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Introduction

I Diagnosis of discrete event systems
I Formalism : Petri nets
I Extension of the fault diagnosis problem to the pattern diagnosis

problem (more general)
I Proposed algorithm : off-line diagnosis that takes advantage and

efficiency of a Model-Checking tool



Background

I Fault Diagnosis of DES : finding whether a set of fault events have
effectively occurred based on a fault model and a sequence of oberved
events

I Lot of work on this topic (diagnosis, diagnosability analysis)
I More recently, extension of the problem to supervision pattern [Jeron,

Cordier et al. 2006] (automaton-based)
I Separate the model from the diagnosis objectives
I Define and implement a generic and automatic method
I Consider the Petri net framework
I Our recent work : bring the problem to Petri nets and analyse the

diagnosability of patterns by Model-Checking
[Gougam,Pencolé,Subias2017]

I This paper : provide a first diagnostic algorithm for patterns of Petri nets
based on a Model-checking tool



Petri Net (PN)

Definition: PN
A Petri Net (PN for short) is a 3-uple N = 〈P,T ,A〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T )∪ (T ×P) is the set of arcs between places and transitions.



Labeled Petri Net (LPN)

Definition: LPN
A Labeled Petri Net (LPN for short) is a 5-uple N = 〈P,T ,A, `,Σ〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T )∪ (T ×P) is the set of arcs between places and transitions.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;



Labeled Prioritized Petri Net (LPPN)

Definition: LPPN
A Labeled Prioritized Petri Net (LPPN for short) is a 6-uple
N = 〈P,T ,A,�, `,Σ〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T )∪ (T ×P) is the set of arcs between places and transitions.
I � priority relation, (t1 � t2) means that if t1 and t2 are both enabled then

only t1 is firable.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;



L-type Labeled Prioritized Petri Net (LLPPN)

Definition: LLPPN
An L-type Labeled Prioritized Petri Net (LLPPN for short) is a 7-uple
N = 〈P,T ,A,�, `,Σ,Q〉 where :
I P is a finite set of nodes called places ;
I T is a finite set of nodes called transitions and P ∩T = ∅ ;
I A⊆ (P×T )∪ (T ×P) is the set of arcs between places and transitions.
I � priority relation, (t1 � t2) means that if t1 and t2 are both enabled then

only t1 is firable.
I Σ is a finite set of transition labels (events) ;
I ` : T → Σ is the transition labeling function ;
I Q is the set of final markings.



System example
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I Σo = {c,d}
I Σu = {a,b}
I Transition b

has priority to
Transition a



Example : some system runs

I (p0p1) : ε

I (p0p1)
b−→ (p0p3) : b

I (p0p1)
b−→ (p0p3)

a−→ (p1p3) : ba

I (p0p1)
b−→ (p0p3)

a−→ (p1p3)
d−→ (p4,p5) : bad

I . . .

Full set of runs : language L (Θ).



Pattern

Definition: Pattern

A pattern Ω is an LLPPN

Ω = 〈P,T ,A,�, `,Σ,Q,M0〉

such that
1 M0 6∈Q i.e. the language of the pattern does not contain ε ;
2 from any reachable marking M of R(Ω,M0) there exists a sequence of

transitions r ∈ T ∗ such that M r−→M ′ and M ′ ∈Q ;
3 from any reachable marking M of R(Ω,M0) there is no event e ∈ Σ that

labels more than one firable transition ;
4 ∀M ∈Q,∀M ′ : (∃t ∈ T ,M t−→M ′)⇒M ′ ∈Q ;
5 �= ∅, (no priority).



Pattern : k occurrences of an event e
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Pattern : n occurrences of events (no fixed order)

p11 p12 · · · p1n

t1 : e1 t2 : e2 · · · tn : en

p21 p22 · · · p2n

I Pattern 1 : n occurrences (n multiple faults) : Q = {{∀p2i ,M(p2i ) = 1}}
I Pattern 2 : 0 < r ≤ n occurrences among the n : Q = {{∑p2i

M(p2i ) = r}}



Pattern : two occurrences of three consecutive
requests Req1 without occurrences of Req2
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Pattern Diagnosis - Problem statement

Implement a diagnosis function that takes as input a sequence of
observations and returns one of the following three results :

1 The pattern’s behavior occurred during the system’s evolution.
2 The pattern’s behavior did not occur during the system’s evolution.
3 It is possible that the behavior described by the pattern occurred during

the evolution of the system.



Matching of a pattern

Definition: Sequence matching

A sequence ρ ∈ Σ∗ matches another sequence σ ∈ Σ∗, denoted ρ c σ , if :

I σ is empty (σ = ε) ; or
I σ = s.σ1,s ∈ Σ,σ1 ∈ Σ∗ and there exist two sequences ρ0,ρ1 ∈ Σ∗ such

that :
1 ρ = ρ0sρ1 ;
2 ρ1 c σ1.

A sequence ρ matches a sequence σ if ρ contains any event of the
sequence σ and these events occur in the same order as in σ .

Definition: Matching of a pattern

A sequence ρ ∈ Σ∗ matches a pattern Ω (ρ c Ω) if there exists at least a
sequence σ of L (Ω) that is matched by ρ (ρ c σ ).



Matching of a pattern
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Diagnosis of a pattern

For a given pattern Ω, the diagnosis problem consists in defining an
Ω-diagnoser function

Definition: Ω-diagnoser

Let Θ be the model of a system based on the set of events Σ = Σu ∪Σo, an
Ω-diagnoser is a function

∆Ω : Σ∗o→{Ω−certain,Ω−safe,Ω−ambiguous}

such that :

I ∆Ω(σ) = Ω−certain if for any run ρ ∈L (Θ) that is consistent with σ (i.e.
PΣ→Σo (ρ) = σ ), ρ c Ω ;

I ∆Ω(σ) = Ω−safe if for any run ρ ∈L (Θ) that is consistent with σ ,
ρ 6c Ω ;

I ∆Ω(σ) = Ω−ambiguous otherwise.



Diagnosis of a pattern set

Considering now a set of patterns Ω1, . . . ,Ωn, the diagnoser function of a
system can be defined as

Definition: Diagnoser

∆ : Σ∗o→∏
n
i=1{Ωi−certain,Ωi−safe,Ωi−ambiguous} such that

∆(σ) = (∆Ω1(σ), . . . ,∆Ωn (σ)).



Combination of the system and the pattern
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Combination of the system and the pattern (2)

Combination operator : ΘΩ = ΘnΩ.

Theorem: Pattern system product

Let Θ be the LLPPN of a system over the alphabet Σ and Ω be the LLPPN of
a pattern :

L (ΘnΩ) = {ρ ∈L (Θ) : ρ c Ω}.

Any run of the system Θ will lead to a marking in ΘΩ. Any run of the system
Θ that matches Ω will lead to an accepting marking for Ω.



Combination of the pattern-system and the
observations

1 observations : sequence of events σ = o1o2o3o1o4 . . . .
2 transform the sequence into a LLPPN O (a sequence of

place/transitions), final place pobs.
3 synchronise the transitions of O with the transitions of ΘΩ with the same

events.
4 Resulting LLPPN : ΘΩ||O

Theorem: observation synchronisation

Any run of Θ that generates σ is a run of ΘΩ||O that leads to a marking M
such that M(pobs) = 1.



Model checking : principle

I Representation of a system (set of states S, initial state S0) by a Kripke
structure : M

I Property to check : logical formula ϕ (in LTL,CTL,etc)
I Checking an LTL property,

Do we have for any path π from S0

M,π |= ϕ?

I In practice a model-checker returns :
TRUE if ϕ is checked,
FALSE + counter-example (a system run where ϕ does not hold)



Kripke structure

Definition: Classical Kripke Structure

A Kripke structure over a set of atomic propositions P is a state machine
M = (S,S0,R,L) such that :

1 S is a set of states ;
2 S0 ⊆ S is a set of initial states ;
3 R ⊆ S×S is a total ordered transition relation, for any state s ∈ S, there

exists at least a state s′ ∈ S such that R(s,s′) is true ;
4 L : S→ 2P is a labelling function : each state is labelled with the set of

atomic propositions that are true in this state.



Some checkings

Propositions P = {p1,p2,p3} Initial state s1

s1[p1,p2] s2[p2]

s3[p2,p3] s4[p3]

Example

Formulas ϕ (Linear Temporal Logic (LTL))
I ©p2 : in any path, in any successor of s1, p2 is true ? TRUE.
I ♦p3 : in any path, is there a state with property p3 ? FALSE. Counterexample :

s1→ s2→ s2 . . . .
I �p2 : in any path, is p2 true in any state ? FALSE. Counterexample :

s1→ s3→ s4 et M,s4 6|= p2.
I �(p1⇒ ♦p2) : in any path, is p1⇒ ♦p2 true in any state ? TRUE. (p1⇒ ♦p2

means p2 will be eventually true if p1 is true).



TINA : Model-checking tools for (Time) Petri Net

I TINA : (Time) Petri Net Analyser
I Simulation, Invariance Analysis, Model-Checking
I Convert the Petri Net into an Enriched Kripke Structure
I Use the State/Event LTL logic as an input language to write ψ



SE-LTL formulas

A formula ψ is a SE-LTL formula if it is a universally quantified formula

ψ ::= ∀ϕ

such that

ϕ ::= r | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ©ϕ | �ϕ | ♦ϕ | ϕUϕ

r ::= e | e4e
e ::= p | a | c | e5e

with p a place symbol, a a transition symbol, c ∈ N, 4∈ {=,<,>,≤,≥} and
5∈ {+,−,∗,/}. The operators© (next), � (always), ♦ (eventually) and U
(until) have their usual LTL semantics.



Diagnosis by model checking

I Given M a marking of O ‖ΘΩ

I M|Ω restriction of M to Ω

I M|O restriction of M to O

Here are the questions :
1 Is it always true (�) that if the system generates σ (M|O ∈QO) then (⇒)

it matches the pattern (M|Ω ∈QΩ) :

ϕCERTAIN ≡�((M|O ∈QO)⇒ (M|Ω ∈QΩ))

2 Is it always true (�) that if the system generates σ (M|O ∈QO) then (⇒)
it does not match the pattern (M|Ω 6∈QΩ) :

ϕSAFE ≡�((M|O ∈QO)⇒ (M|Ω 6∈QΩ))



Case study : conveyors/lift
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Monitoring of the occurrence of multiple events

p11 p12

t1 : Req1 t2 : Req2

p21 p22

ϕ
3
CERTAIN =�((pobs = 1)⇒ (p21 = 1∧p22 = 1)).



Results

Obs. ϕ3
CERT . ? ϕ3

SAFE ?
Pr1 F T
Pr2 F T
D F T
U F F
D F F

ELReq2 F F
ERReq2 F F
ELReq1 T F
ERReq1 T F

U T F



Pattern : two occurrences of three consecutive
requests Req1 without occurrences of Req2
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Some results

Scenario Size nb(Req1) counter nS(Γ) nT (Γ) Time (ms) Result
S1 20 5 1 92 107 11 safe
S2 200 5 1 1028 1223 11 safe
S3 2000 5 1 10388 12383 235 safe
S4 5000 5 1 25988 30983 1105 safe
S5 2000 2 10 107534 128379 1993 ambiguous
S6 2000 5 10 10388 12383 228 safe
S7 2000 10 10 10388 12383 239 safe
S8 2000 2 10 7201 8400 156 certain
S9 3500 10 10 17009 20266 577 certain
S10 1000 5 2 907987 2155290 15745 certain
S11 1000 5 10 1201381 2877901 21018 certain
S12 2000 10 8 2737559 6482932 65066 certain
S13 2000 20 8 5999626 14245740 244379 certain
S14 1750 20 8 4812356 11444801 148629 safe



Conclusion/Perspectives

I Generic framework for pattern modeling and model checking technics
I Translation of the diagnosis problem into a model-checking problem

I Extend the expressivity of patterns
I Time Petri nets


