{in}^{ax}[\![\gamma,\delta]\!]$, make a comparison between the expected flow of output \tilde{y} and the real flow of output y

Time comparison between flows

Definition. Time shift function between $y, \tilde{y} \in \mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$

$$\forall n \in \mathbb{Z}, \quad \mathcal{T}_{y,\tilde{y}}(n) = \mathcal{D}_{y}(n) - \mathcal{D}_{\tilde{y}}(n)$$

where
$$y = \bigoplus_{n \in \mathbb{Z}} \gamma^n \delta^{\mathcal{D}_y(n)}$$
 and $\tilde{y} = \bigoplus_{n \in \mathbb{Z}} \gamma^n \delta^{\mathcal{D}_{\tilde{y}}(n)}$



$$y = \gamma^{0} \delta^{12} \oplus \gamma^{1} \delta^{15} \oplus \gamma^{2} \delta^{19}$$

$$\oplus \gamma^{3} \delta^{23} \oplus \gamma^{4} \delta^{+\infty}$$

$$\tilde{y} = \gamma^{0} \delta^{12} \oplus \gamma^{1} \delta^{15} \oplus \gamma^{2} \delta^{18}$$

$$\oplus \gamma^{3} \delta^{21} \oplus \gamma^{4} \delta^{+\infty}$$

$$\mathcal{T}_{y,\tilde{y}}(0) = 12 - 12 = 0$$

$$\mathcal{T}_{y,\tilde{y}}(1) = 15 - 15 = 0$$

$$\mathcal{T}_{y,\tilde{y}}(2) = 19 - 18 = 1$$

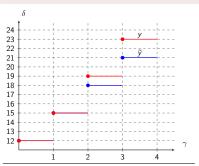
 $\mathcal{T}_{V,\tilde{V}}(3) = 23 - 21 = 2$

Time comparison between flows

Theorem [MaxPlus, 1991]² Bounds on time shift function

$$\forall n \in \mathbb{Z}, \ \mathcal{D}_{y \neq \tilde{y}}(0) \leq \mathcal{T}_{y, \tilde{y}}(n) \leq -\mathcal{D}_{\tilde{y} \neq y}(0)$$

where operator ϕ comes from the residuation theory $(y \phi \tilde{y})$ is the optimal solution to inequality $x \otimes \tilde{y} \leq y$



$$\begin{split} y \neq \tilde{y} &= \gamma^0 \delta^{\mathbf{0}} \oplus \gamma^1 \delta^3 \oplus \gamma^2 \delta^7 \\ &\oplus \gamma^3 \delta^{11} \oplus \gamma^4 \delta^{+\infty} \\ \tilde{y} \neq y &= \gamma^0 \delta^{-2} \oplus \gamma^1 \delta^2 \oplus \gamma^2 \delta^6 \\ &\oplus \gamma^3 \delta^9 \oplus \gamma^4 \delta^{+\infty} \\ &\text{So } \mathcal{D}_{y \neq \tilde{y}}(0) = 0 \\ &\text{and } -\mathcal{D}_{\tilde{y} \neq y}(0) = 2 \end{split}$$

 $^{^2}$ MaxPlus: Second order theory of min-plus linear systems and its application to discrete event systems, CDC, 1991

Single Output Indicator

Definition. Indicator of an observed MISO³ (max, +)-linear system

Let $h \in \mathcal{M}_{in}^{\mathrm{ax}} \llbracket \gamma, \delta \rrbracket^{1 \times p}$ be the transfer function of the system Let $u \in \mathcal{M}_{in}^{\mathrm{ax}} \llbracket \gamma, \delta \rrbracket^p$ and $y \in \mathcal{M}_{in}^{\mathrm{ax}} \llbracket \gamma, \delta \rrbracket$ be its observable input and output flows

$$I_{SO}(u, y) = \begin{cases} false & \text{if for } \tilde{y} = hu, \ \Sigma_{\tau}(y, \tilde{y}) = [0; 0] \\ true & \text{otherwise} \end{cases}$$

with
$$\Sigma_{ au}(y, \tilde{y}) = [\mathcal{D}_{y \phi_{\tilde{y}}}(0); -\mathcal{D}_{\tilde{y} \phi_{y}}(0)]$$

³Multiple Inputs Single Output.

Single Output Indicator

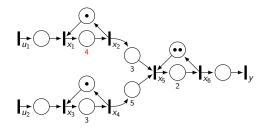
Proposition. Correctness of the I_{SO} indicator

The indicator $I_{SO}(u, y)$ is correct, that is it returns *true* only when the system is failing.

Sketch of proof

- Let y_1 and y_2 be two identical series $x_1 = y_1 \phi y_2 = y_2 \phi y_1 = y_1 \phi y_1$
- Because of properties of operators * and ϕ $x_1 = (x_1)^* = \mathbf{e} \oplus \cdots = \gamma^0 \delta^0 \oplus \cdots$
- Therefore $\Sigma_{\tau}(y_1, y_2) = [0; 0]$

Single Output Indicator



Time failure from transition x_1 to transition x_2 : delay of 2 time units

$$y \neq \tilde{y} = \gamma^0 \delta^{0} \oplus \gamma^1 \delta^3 \oplus \gamma^2 \delta^7 \oplus \gamma^3 \delta^{11} \oplus \gamma^4 \delta^{+\infty}
\tilde{y} \neq y = \gamma^0 \delta^{-2} \oplus \gamma^1 \delta^2 \oplus \gamma^2 \delta^6 \oplus \gamma^3 \delta^9 \oplus \gamma^4 \delta^{+\infty}
\Sigma_{\tau}(y, \tilde{y}) = [\mathcal{D}_{y \neq \tilde{y}}(0); -\mathcal{D}_{\tilde{y} \neq y}(0)] = [0; 2]$$

 $I_{SO}(u, y) = true \implies$ The time shift failure is detected!

Multiple Outputs Indicator

Definition. Indicator of an observed MIMO⁴ (max, +)-linear system

Let $h \in \mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket^{q \times p}$ be the transfer function the system Let $u \in \mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket^p$ and $y \in \mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket^q$ be its observable input and output flows

$$I_{\mathsf{MO}}(u,y) = \bigvee_{i=1}^q I_{\mathsf{SO}}(u,y_i)$$

where $I_{SO}(u, y_i)$ is a modified version of the single output indicator:

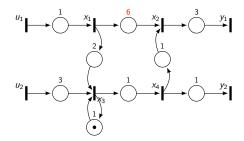
$$I_{SO}(u, y_i) = \begin{cases} false \text{ if for } \tilde{y} = hu, \ \Sigma_{\tau}(y_i, \tilde{y}_i) = [0; 0] \\ true \text{ otherwise} \end{cases}$$

Proposition. Correctness of the I_{MO} indicator

By extension, the indicator $I_{MO}(u, y)$ is correct.

⁴Multiple Inputs Multiple Outputs.

Multiple Outputs Indicator



Time failure from transition x_1 to transition x_2 : delay of 4 time units

$$\begin{split} \Sigma_{\tau}(y_1, \tilde{y}_1) &= [0; 1] \quad \Rightarrow \quad \textit{I}_{SO}(u, y_1) = \textit{true} \\ \Sigma_{\tau}(y_2, \tilde{y}_2) &= [0; 0] \quad \Rightarrow \quad \textit{I}_{SO}(u, y_2) = \textit{false} \\ \textit{I}_{MO}(u, y) &= \textit{I}_{SO}(u, y_1) \lor \textit{I}_{SO}(u, y_2) = \textit{true} \lor \textit{false} = \textit{true} \\ &\Rightarrow \text{The time shift failure is detected!} \end{split}$$

What we have done

- Propose indicator for the detection of time shift failures in (max, +)-linear systems
- For MISO and MIMO systems
- Implemented with the minmaxgd⁵ C++ library

What is next?

- Perform fault localization and identification
- Extend these results to intervals of timed process

 $^{^5}$ B. Cottenceau and al. : Data processing tool for calculation in diod, WODES, 2000

Introduction