
Diagnosing Discrete Event Systems Using
Nominal Models Only

Yannick Pencolé1, Gerald Steinbauer2, Clemens Mühlbacher2, Louise
Travé-Massuyès1

1LAAS-CNRS, Toulouse, France
2Graz University of Technology, Graz, Austria

DX-17 25-29th September 2017

Introduction

Running example

Sensor Sb

Sensor Sa
Sensor Sk

Sensor Sc

Conveyor C1
→

Conveyor C2
→

Piston P

Controller	
Cont

A conveyor 1 receives a piece of luggage (left) and moves to the right. A
sensor detects the presence of the luggage and a piston pushes it to a
conveyor 2 that delivers it on the right. Empty conveyors move back to initial
positions.

Basic assumptions

I Completeness of event types : a faulty component does not produce any
other events than the ones already in the model,

I Stable structural model : the synchronization between components
works always correctly,

I Event source is certain : any event e of a component is only generated
by this component.

Model of a component
Definition: Model of a component

The model of a component ci is an automaton Ai = (Qi ,Ei ,Ti ,q0i) where Qi
is a finite set of states, Ei is a set of events, the transition function
Ti : Qi ×Ei →Qi , and q0i is the initial state.

Left_1

Right_1

chRight1

Empty_1

chEmpty1

chLeft1

A conveyor belt :
I chRight1 : the belt starts moving

from the left to right with an item
I chEmpty1 : the item is delivered
I chLeft1 : the belt starts moving

from the right to left (no item)

Synchronization operator

Definition: Operator ‖R

The synchronized product of A1, . . . ,An with respect to a set of
synchronization rules R denoted by A1‖R · · ·‖RAn is defined as the
automaton A = (QA ,EA ,TA ,q0A

) with QA ⊆Q1×·· ·×Qn, EA = ER ,
q0A

= (q01 , . . . ,q0n), and the transition function
TA : TA ((q1, . . . ,qn),(e1, . . . ,en)) = T ε

1 (q1,e1)×·· ·×T ε
n (qn,en) with qi ∈Qi

and ei ∈ Ei ∪{ε} if all Ti (qi ,ei), i = 1, . . . ,n are defined. TA is undefined
otherwise.

Property:

The synchronized product operator ‖R with respect to a set of
synchronization rules R is commutative and associative.

Synchronization rules of the running example

r1 < chRight1,sensK >
r2 < k,pistonOut,moveOut >
r3 < endOut ,sensA,chEmpty1,chLeft2 >
r4 < a,pistonIn,moveIn >
r5 < endIn,sensB >
r6 < chRight2,sensC >
r7 < c,chEmpty2,chLeft1 >
r8 < wcc,wcb >

Example : synchronization rule r2

I k : Sensor Sk detects the presence of a baggage
I pistonOut : Controller sends the command for the piston to move out
I moveOut : Piston receives the command to move out.

System

Definition: System
A system comprises :

1 a set of components C = {c1, . . . ,cn},
2 a system description SD = ({A1, . . . ,An},R) where the Ai ’s are the

automata representing the normal behavior of the components ci ’s, and
R is a set of synchronization rules.

Running example : global behaviour

Left_1Empty_2Cont1InSa_1Sb_1Sc_1Sk_1

Right_1Empty_2Cont1InSa_1Sb_1Sc_1Sk_2

chRight1_sensK

Right_1Empty_2Cont2Moving_outSa_1Sb_1Sc_1Sk_1

pistonOut_moveOut_k -> {pistonOut_k}

Empty_1Left_2Cont2OutSa_2Sb_1Sc_1Sk_1

chEmpty1_chLeft2_endOut_sensA

Empty_1Left_2Cont1Moving_inSa_1Sb_1Sc_1Sk_1

pistonIn_moveIn_a -> {pistonIn_a}

Empty_1Right_2Cont2OutSa_2Sb_1Sc_2Sk_1

chRight2_sensC

Empty_1Left_2Cont1InSa_1Sb_2Sc_1Sk_1

endIn_sensB

Empty_1Right_2Cont1Moving_inSa_1Sb_1Sc_2Sk_1

chRight2_sensC pistonIn_moveIn_a -> {pistonIn_a}

Empty_1Left_2Cont1InSa_1Sb_3Sc_1Sk_1

 b

Empty_1Right_2Cont1InSa_1Sb_2Sc_2Sk_1

chRight2_sensC endIn_sensB

Empty_1Right_2Cont1InSa_1Sb_3Sc_2Sk_1

chRight2_sensC b

Empty_1Right_2Cont1InSa_1Sb_1Sc_3Sk_1

wcb_wcc

chLeft1_chEmpty2_c -> {c}

Observation mask

Definition: Observation mask

The observation mask obs : ER →∏
n
i=1(EOi

∪{ε}) maps a synchronized
event to a synchronized observable event or to (ε, . . . ,ε) :

obs((e1, . . . ,en)) = (obs1(e1), . . . ,obsn(en)).

Consistency

Definition: [

Consistency] A system description SD is consistent with a sequence of
observations OBS if obs−1(OBS)∩L (SD) 6= /0.

Universal behaviour

Definition: Universal behavior
The universal behavior Ubi of a component ci is an automaton that
represents the language of the Kleene closure of the component’s events Ei .

Diagnosis

Definition: [

Diagnosis] A diagnosis for the diagnosis problem (SD,C,OBS) is a set
∆⊆C such that ‖{SD\{Aci |ci ∈∆} ∪{Ubci |ci ∈∆}} is consistent with OBS.

Definition: Minimal diagnosis

A diagnosis ∆ is minimal if there is no strict subset ∆′ ⊂∆ that is a
diagnosis.

Conflicts/Minimal conflicts

Definition: Conflict
A conflict set is a set of components Γ := {c1, . . . ,ck} ⊆ C such that
‖{AΓ∪{Ubi |ci ∈ C\Γ}} is inconsistent with OBS.

Definition: A
conflict Γ is minimal if no subset Γ′ ⊂ Γ is a conflict.

Minimal conflicts and algorithm

Property: Link between diagnosis and conflicts

Let MCS be the set of minimal conflicts, a diagnosis ∆ is minimal iff ∆ is a
minimal hitting set of MCS.

Conclusions

Perspectives

