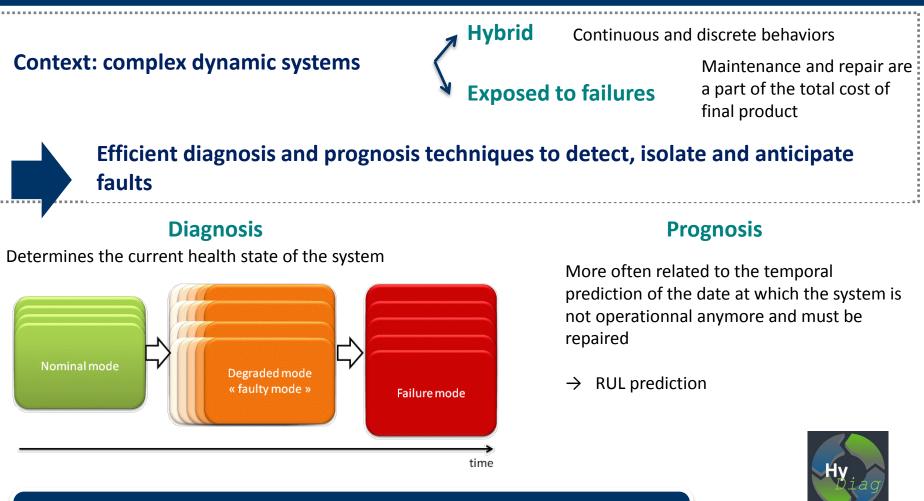


26th DX International Workshop on Principles of Diagnosis Paris August 31 – Sept 3, 2015

HYDIAG

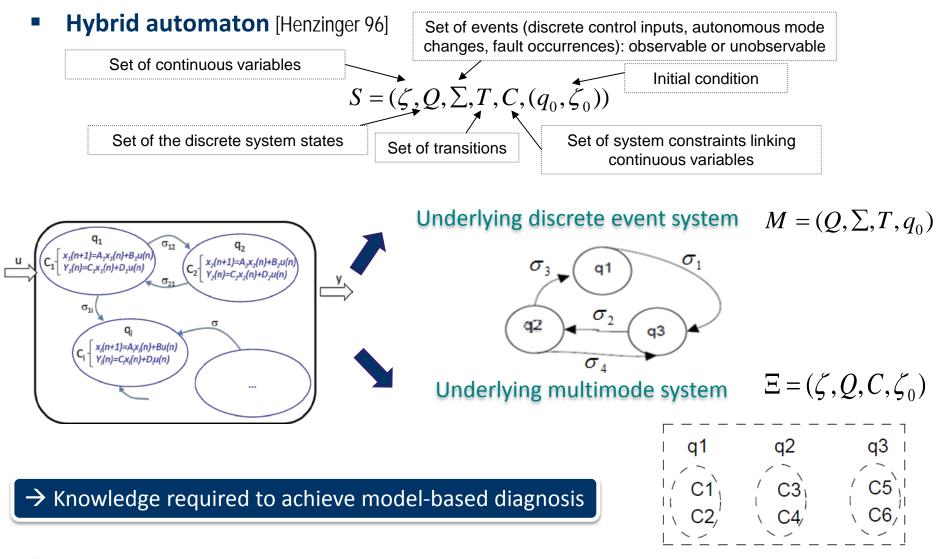

Extended Diagnosis and Prognosis for Hybrid Systems

Elodie Chanthery*, Yannick Pencolé, Pauline Ribot**, Louise Travé-Massuyès CNRS-LAAS Toulouse, France

University of Toulouse, *INSA, **UPS Toulouse, France

{elodie.chanthery,yannick.pencole,pauline.ribot,louise}@laas.fr

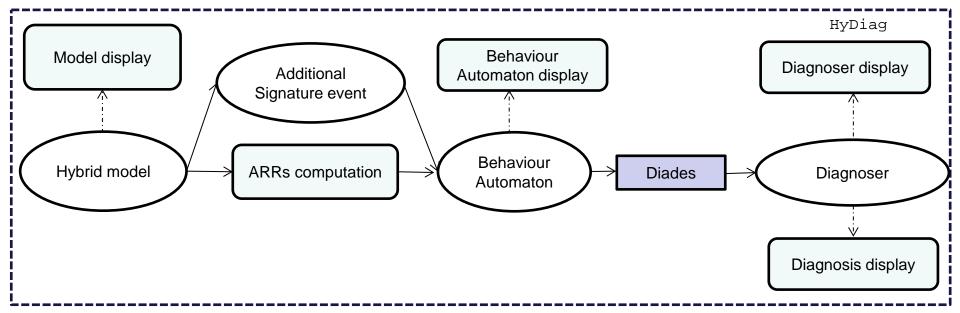
Introduction



HYDIAG : software developed in Matlab to simulate, diagnose and prognose hybrid systems using model-based techniques

http://projects.laas.fr/hydiag/

Hybrid system modeling for diagnosis

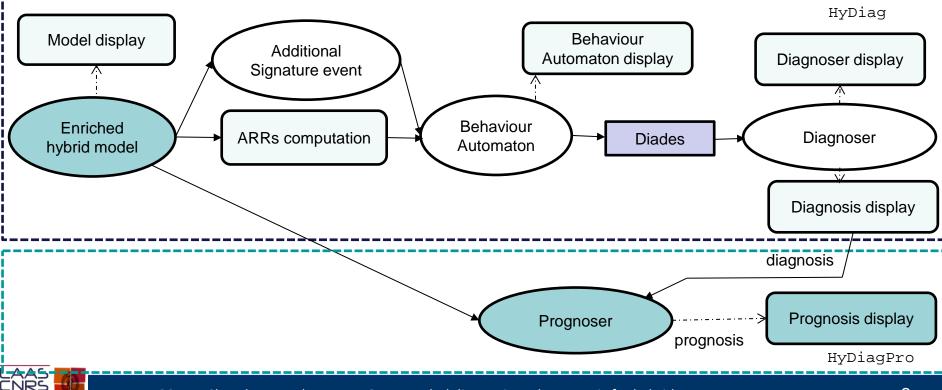

Hybrid model edition

<u>File E</u> dit <u>V</u> iew Ins	sert <u>T</u> ools	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp			3
LAAS-C	NRS	ŀ	lybrid m	ultimode syste	em Simulator &	Diagnoser	
System New Open Save	— Editing a	Matrixe: Mode to ed	lit:	State 1 (n°1)		y2 z]; [rows × cols] ▼	
Run Simulation		Mo	ode name	(short description)	:	State 1	
Characteristics System loaded: *** This is a test System *** - 4 modes. - 4 events. - sampling time : 0.01s.	Dynamic matrix (A). Input matrix (B). Observation matrix (C). Direct transmission matrix (D). Initial state:				[0.7 0;0 0.7] [1;0] [1 1;1 0] [1;0] [0;0]		
Edit modes		Ne	ext modes	on events: [2 3 0 ()]	Edit	
Edit events (D) Edit inputs (C) Display Matlab						Validate	
Exit							

Overview of the native HYDIAG diagnoser (2)

HyDiag software architecture

Building the diagnoser [Bayoudh 2008]


- Diagnose the continuous part using the parity space method
- Abstract the continuous part and enrich the discrete part of the model with new observable events
- Estimate the system mode with the diagnoser method on the resulting DES [Sampath 1996] (DiaDes software, http://homepages.laas.fr/ypencole.DiaDes/)

HyDiagPro : an extension for prognosis (1)

Implementation of a prognosis function

- Compute the fault probability of the system in each behavioural mode
- Determine the most likely sequence of dated faulty modes leading to the failure
- Compute the system remaining useful life

HyDiagPro software architecture

CARNOT Université

HyDiagPro : an extension for prognosis (2)

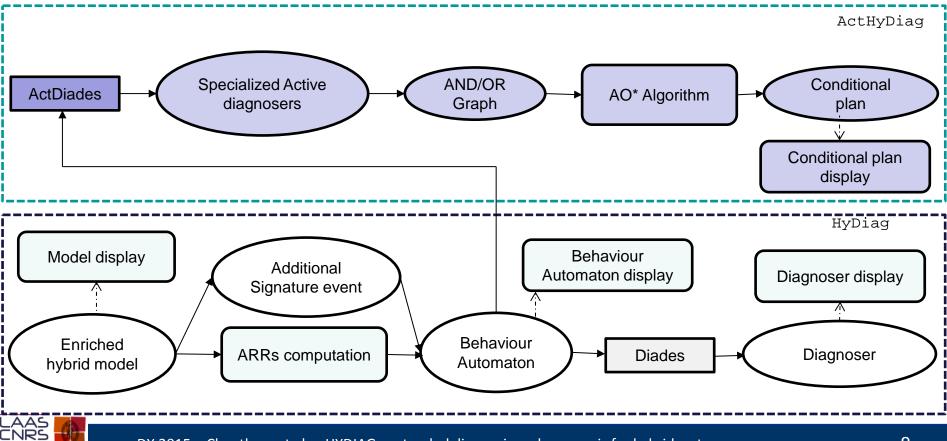
Enriched hybrid model : associate a set of aging laws to system modes

• An aging law based on the parametrized Weibull model gives at any time the probability that the fault f_i occurs from a mode q_i [Ribot et al. 2011]

$$f_j^{q_i}(t) = \int_0^t W(t, \beta_j^{q_i}, \eta_j^{q_i}, \gamma_j^{q_i}) dt$$

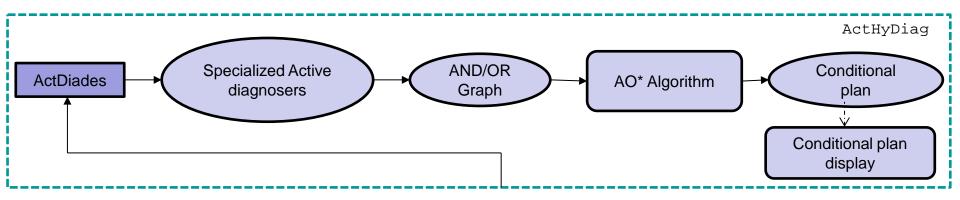
$$W(t,\beta_{j}^{q_{i}},\eta_{j}^{q_{i}},\gamma_{j}^{q_{i}}) = \frac{\beta_{j}^{q_{i}}}{\eta_{j}^{q_{i}}} \left(\frac{t-\gamma_{j}^{q_{i}}}{\eta_{j}^{q_{i}}}\right)^{(\beta_{j}^{q_{i}}-1)} e^{-\left(\frac{t-\lambda_{j}^{q_{i}}}{\eta_{j}^{q_{i}}}\right)^{\beta_{j}^{c}}}$$

- η , β : fixed by the system mode $q_i \rightarrow c$ haracterize degradation in mode q_i that leads to the fault f_j
- γ : set at run time \rightarrow it memorizes the overall degradation evolution accumulated in the past modes
- Building the prognoser [Zabi et al. 2013]
 - Predict fault occurrences using the aging laws in S⁺ and the result of current diagnosis
 - Update on-line the aging laws (parameter γ) according to the operation time in each mode
 - For each new diagnosis result, computes the most likely sequence of dated faults that leads to a system failure → the RUL is estimated from this sequence



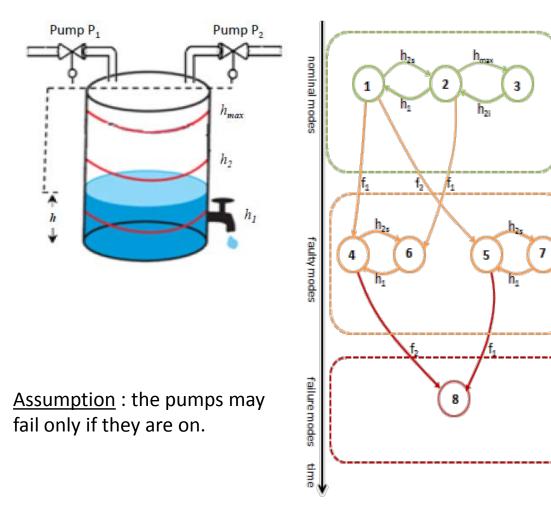
ActHyDiag : an extension for active diagnosis (1)

- Implementation of an active diagnosis function [Chanthery et al. 2010]
 - Compute a set of active diagnosers to predict if a fault can be diagnosed with certainty by applying an action plan in case of a ambiguous diagnosis provided by HyDiag
- ActHyDiag software architecture


Université

LAAS CNRS

ActHyDiag : an extension for active diagnosis (2)


- Computing the action plan to diagnose a fault [Chanthery et al. 2010]
 - Indicate discrete actions and their costs in an additional file
 - Compute an active diagnoser for each anticipated fault to extract a planning domain as a AND/OR graph
 - Use an AO* algorithm to compute a conditional plan that optimizes action cost criterion
 - At runtime, launch an active diagnosis session in case of an ambiguous diagnosis to analyse if the faulty situation is discriminable by applying some actions

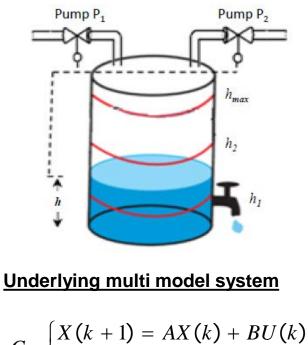
HyDiag/HyDiagPro demonstration (1)

Water tank system model

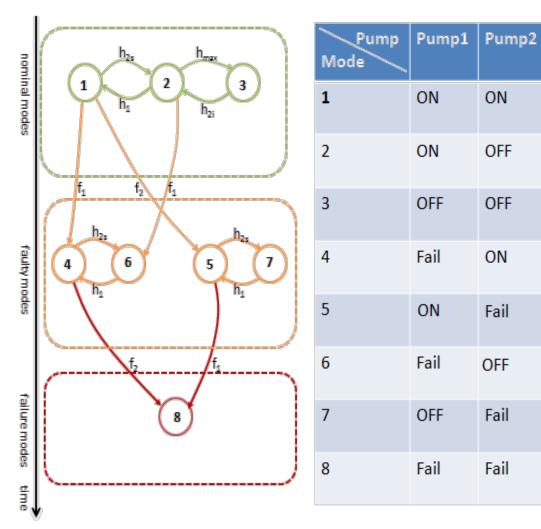
3 sensors: h₁, h₂, h_{max} Pump control signals : ON, OFF

3 nominal modes: $q_1 q_2$, q_3 2 faults (unobservable): $f_1 f_2$

Failure mode when $(f_1 AND f_2)$ have occurred.


For each mode:

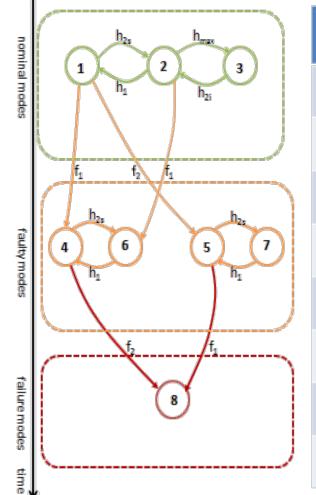
$$F^{q_i} = \begin{bmatrix} f_1^{q_i}(t) \\ f_2^{q_i}(t) \end{bmatrix}$$


HyDiag/HyDiagPro demonstration (2)

Water tank system model

$$C_{i} \begin{cases} X(k+1) - AX(k) + BO(k) \\ Y(k) = CX(k) + DU(k) \end{cases}$$
$$A = (1), B = \begin{pmatrix} e_{i}T_{e} / S \\ e_{i}T_{e} / S \\ e_{i}T_{e} / S \end{pmatrix}, C = (1), D = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Underlying DES

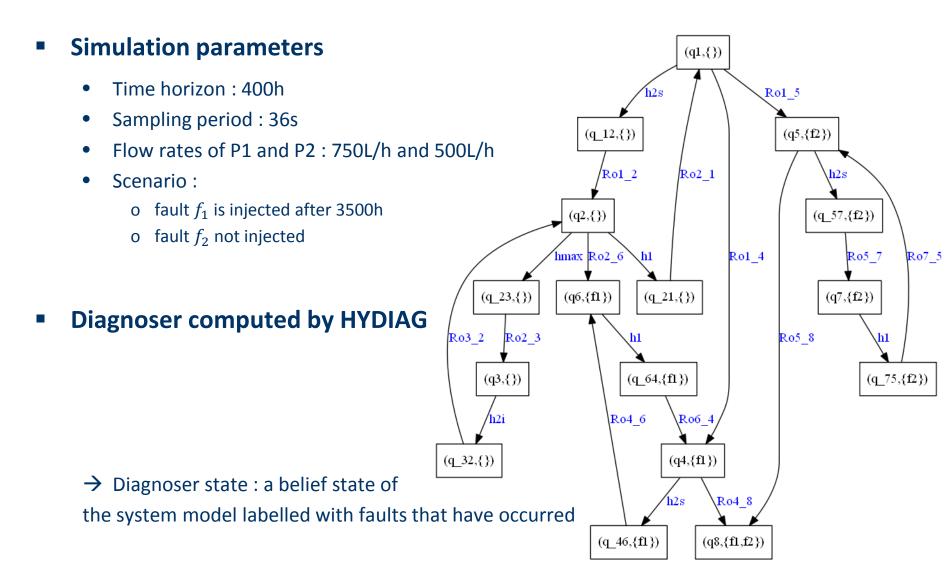


HyDiag/HyDiagPro demonstration (3)

Water tank system model

Weibull parameters of aging models

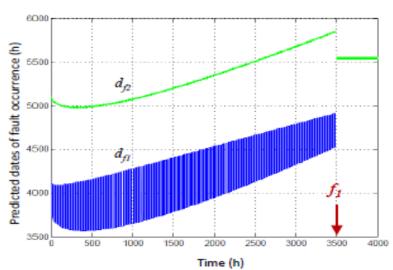
Agin	g laws	β	η
F^{q_1}	$f_{1}^{q_{1}}$	1.5	3000
	$f_2^{q_1}$	1.5	4000
F^{q_2}	$f_{1}^{q_{2}}$	2	3000
	$f_2^{q_2}$	1	7000
F^{q_3}	$f_{1}^{q_{3}}$	1	8000
	$f_2^{q_3}$	1	7000
F^{q_4}	$f_{1}^{q_{4}}$	NaN	NaN
	$f_2^{q_4}$	2	4000
F^{q_5}	$f_1^{q_5}$	2	3000
	$f_2^{q_5}$	NaN	NaN
F^{q_6}	$f_{1}^{q_{6}}$	NaN	NaN
	$f_2^{q_6}$	1	7000
F^{q_7}	$f_{1}^{q_{7}}$	1	8000
	$f_2^{q_7}$	NaN	NaN
F^{q_8}	$f_{1}^{q_{8}}$	NaN	NaN
	$f_2^{q_8}$	NaN	NaN

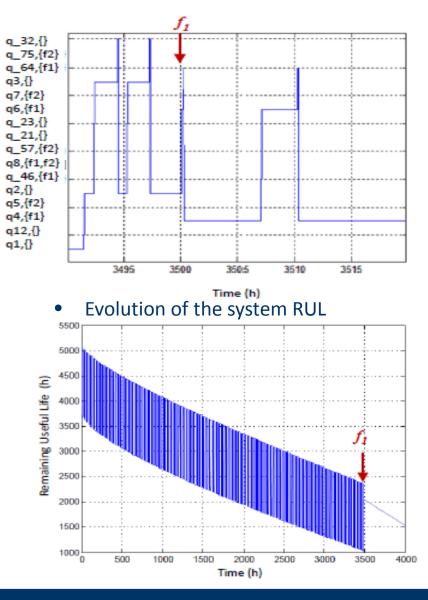


Underlying DES

Pump Mode	Pump1	Pump2
1	ON	ON
2	ON	OFF
3	OFF	OFF
4	Fail	ON
5	ON	Fail
6	Fail	OFF
7	OFF	Fail
8	Fail	Fail

HyDiag/HyDiagPro demonstration (4)





HyDiag/HyDiagPro Demonstration (5)

Simulation results

- Evolution of the diagnoser belief state
 - o Before 3500h : states are tagged with a nominal diagnosis
 - o After 3500h : states are tagged with t f_1
- Evolution of the predicted date of fault occurrences d*f*₁ and d*f*₂
 - the system oscillates between stressfull modes and less stressfull modes before 3500h

DX 2015 – Chanthery et al. - HYDIAG : extended diagnosis and prognosis for hybrid systems

Conclusions

HyDiag

- Software developed in Matlab by the DISCO team at LAAS-CNRS
- Simulate and diagnose hybrid systems using model-based techniques
- HyDiagPro : extension to prognosis
 - Demonstration of HyDiagPro on an academic example
- ActHyDiag : extension to active diagnosis
 - Active diagnosis algorithm is currently tested on a concrete industrial case

