Diagnosis of supervision patterns on bounded labeled Petri nets by Model Checking

Yannick Pencolé¹, Audine Subias^{1,2} ¹LAAS-CNRS, Toulouse, France ²INSA de Toulouse, France

DX-17 25-29th September 2017

- Diagnosis of discrete event systems
- Formalism : Petri nets
- Extension of the fault diagnosis problem to the pattern diagnosis problem (more general)
- Proposed algorithm : off-line diagnosis that takes advantage and efficiency of a Model-Checking tool

Background

ዾዾら

- Fault Diagnosis of DES : finding whether a set of fault events have effectively occurred based on a fault model and a sequence of oberved events
- Lot of work on this topic (diagnosis, diagnosability analysis)
- More recently, extension of the problem to supervision pattern [Jeron, Cordier et al. 2006] (automaton-based)
- Separate the model from the diagnosis objectives
- Define and implement a generic and automatic method
- Consider the Petri net framework
- Our recent work : bring the problem to Petri nets and analyse the diagnosability of patterns by Model-Checking [Gougam,Pencolé,Subias2017]
- This paper : provide a first diagnostic algorithm for patterns of Petri nets based on a Model-checking tool

Definition: PN

A Petri Net (PN for short) is a 3-uple $N = \langle P, T, A \rangle$ where :

- P is a finite set of nodes called places;
- *T* is a finite set of nodes called transitions and $P \cap T = \emptyset$;
- $A \subseteq (P \times T) \cup (T \times P)$ is the set of arcs between places and transitions.

Definition: LPN

A Labeled Petri Net (LPN for short) is a 5-uple $N = \langle P, T, A, \ell, \Sigma \rangle$ where :

- P is a finite set of nodes called places;
- ▶ *T* is a finite set of nodes called transitions and $P \cap T = \emptyset$;
- $A \subseteq (P \times T) \cup (T \times P)$ is the set of arcs between places and transitions.
- Σ is a finite set of transition labels (events);
- $\ell: T \to \Sigma$ is the transition labeling function;

Definition: LPPN

- A Labeled Prioritized Petri Net (LPPN for short) is a 6-uple $N = \langle P, T, A, \succ, \ell, \Sigma \rangle$ where :
 - P is a finite set of nodes called places;
 - ▶ *T* is a finite set of nodes called transitions and $P \cap T = \emptyset$;
 - $A \subseteq (P \times T) \cup (T \times P)$ is the set of arcs between places and transitions.
 - ▶ > priority relation, $(t_1 > t_2)$ means that if t_1 and t_2 are both enabled then only t_1 is firable.
 - Σ is a finite set of transition labels (events);
 - $\ell: T \to \Sigma$ is the transition labeling function ;

L-type Labeled Prioritized Petri Net (LLPPN)

Definition: LLPPN

An L-type Labeled Prioritized Petri Net (LLPPN for short) is a 7-uple $N = \langle P, T, A, \succ, \ell, \Sigma, Q \rangle$ where :

- P is a finite set of nodes called places;
- ▶ *T* is a finite set of nodes called transitions and $P \cap T = \emptyset$;
- $A \subseteq (P \times T) \cup (T \times P)$ is the set of arcs between places and transitions.
- ▶ > priority relation, $(t_1 > t_2)$ means that if t_1 and t_2 are both enabled then only t_1 is firable.
- Σ is a finite set of transition labels (events);
- $\ell: T \to \Sigma$ is the transition labeling function;
- Q is the set of final markings.

System example

- ► Σ_o = {c, d}
- $\Sigma_u = \{a, b\}$
- Transition b has priority to Transition a

- ► (*p*₀*p*₁) : ε
- $(p_0p_1) \xrightarrow{b} (p_0p_3) : b$

$$\blacktriangleright (p_0p_1) \xrightarrow{b} (p_0p_3) \xrightarrow{a} (p_1p_3) : ba$$

$$(p_0p_1) \xrightarrow{b} (p_0p_3) \xrightarrow{a} (p_1p_3) \xrightarrow{d} (p_4,p_5) : bad$$

▶ ...

Full set of runs : language $\mathscr{L}(\Theta)$.

Pattern

Definition: Pattern

A pattern Ω is an LLPPN

$$\Omega = \langle \boldsymbol{P}, \boldsymbol{T}, \boldsymbol{A}, \succ, \ell, \boldsymbol{\Sigma}, \boldsymbol{Q}, \boldsymbol{M}_{0} \rangle$$

such that

- $M_0 \notin Q$ i.e. the language of the pattern does not contain ε ;
- 2 from any reachable marking *M* of *R*(Ω, *M*₀) there exists a sequence of transitions *r* ∈ *T*^{*} such that *M* − *r* → *M* and *M* ∈ *Q*;
- from any reachable marking *M* of $R(\Omega, M_0)$ there is no event $e \in \Sigma$ that labels more than one firable transition;

● $\succ = \emptyset$, (no priority).

Pattern : *k* occurrences of an event *e*

Pattern : n occurrences of events (no fixed order)

- ▶ Pattern 1 : *n* occurrences (*n* multiple faults) : $Q = \{\{\forall p_{2i}, M(p_{2i}) = 1\}\}$
- Pattern 2 : $0 < r \le n$ occurrences among the $n : Q = \{\{\sum_{p_{2i}} M(p_{2i}) = r\}\}$

Pattern : two occurrences of three consecutive requests *Req*₁ without occurrences of *Req*₂

Implement a diagnosis function that takes as input a sequence of observations and returns one of the following three results :

- The pattern's behavior occurred during the system's evolution.
- Interpretation of the pattern's behavior did not occur during the system's evolution.
- It is possible that the behavior described by the pattern occurred during the evolution of the system.

Matching of a pattern

Definition: Sequence matching

A sequence $\rho \in \Sigma^*$ matches another sequence $\sigma \in \Sigma^*$, denoted $\rho \supseteq \sigma$, if :

- σ is empty ($\sigma = \varepsilon$); or
- σ = s.σ₁, s ∈ Σ, σ₁ ∈ Σ* and there exist two sequences ρ₀, ρ₁ ∈ Σ* such that :

1
$$\rho = \rho_0 s \rho_1;$$

2 $\rho_1 \supseteq \sigma_1.$

A sequence ρ matches a sequence σ if ρ contains any event of the sequence σ and these events occur in the same order as in σ .

Definition: Matching of a pattern

A sequence $\rho \in \Sigma^*$ matches a pattern Ω ($\rho \supseteq \Omega$) if there exists at least a sequence σ of $\mathscr{L}(\Omega)$ that is matched by ρ ($\rho \supseteq \sigma$).

Matching of a pattern

. .

Diagnosis of a pattern

For a given pattern $\Omega,$ the diagnosis problem consists in defining an Ω -diagnoser function

Definition: Ω-diagnoser

Let Θ be the model of a system based on the set of events $\Sigma = \Sigma_u \cup \Sigma_o$, an Ω -diagnoser is a function

$$\Delta_{\Omega}: \Sigma_{\alpha}^* \to \{\Omega - certain, \Omega - safe, \Omega - ambiguous\}$$

such that :

ዾዾና

- $\Delta_{\Omega}(\sigma) = \Omega$ -*certain* if for any run $\rho \in \mathscr{L}(\Theta)$ that is consistent with σ (i.e. $\mathscr{P}_{\Sigma \to \Sigma_{\sigma}}(\rho) = \sigma$), $\rho \supseteq \Omega$;
- $\Delta_{\Omega}(\sigma) = \Omega$ -safe if for any run $\rho \in \mathscr{L}(\Theta)$ that is consistent with σ , $\rho \not\supseteq \Omega$;
- $\Delta_{\Omega}(\sigma) = \Omega ambiguous$ otherwise.

Considering now a set of patterns $\Omega_1, \ldots, \Omega_n$, the diagnoser function of a system can be defined as

Definition: Diagnoser

 $\begin{array}{l} \Delta: \Sigma_{\sigma}^{*} \rightarrow \prod_{i=1}^{n} \{\Omega_{i} - \textit{certain}, \Omega_{i} - \textit{safe}, \Omega_{i} - \textit{ambiguous}\} \text{ such that } \\ \Delta(\sigma) = (\Delta_{\Omega_{1}}(\sigma), \ldots, \Delta_{\Omega_{n}}(\sigma)). \end{array}$

Combination of the system and the pattern

 $\label{eq:combination} \mbox{Combination operator}: \Theta_\Omega = \Theta \ltimes \Omega.$

Theorem: Pattern system product

Let Θ be the LLPPN of a system over the alphabet Σ and Ω be the LLPPN of a pattern :

 $\mathscr{L}(\Theta \ltimes \Omega) = \{ \rho \in \mathscr{L}(\Theta) : \rho \supseteq \Omega \}.$

Any run of the system Θ will lead to a marking in Θ_{Ω} . Any run of the system Θ that matches Ω will lead to an accepting marking for Ω .

Combination of the pattern-system and the observations

- **1** observations : sequence of events $\sigma = o_1 o_2 o_3 o_1 o_4 \dots$
- transform the sequence into a LLPPN O (a sequence of place/transitions), final place pobs.
- Synchronise the transitions of O with the transitions of Θ_{Ω} with the same events.
- Sesulting LLPPN : $\Theta_{\Omega} || O$

Theorem: observation synchronisation

Any run of Θ that generates σ is a run of $\Theta_{\Omega} || O$ that leads to a marking M such that $M(p_{obs}) = 1$.

- Representation of a system (set of states S, initial state S₀) by a Kripke structure : M
- Property to check : logical formula φ (in LTL,CTL,etc)
- Checking an LTL property,
 - Do we have for any path π from S_0

$$M, \pi \models \varphi$$
?

- In practice a model-checker returns :
 - TRUE if φ is checked,
 - FALSE + counter-example (a system run where φ does not hold)

Definition: Classical Kripke Structure

A Kripke structure over a set of atomic propositions *P* is a state machine $M = (S, S_0, R, L)$ such that :

- S is a set of states;
- 2 $S_0 \subseteq S$ is a set of initial states;
- ③ $R \subseteq S \times S$ is a total ordered transition relation, for any state *s* ∈ *S*, there exists at least a state *s*' ∈ *S* such that R(s, s') is true;
- $L: S \rightarrow 2^{P}$ is a labelling function : each state is labelled with the set of atomic propositions that are true in this state.

Propositions $P = \{p_1, p_2, p_3\}$ Initial state s_1

Example

AAS CNRS

Formulas φ (Linear Temporal Logic (LTL))

- $\bigcirc p_2$: in any path, in any successor of s_1 , p_2 is true? TRUE.
- $\Diamond p_3$: in any path, is there a state with property p_3 ? FALSE. Counterexample: $s_1 \rightarrow s_2 \rightarrow s_2 \dots$
- ▶ $\Box p_2$: in any path, is p_2 true in any state ? FALSE. Counterexample : $s_1 \rightarrow s_3 \rightarrow s_4$ et $M, s_4 \not\models p_2$.
- □(p₁ ⇒ ◊p₂) : in any path, is p₁ ⇒ ◊p₂ true in any state ? TRUE. (p₁ ⇒ ◊p₂ means p₂ will be eventually true if p₁ is true).

TINA : Model-checking tools for (Time) Petri Net

- TINA : (Time) Petri Net Analyser
- Simulation, Invariance Analysis, Model-Checking
- Convert the Petri Net into an Enriched Kripke Structure
- Use the State/Event LTL logic as an input language to write ψ

A formula ψ is a SE-LTL formula if it is a universally quantified formula

$$\psi ::= \forall \varphi$$

such that

$$\begin{aligned} \varphi & ::= & r \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \varphi \mathsf{U} \varphi \\ r & ::= & e \mid e \triangle e \\ e & ::= & p \mid a \mid c \mid e \bigtriangledown e \end{aligned}$$

with *p* a place symbol, *a* a transition symbol, $c \in \mathbb{N}$, $\Delta \in \{=, <, >, \le, \ge\}$ and $\nabla \in \{+, -, *, /\}$. The operators \bigcirc (next), \Box (always), \Diamond (eventually) and **U** (until) have their usual LTL semantics.

Diagnosis by model checking

- Given *M* a marking of $O \parallel \Theta_{\Omega}$
- $M_{|\Omega}$ restriction of M to Ω
- ► *M*_{|O} restriction of *M* to *O*

Here are the questions :

Is it always true (□) that if the system generates σ (M_{|O} ∈ Q_O) then (⇒) it matches the pattern (M_{|Ω} ∈ Q_Ω) :

$$\varphi_{CERTAIN} \equiv \Box((M_{|O} \in Q_O) \Rightarrow (M_{|\Omega} \in Q_\Omega))$$

Is it always true (□) that if the system generates σ (M_{|O} ∈ Q_O) then (⇒) it does not match the pattern (M_{|Ω} ∉ Q_Ω) :

$$\varphi_{SAFE} \equiv \Box((M_{|O} \in Q_O) \Rightarrow (M_{|\Omega}
ot\in Q_\Omega))$$

Case study : conveyors/lift

LAAS CNRS

Monitoring of the occurrence of multiple events

$$\varphi^3_{CERTAIN} = \Box((p_{obs} = 1) \Rightarrow (p_{21} = 1 \land p_{22} = 1)).$$

Results

Pattern : two occurrences of three consecutive requests *Req*₁ without occurrences of *Req*₂

Some results

LAAS CNRS

Scenario	Size	nb(<i>Req</i> 1)	counter	<i>пS</i> (Г)	$nT(\Gamma)$	Time (ms)
S_1	20	5	1	92 ´	107	11 1
S_2	200	5	1	1028	1223	11
S_3	2000	5	1	10388	12383	235
S_4	5000	5	1	25988	30983	1105
S_5	2000	2	10	107534	128379	1993
S_6	2000	5	10	10388	12383	228
S_7	2000	10	10	10388	12383	239
S_8	2000	2	10	7201	8400	156
S_9	3500	10	10	17009	20266	577
S_{10}	1000	5	2	907987	2155290	15745
S_{11}	1000	5	10	1201381	2877901	21018
S_{12}	2000	10	8	2737559	6482932	65066
S_{13}	2000	20	8	5999626	14245740	244379
S_{14}	1750	20	8	4812356	11444801	148629

- Generic framework for pattern modeling and model checking technics
- Translation of the diagnosis problem into a model-checking problem

- Extend the expressivity of patterns
- Time Petri nets

