Modular fault diagnosis in discrete-event systems with a CPN diagnoser

Yannick Pencolé, Romain Pichard, Pierre Fernbach

DISCO Team (Diagnosis and Supervisory COntrol) CNRS-LAAS, Université de Toulouse, FRANCE

September 2, 2015

Introduction

- Fault diagnosis in discrete event systems
 - Given a discrete event system and its model, a set of anticipated faults and a sequence of observations of the system
 - Determine whether a set of faults occurred in the system
- Problem initially introduced within the automaton formalism
- Contrib 1 : Starting from a Petri net model :
 - how to compute a Petri net Diagnoser :
 - as efficient as the diagnoser automaton of [Sampath 95]
 - as precise (belief state + fault)
 - that is not any kind of reachable marking graph
 - and smaller (a proper Petri Net)
- Contrib 2: Application: how to design a modular diagnosis system with help of this Petri net diagnoser.
- Use of Coloured Petri Net (CPN)

Initial model: Labelled Bounded Petri Net

A DES is modelled here as:

$$S = \langle P, T, A, \ell, \Sigma, M_0 \rangle$$

- ⟨P, T, A, M₀⟩ is a marked Petri net;
- Σ is the set of transition labels;
- $\ell: T \to \Sigma$ is the label mapping.

Diagnosis problem

- S be a model of a discrete event system,
- $\sigma = \sigma'.o, \sigma' \in \Sigma_o^*, o \in \Sigma_o$ be an observable sequence of the system,
- the diagnosis of σ in S, denoted $\Delta(S,\sigma)$ is the maximal set $\{(M_1,F_1),\ldots,(M_n,F_n)\}$ such that :
 - if σ is empty, $\Delta(S,\sigma) = \{(M_0,\varnothing)\}$;
 - ② if σ is not empty, then for any $i \in \{1, ..., n\}$ there exists at least a firable sequence

$$M_O \xrightarrow{t_{1i}} \cdots \xrightarrow{t_{ki}} M_i$$

such that

$$\bigcup_{j=1}^k \ell(t_{ji}) \cap \Sigma_f = F_i$$

and

$$\mathbb{P}(\ell(t_{1i}).\ell(t_{2i})...\ell(t_{ki})) = \sigma$$

with $\ell(t_{ki}) = o$.

This problem is equivalent to the one of [Sampath 1995] but based on $= \triangle \triangle$ ided Petri nets.

Examples

- $\Delta(S,\varepsilon) = \{(2p_1,\varnothing)\},\$
- $\Delta(S, o_1) = \{(2p_2, \varnothing)\},\$
- $\Delta(S, o_2o_2) = \{(2p_2, \{f\}), (2p_2, \varnothing), (2p_1, \{f\}), (p_1p_2, \{f\})\}.$

Examples: extended version

- $\Delta^+(S,\varepsilon) = \{(2p_1,\varnothing), (p1p2,\{f\}), (2p2,\{f\})\},$
- $\Delta^+(S, o_1) = \{(2p_2, \varnothing)\},\$
- $\Delta^+(S, o_2o_2) = \{(2p_2, \{f\}), (2p_2, \varnothing), (2p_1, \{f\}), (p_1p_2, \{f\})\}.$

Classical diagnoser [Sampath 95]

How to get a proper Petri-net diagnoser?

- Classical diagnoser: a deterministic automaton based on the reachable marking graph of the model. Combinatorial Explosion.
- · Petri-diagnoser:
 - is it possible to design a proper Petri net that solves the diagnosis problem
 - as precise as the Sampath's diagnoser (belief state + possible faults)
 - as efficient as the Sampath's diagnoser (one observable = one triggering of transitions)

Our proposal: a CPN diagnoser

- one place = one diagnosis candidate (belief state + faults)
- one structural transition = one observation type
- colours : encoding of belief state transitions

Equivalent Coloured diagnoser

Coloured diagnoser

Coloured diagnoser

Coloured diagnoser

Comparative analysis

- The coloured diagnoser solves the same problem as the classical diagnoser with same efficiency
- · Graphical viewpoint:

	Classical	Coloured
state representation :	$o(2^{2^{ P }\times 2^{ \Sigma_f }})$	$o(2^{ P } \times 2^{ \Sigma_f })$ + colours
transition representation :	$o(2^{2^{ P }\times 2^{ \Sigma_f }})$	$o(2^{ P } \times 2^{ \Sigma_f })$

• Colours : $o(2^{2^{|P|} \times 2^{|\Sigma_f|}})$.

Application: modular diagnosis problem

- Modular diagnosis :
 - determine the module belief state + module faults
 - for each module
 - the module diagnosis must be globally consistent
- Usually solved with a set of automata (modular diagnosers)
- Proposal : Implementation of the modular diagnosis problem with ONE CPN

Notion of modules

- subset of places and transitions (usually a component or a set of components)
- shared resources: transitions only (event synchronisation, communication)
- Assumption here: shared transitions are observable (to get global-consistency [Pencolé SAFE06] for free)
- Sound decomposition of the Petri model : set of modules

Modular system

Sound decomposition

Modular coloured diagnoser

$$\begin{split} \Delta^+(S,\varepsilon) &= \{(p_0p_4),(p_0p_3,f_2)\} \\ \Delta_M(S,\varepsilon) &= \Delta^+(S_1) = \{(p_0)\} \land \Delta^+(S_2) = \{(p_4),(p_3,f_2)\} \end{split}$$

New observation : b_1 ?

Modular coloured diagnoser

$$\Delta^{+}(S, b_{1}) = \{(p_{0}p_{4}, f_{2}), (p_{0}p_{3}, f_{2})\}$$

$$\Delta_{M}(S, b_{1}) = \Delta^{+}(S_{1}) = \{(p_{0})\} \land \Delta^{+}(S_{2}) = \{(p_{4}, f_{2}), (p_{3}, f_{2})\}$$

Modular coloured diagnoser

Observation: b_1 followed by a

$$\Delta^+(S, b_1 a) = \{(p_1 p_3, f_2), (p_2 p_3, f_1 f_2)\}$$

$$\Delta_{M}(S,b_{1}a) = \Delta^{+}(S_{1}) = \{(p_{1}),(p_{2},f_{1})\} \wedge \Delta^{+}(S_{2}) = \{(p_{3},f_{2})\}$$

Conclusion

- Design of a CPN diagnoser
- as precise, complete as the Sampath's diagnoser
- but it is still a Petri-net and can be used as it
- definitely smaller in terms of place and transition (graphical viewpoint)
- as an application, modular diagnosis system
- just by synchronising shared observable transitions
- some perspectives :
 - coordination protocols [Debouk00] with CPN diagnosers.
 - discriminability analysis of the CPN net structure.
 - problem abstractions
 - deploying and embedding on hardwares (micro-controllers...)

