
Diagnosis of supervision patterns on bounded
labeled Petri nets by Model Checking

Yannick Pencolé1, Audine Subias1,2

1LAAS-CNRS, Toulouse, France
2INSA de Toulouse, France

DX-17 25-29th September 2017

Introduction

I Diagnosis of discrete event systems
I Formalism : Petri nets
I Extension of the fault diagnosis problem to the pattern diagnosis

problem (more general)
I Proposed algorithm : off-line diagnosis that takes advantage and

efficiency of a Model-Checking tool

Background

I Fault Diagnosis of DES : finding whether a set of fault events have
effectively occurred based on a fault model and a sequence of oberved
events

I Lot of work on this topic (diagnosis, diagnosability analysis)
I More recently, extension of the problem to supervision pattern [Jeron,

Cordier et al. 2006] (automaton-based)
I Separate the model from the diagnosis objectives
I Define and implement a generic and automatic method
I Consider the Petri net framework
I Our recent work : bring the problem to Petri nets and analyse the

diagnosability of patterns by Model-Checking
[Gougam,Pencolé,Subias2017]

I This paper : provide a first diagnostic algorithm for patterns of Petri nets
based on a Model-checking tool

Petri Net (PN)

Definition: PN
A Petri Net (PN for short) is a 3-uple N = 〈P,T ,A〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T)∪ (T ×P) is the set of arcs between places and transitions.

Labeled Petri Net (LPN)

Definition: LPN
A Labeled Petri Net (LPN for short) is a 5-uple N = 〈P,T ,A, `,Σ〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T)∪ (T ×P) is the set of arcs between places and transitions.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;

Labeled Prioritized Petri Net (LPPN)

Definition: LPPN
A Labeled Prioritized Petri Net (LPPN for short) is a 6-uple
N = 〈P,T ,A,�, `,Σ〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T)∪ (T ×P) is the set of arcs between places and transitions.
I � priority relation, (t1 � t2) means that if t1 and t2 are both enabled then

only t1 is firable.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;

L-type Labeled Prioritized Petri Net (LLPPN)

Definition: LLPPN
An L-type Labeled Prioritized Petri Net (LLPPN for short) is a 7-uple
N = 〈P,T ,A,�, `,Σ,Q〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T)∪ (T ×P) is the set of arcs between places and transitions.
I � priority relation, (t1 � t2) means that if t1 and t2 are both enabled then

only t1 is firable.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;
I Q is the set of final markings.

System example

p0

p1

p2

p3

p4

p5

p8

p6

p7

a
b

e e

d

d

c
d

f

d

I Σo = {c,d}
I Σu = {a,b}
I Transition b

has priority to
Transition a

Example : some system runs

I (p0p1) : ε

I (p0p1)
b−→ (p0p3) : b

I (p0p1)
b−→ (p0p3)

a−→ (p1p3) : ba

I (p0p1)
b−→ (p0p3)

a−→ (p1p3)
d−→ (p4,p5) : bad

I . . .

Full set of runs : language L (Θ).

Pattern

Definition: Pattern

A pattern Ω is an LLPPN

Ω = 〈P,T ,A,�, `,Σ,Q,M0〉

such that
1 M0 6∈Q i.e. the language of the pattern does not contain ε ;
2 from any reachable marking M of R(Ω,M0) there exists a sequence of

transitions r ∈ T ∗ such that M r−→M ′ and M ′ ∈Q ;
3 from any reachable marking M of R(Ω,M0) there is no event e ∈ Σ that

labels more than one firable transition ;
4 ∀M ∈Q,∀M ′ : (∃t ∈ T ,M t−→M ′)⇒M ′ ∈Q ;
5 �= ∅, (no priority).

Pattern : k occurrences of an event e

p1 t1

e

p2

k•

Q = {{kp2}}

Pattern : n occurrences of events (no fixed order)

p11 p12 · · · p1n

t1 : e1 t2 : e2 · · · tn : en

p21 p22 · · · p2n

I Pattern 1 : n occurrences (n multiple faults) : Q = {{∀p2i ,M(p2i) = 1}}
I Pattern 2 : 0 < r ≤ n occurrences among the n : Q = {{∑p2i

M(p2i) = r}}

Pattern : two occurrences of three consecutive
requests Req1 without occurrences of Req2

p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

Q = {{2p4}}

Pattern Diagnosis - Problem statement

Implement a diagnosis function that takes as input a sequence of
observations and returns one of the following three results :

1 The pattern’s behavior occurred during the system’s evolution.
2 The pattern’s behavior did not occur during the system’s evolution.
3 It is possible that the behavior described by the pattern occurred during

the evolution of the system.

Matching of a pattern

Definition: Sequence matching

A sequence ρ ∈ Σ∗ matches another sequence σ ∈ Σ∗, denoted ρ c σ , if :

I σ is empty (σ = ε) ; or
I σ = s.σ1,s ∈ Σ,σ1 ∈ Σ∗ and there exist two sequences ρ0,ρ1 ∈ Σ∗ such

that :
1 ρ = ρ0sρ1 ;
2 ρ1 c σ1.

A sequence ρ matches a sequence σ if ρ contains any event of the
sequence σ and these events occur in the same order as in σ .

Definition: Matching of a pattern

A sequence ρ ∈ Σ∗ matches a pattern Ω (ρ c Ω) if there exists at least a
sequence σ of L (Ω) that is matched by ρ (ρ c σ).

Matching of a pattern

ρ
b c a a b c a c

σ
a c c

ρ0 s0 ρ1

s0 σ1

ρ
b c a a b c a c

σ
a c c

ρ10 s1 ρ2

s1 σ2

ρ
b c a a b c a c

σ
a c c

ρ20 s2

s2 σ3 = ε

Diagnosis of a pattern

For a given pattern Ω, the diagnosis problem consists in defining an
Ω-diagnoser function

Definition: Ω-diagnoser

Let Θ be the model of a system based on the set of events Σ = Σu ∪Σo, an
Ω-diagnoser is a function

∆Ω : Σ∗o→{Ω−certain,Ω−safe,Ω−ambiguous}

such that :

I ∆Ω(σ) = Ω−certain if for any run ρ ∈L (Θ) that is consistent with σ (i.e.
PΣ→Σo (ρ) = σ), ρ c Ω ;

I ∆Ω(σ) = Ω−safe if for any run ρ ∈L (Θ) that is consistent with σ ,
ρ 6c Ω ;

I ∆Ω(σ) = Ω−ambiguous otherwise.

Diagnosis of a pattern set

Considering now a set of patterns Ω1, . . . ,Ωn, the diagnoser function of a
system can be defined as

Definition: Diagnoser

∆ : Σ∗o→∏
n
i=1{Ωi−certain,Ωi−safe,Ωi−ambiguous} such that

∆(σ) = (∆Ω1(σ), . . . ,∆Ωn (σ)).

Combination of the system and the pattern

pp1

pp2

pp3

a

e

p0

p1

p2

p3

p4

p5

p8

p6

p7

pp1 pp2 pp3
a e

e

a
b

e e

d

d

c
d

f

d

Combination of the system and the pattern (2)

Combination operator : ΘΩ = ΘnΩ.

Theorem: Pattern system product

Let Θ be the LLPPN of a system over the alphabet Σ and Ω be the LLPPN of
a pattern :

L (ΘnΩ) = {ρ ∈L (Θ) : ρ c Ω}.

Any run of the system Θ will lead to a marking in ΘΩ. Any run of the system
Θ that matches Ω will lead to an accepting marking for Ω.

Combination of the pattern-system and the
observations

1 observations : sequence of events σ = o1o2o3o1o4
2 transform the sequence into a LLPPN O (a sequence of

place/transitions), final place pobs.
3 synchronise the transitions of O with the transitions of ΘΩ with the same

events.
4 Resulting LLPPN : ΘΩ||O

Theorem: observation synchronisation

Any run of Θ that generates σ is a run of ΘΩ||O that leads to a marking M
such that M(pobs) = 1.

Model checking : principle

I Representation of a system (set of states S, initial state S0) by a Kripke
structure : M

I Property to check : logical formula ϕ (in LTL,CTL,etc)
I Checking an LTL property,

Do we have for any path π from S0

M,π |= ϕ?

I In practice a model-checker returns :
TRUE if ϕ is checked,
FALSE + counter-example (a system run where ϕ does not hold)

Kripke structure

Definition: Classical Kripke Structure

A Kripke structure over a set of atomic propositions P is a state machine
M = (S,S0,R,L) such that :

1 S is a set of states ;
2 S0 ⊆ S is a set of initial states ;
3 R ⊆ S×S is a total ordered transition relation, for any state s ∈ S, there

exists at least a state s′ ∈ S such that R(s,s′) is true ;
4 L : S→ 2P is a labelling function : each state is labelled with the set of

atomic propositions that are true in this state.

Some checkings

Propositions P = {p1,p2,p3} Initial state s1

s1[p1,p2] s2[p2]

s3[p2,p3] s4[p3]

Example

Formulas ϕ (Linear Temporal Logic (LTL))
I ©p2 : in any path, in any successor of s1, p2 is true ? TRUE.
I ♦p3 : in any path, is there a state with property p3 ? FALSE. Counterexample :

s1→ s2→ s2
I �p2 : in any path, is p2 true in any state ? FALSE. Counterexample :

s1→ s3→ s4 et M,s4 6|= p2.
I �(p1⇒ ♦p2) : in any path, is p1⇒ ♦p2 true in any state ? TRUE. (p1⇒ ♦p2

means p2 will be eventually true if p1 is true).

TINA : Model-checking tools for (Time) Petri Net

I TINA : (Time) Petri Net Analyser
I Simulation, Invariance Analysis, Model-Checking
I Convert the Petri Net into an Enriched Kripke Structure
I Use the State/Event LTL logic as an input language to write ψ

SE-LTL formulas

A formula ψ is a SE-LTL formula if it is a universally quantified formula

ψ ::= ∀ϕ

such that

ϕ ::= r | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ©ϕ | �ϕ | ♦ϕ | ϕUϕ

r ::= e | e4e
e ::= p | a | c | e5e

with p a place symbol, a a transition symbol, c ∈ N, 4∈ {=,<,>,≤,≥} and
5∈ {+,−,∗,/}. The operators© (next), � (always), ♦ (eventually) and U
(until) have their usual LTL semantics.

Diagnosis by model checking

I Given M a marking of O ‖ΘΩ

I M|Ω restriction of M to Ω

I M|O restriction of M to O

Here are the questions :
1 Is it always true (�) that if the system generates σ (M|O ∈QO) then (⇒)

it matches the pattern (M|Ω ∈QΩ) :

ϕCERTAIN ≡�((M|O ∈QO)⇒ (M|Ω ∈QΩ))

2 Is it always true (�) that if the system generates σ (M|O ∈QO) then (⇒)
it does not match the pattern (M|Ω 6∈QΩ) :

ϕSAFE ≡�((M|O ∈QO)⇒ (M|Ω 6∈QΩ))

Case study : conveyors/lift
Prod1

Prod1Avail1

Push1

Pr1

P1

EP1

Prod2

Prod2Avail2

Push2

Pr2

P2

EP2

WaitUp

Up

Down

WaitDown

U

DWait1

PushReq1

LeftReq1

RightReq1

Req1

EPReq1

ELReq1

ERReq1

Wait2

PushReq2

RightReq2

LeftReq2

Req2

EPReq2

ERReq2

ELReq2

Monitoring of the occurrence of multiple events

p11 p12

t1 : Req1 t2 : Req2

p21 p22

ϕ
3
CERTAIN =�((pobs = 1)⇒ (p21 = 1∧p22 = 1)).

Results

Obs. ϕ3
CERT . ? ϕ3

SAFE ?
Pr1 F T
Pr2 F T
D F T
U F F
D F F

ELReq2 F F
ERReq2 F F
ELReq1 T F
ERReq1 T F

U T F

Pattern : two occurrences of three consecutive
requests Req1 without occurrences of Req2

p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

Some results

Scenario Size nb(Req1) counter nS(Γ) nT (Γ) Time (ms) Result
S1 20 5 1 92 107 11 safe
S2 200 5 1 1028 1223 11 safe
S3 2000 5 1 10388 12383 235 safe
S4 5000 5 1 25988 30983 1105 safe
S5 2000 2 10 107534 128379 1993 ambiguous
S6 2000 5 10 10388 12383 228 safe
S7 2000 10 10 10388 12383 239 safe
S8 2000 2 10 7201 8400 156 certain
S9 3500 10 10 17009 20266 577 certain
S10 1000 5 2 907987 2155290 15745 certain
S11 1000 5 10 1201381 2877901 21018 certain
S12 2000 10 8 2737559 6482932 65066 certain
S13 2000 20 8 5999626 14245740 244379 certain
S14 1750 20 8 4812356 11444801 148629 safe

Conclusion/Perspectives

I Generic framework for pattern modeling and model checking technics
I Translation of the diagnosis problem into a model-checking problem

I Extend the expressivity of patterns
I Time Petri nets

