Random generator of k-diagnosable discrete event systems

Yannick Pencolé

DISCO Team (Diagnosis and Supervisory COntrol)
CNRS-LAAS, Université de Toulouse, FRANCE

August 31, 2015
Introduction

- Classical problem of fault diagnosis of discrete event systems
- Need of independent discrete event system benchmarks
 - For testing diagnosis algorithms
 - For testing diagnosability algorithms
- Two types of benchmarks (see SAT community)
 - Real-world benchmarks
 - Pros: validate an algorithm on a real case
 - Cons: are they really real? hard to get (industry)? hard to show (confidentiality)?
 - Random benchmarks
 - Pros: as many as we like, parametrized
 - Cons: how far it is from real case? any uncontrolled bias? does not valid any real-world solution
- Question: is it better to have an algorithm that solves one real case (and only one) or to have an algorithm that solves many random non-real problems?
Motivation for this work

- Creation of random DES benchmarks with the help of a specific software
- The generated DES are \textit{diagnosable}.
- Why diagnosability:
 - Worst-case of a diagnosability checker is usually when a system is diagnosable
 - Some diagnosis algorithms require that the system is diagnosable
- Identification of parameters of systems that have influence on the complexity of the algorithms to validate
- Looking at diagnosability from a different viewpoint:
 - usually, a checker looks for the reason why a system is not diagnosable
 - here, we look at the reasons why a system is diagnosable.
DES Model: finite state automaton

SD = (Q, Σ, T, q₀) where:
- Q is a finite set of states;
- Σ is a finite set of events;
- T ⊆ Q × T × Q is a finite set of transitions;
- q₀ is the initial state of the system.
Diagnosis problem and solution

- Observable events Σ_o, Unobservable events Σ_{uo}, $\Sigma = \Sigma_o \oplus \Sigma_{uo}$
- Fault: a non-observable event $f \in \Sigma$
- Observations OBS: a sequence σ of observable events
- Diagnosis problem: $(SD, OBS, FAULTS)$
 Find the set of active faults $F \subseteq FAULTS$ that could have occurred in the system based on the model SD and the observations OBS.

\[
\begin{align*}
\Delta(eee) &= \{ \emptyset \} \\
\Delta(ec) &= \{ \emptyset \} \\
\Delta(cdc) &= \{ \{ f \}, \emptyset \}
\end{align*}
\]
Diagnosability

- f is diagnosable in a system S if :

\[\exists n \in \mathbb{N}^+, \text{Diagnosable}(n) \]

where \text{Diagnosable}(n) stands for :

\[\forall \tau_1.f \in \mathcal{L}(S), \forall \tau_2 : \tau_1.f.\tau_2 \in \mathcal{L}(S) \]
\[|P_{\Sigma_o}(\tau_2)| \geq n \Rightarrow \]
\[(\forall \tau \in \mathcal{L}(S), (P_{\Sigma_o}(\tau) = P_{\Sigma_o}(\tau_1.f.\tau_2) \Rightarrow f \in \tau)). \]

Intuition: once f has occurred, the next n observable events are always sufficient to diagnose f with certainty:

\[\Delta(P_{\Sigma_o}(\tau_1.f)P_{\Sigma_o}(\tau_2)) = \{F_1, F_2, \ldots, F_n\}, f \in F_i \]
A fault f is k-diagnosable if:

$$\text{Diagnosable}(k) \land \neg \text{Diagnosable}(k - 1)$$

k is the minimal number of observable events after the occurrence of a fault that are always sufficient to diagnose f with certainty.

- k-diagnosable \Rightarrow diagnosable
- diagnosable $\Rightarrow \exists k$, k-diagnosable

This k is a property of the system.
Objectives of the proposed generator

- Random generation of k-diagnosable models
 - for a given k.
 - for a given number of states n.
 - for a given maximal state output degree deg
 - deterministic models

Generation based on the notion of fault signature.
Signatures

- The signature of an event \(f \) into a system \(S \) is the language \(\text{Sig}(f) \subseteq \Sigma^*_o \) such that

\[
\text{Sig}(f) = \{ \sigma \tau | \tau = \tau_1.o.\tau_2 \in L(S), f \in \tau_1, o \in \Sigma_o, \tau_2 \in \Sigma^*, \sigma = P_{\Sigma_o}(\tau) \}
\]

- The signature of the absence of \(f \) into a system \(S \) is the language \(\text{Sig}(\neg f) \subseteq \Sigma^*_o \) such that

\[
\text{Sig}(\neg f) = \{ \sigma \tau | \tau = \tau_1.o \in L(S), f \not\in \tau_1, o \in \Sigma_o, \sigma = P_{\Sigma_o}(\tau) \}
\]

\[
\text{Sig}(f) = \{ c, cde^*, cde^*c, cd(e^*cd)^+, cd(e^*cd)^+c \}
\]

\[
\text{Sig}(\neg f) = \{ e, e^*c, (e^*cd)^+, (e^*cd)^+e^*c \}
\]
Ambiguous signatures

- Any observable trace σ that belongs to $\text{Sig}(f)$ AND $\text{Sig}(-f)$ is ambiguous

$$\forall \sigma \in \text{Sig}(f) \cap \text{Sig}(-f), \Delta(\sigma) \text{ is ambiguous.}$$

- To be diagnosable, the number of observable continuations of an observable ambiguous trace must be finite

- Twin-plant method: checking whether there exists in $\text{Sig}(f) \cap \text{Sig}(-f)$ an unbounded continuation of an observable trace $\sigma \in \text{Sig}(f) \cap \text{Sig}(-f)$.

- To be k-diagnosable, for any $\sigma \in \text{Sig}(f) \cap \text{Sig}(-f)$:
 - for any $\sigma \in \text{Sig}(f) \cap \text{Sig}(-f)$, any continuation σ' of σ such that $\sigma\sigma' \in \text{Sig}(f) \cap \text{Sig}(-f)$ must be such that:
 $$|\sigma\sigma'| - |\sigma| \leq k - 1$$
 - there exists at least a couple σ, σ' such that
 $$|\sigma\sigma'| - |\sigma| = k - 1$$
Given n a number of states, k parameter, deg allowed number of output transitions

1. Computation of a random ambiguous signature $AmbSig$
2. Parsing of the ambiguous signature and random generation of the system.
Example : Ambiguous signature

Very simple example :

\[\text{Sig}(f) \cap \text{Sig}(-f) = \{ o_1o_2, \ o_1o_2o_2, \ o_1o_1o_1o_2, \ o_1o_1o_1o_2o_2, \ldots \} \]
Example: Generated system
Example : Generated system
Example: Generated system
Analysis of the generated system

- By construction, the signature of f is:
 - $(o_1 o_1)^* o_3^+$
 - $o_1 (o_1 o_1)^* o_2$
 - $o_1 (o_1 o_1)^* o_2 o_2$
 - $o_1 (o_1 o_1)^* o_2 o_2 o_2^+$

- By construction, the signature of $\neg f$ is:
 - o_1^+
 - $o_1 (o_1 o_1)^* o_4^+$
 - $o_1 (o_1 o_1)^* o_2$
 - $o_1 (o_1 o_1)^* o_2 o_2$
 - $o_1 (o_1 o_1)^* o_2 o_2 (o_5 o_4^* + o_4^+)$
Analysis of the generated system

- By construction, the signature of \(f \) is:
 \[
 \begin{align*}
 &\cdot (o_1 o_1) o_3^+ \\
 &\cdot o_1 (o_1 o_1) o_2 \\
 &\cdot o_1 (o_1 o_1) o_2 o_2 \\
 &\cdot o_1 (o_1 o_1) o_2 o_2 o_2^+ \\
 \end{align*}
 \]

- By construction, the signature of \(\neg f \) is:
 \[
 \begin{align*}
 &\cdot o_1^+ \\
 &\cdot o_1 (o_1 o_1) o_4^+ \\
 &\cdot o_1 (o_1 o_1) o_2 \\
 &\cdot o_1 (o_1 o_1) o_2 o_2 \\
 &\cdot o_1 (o_1 o_1) o_2 o_2 (o_5 o_4^+ + o_4^+) \\
 \end{align*}
 \]

Ambiguous signature:

\[
Sig(f) \cap Sig(\neg f) = o_1 (o_1 o_1) o_2 + o_1 (o_1 o_1) o_2 o_2
\]
Ambiguous signature:

\[\text{Sig}(f) \cap \text{Sig}(\neg f) = o_1(o_1o_1)^*o_2 + o_1(o_1o_1)^*o_2o_2 \]

- \(\neg f \)-certainty as long as we see \(o_1(o_1o_1)^* \).
- \(f \)-certainty as soon as \(o_3 \) occurs after \(o_1(o_1o_1)^* \).
- \(f \)-ambiguity as soon as \(o_2 \) occurs after \(o_1(o_1o_1)^* \).
- Still \(f \)-ambiguity if another \(o_2 \) occurs after \(o_1(o_1o_1)^*o_2 \).
- \(f \)-certainty as soon as a 3rd \(o_2 \) occurs after \(o_1(o_1o_1)^*o_2o_2 \).
- \(\neg f \)-certainty is any other case.

So \(f \) is 3-diagnosable.
• Generator, part of the toolset:
 DIADES: diagnosis of discrete event systems
• UNIX command line program: dd-diagnosable-system-generator
• Pure C++ implementation (C++11)
Command line

./dd-new-diagnosable-des-generate --help
Diades: generator of diagnosable discrete event systems

Allowed options:
--help
--states arg (still experimental)
--observables arg
--unobservables arg
--output_degree arg
--k arg
--min_observable_ambiguity arg
--ambiguity_ratio arg
--seed arg
Some available benchmarks

A set of benchmarks already generated:
http://homepages.laas.fr/ypencole/benchmarks

- From 100-states systems to 200 000-states systems
- From $k = 1$ to $k = 5000$
- From $deg = 3$ to $deg = 100$
- At present, only des_comp format
- More benchmarks will be generated
- Any idea of other parameters to control?
Perspectives

- Better control of the number of states
- Performance improvements
- Generation of component-based diagnosable system
- Automatic generation of diagnosis scenarios