
EFFICIENT ON-LINE FAILURE IDENTIFICATION FOR
DISCRETE-EVENT SYSTEMS 1

Anika Schumann ∗ Yannick Pencolé ∗∗

∗ The Australian National University, National ICT Australia
∗∗ The Australian National University, National ICT Australia

Abstract: The paper addresses the problem of diagnosing complex embedded systems.
Given a flow of observations from the system, the goal is to explain these observations by
identifying possible failures. Approaches that efficiently compute the possible failures,
like the classical diagnoser approach, suffer from high space complexity. This paper
presents a method that generalises the observable behaviour of a system resulting in a
smaller finite state machine, that efficiently maps observations to possible failures.

Keywords: diagnosis, model-based representation and reasoning, discrete-event dynamic
systems

1. INTRODUCTION

The problem which is target in this paper is the super-
vision of complex embedded discrete event systems.
Given a supervision agent continuously receiving ob-
servations sent by the system, the purpose is to help
him to identify failures.

It is now widely recognised that diagnosing complex
systems is best achieved through model-based repre-
sentation (Lamperti and Zanella, 2001). That is, rather
than relying on procedural expert knowledge, model-
based approaches exploit models of individual com-
ponents of the system and combine them to automate
the reasoning about system wide interactions. Among
these approaches are diagnoser based ones (introduced
in (Sampath et al., 1996)) that compile, off-line, a rep-
resentation of the system model by a finite state ma-
chine (the diagnoser), that directly maps observations
to possible system states and failures. Since on-line
diagnosis algorithms based on the diagnoser require
not a lot of computational resources, it is an interest-

1 This research was supported by National ICT Australia (NICTA)
in the framework of the SuperCom project (Model-Based Super-
vision of Composite Systems). NICTA is funded through the Aus-
tralian Government’s Backing Australia’s Ability initiative, in part
through the Australian National Research Council.

ing approach for the implementation of an embedded
monitoring system. However, even if the diagnoser
of an embedded system is computable off-line with
classical computers, it does not mean that it can be
embedded in the small device that is in charge of mon-
itoring this system due to limited memory resources.

In (Zad et al., 2003) the authors have shown how the
size of a state-based diagnoser can be reduced. In such
a state-based approach, in which observations and
failures are part of the state label, it is assumed that the
state set of the system can be partitioned according to
the failures of the system.

In contrast, this paper describes an event-based diag-
noser approach, in which observations and failures are
modelled as events. Here the states of the system are
not related to the failures. The aim is to efficiently
compute an even smaller finite state machine than the
one retrieved in (Zad et al., 2003), that directly maps
observations to the failure sets of the system. This
reduction is achieved by generalising the observable
system behaviour.

In contrast to other reduction techniques for finite
state machines (see e.g. (Gold, 1972), (Christensen et
al., 1992)), it is not necessary to maintain the same or a
similar behaviour of the original finite state machine,



that is the diagnoser. Since the global model defines
the complete observable behaviour of the system it
is only possible to observe event sequences defined
in this model. Thus the observable behaviour can be
generalised if it can be guaranteed that the resulting
finite state machine still allows the computation of the
consistent failure sets for all possible sequences of ob-
servations. All failure identifiers satisfy this condition.

They can be used for a wide range of applications
which require only a knowledge of the possible fail-
ures that explain a sequence of observations and not a
knowledge of the corresponding system states.

The approach is implemented in a symbolic way that
has shown to provide a good trade-off for optimising
the memory consumption and the time performance
of any diagnoser (Schumann et al., 2004). An ex-
perimental size comparison of the symbolic repre-
sentations of diagnoser and reduced failure identifier
clearly highlights the advantage of the latter.

The paper is organised as follows. Section 2 intro-
duces the failure identification problem of discrete
event systems. In the next section the failure identifier
is defined and section 4 sketches the computation of
the restricted failure identifier, that is defined only for
the observable system behaviour. Section 5 describes
an algorithm to reduce the size of the restricted fail-
ure identifier and section 6 presents an experimental
comparison between such a failure identifier and the
original diagnoser.

2. FAILURE IDENTIFICATION IN
DISCRETE-EVENT SYSTEMS

To start with, a brief introduction to failure identifi-
cation of systems modelled as discrete-event is given.
These systems can be represented as finite state ma-
chines, whereby the states and transitions reflect the
normal and the failure behaviour of the system. This
is achieved by modelling observations and failures as
events. 2

Definition 1. (System Model). A system model is a fi-
nite state machine G = 〈X,Σo,Σ f , x0, T 〉, characterised
by its state set X, its observable and failure events Σo

and Σ f , its initial state x0 and its transition set T .

Figure 1 depicts such a system model. The failure
identification problem consists in determining all fail-
ures that are consistent with a sequence of observa-
tions.

Definition 2. (Consistent Failure Sets).

Let PF = x j1

f j1
→ x j2 · · ·

f jq−1
→ x jq denote a failure path

2 For the sake of simplicity and without loss of generality, the
system model is defined in a centralised way and events other
than observations and failures are omitted. See e.g. (Sampath et
al., 1996) for a complete definition.

in system G = 〈X,Σo,Σ f , x0, T 〉 with f ji ∈ Σ f ∀ f ji ,
that can consist of a single state only. Further let
S tart(PF) ∈ X denote the start state of the path and
Event(PF) ∈ 2Σ f the set of all event labels in PF .

The set of failure sets FS ⊆ 22Σ f that are consistent
with a sequence of observable events S = [o1, . . . , ok]
is defined as follows:

FS = {

k⋃

j=1

Event(PF j ) |

p = PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x

is path in G with S tart(PF1 ) = x0}

x0

x1

o1

x12

f2

x11

f1

x14

f1

x15

f2

x2

x4

o3

x8

x10

o5 x13

f1

x16

x9

o5

x3

x5

o3

o4

o6

x6

x7

o3

o6

o2

o4f1

o5

o2

o5

o3 o3

Figure 1. System model with events Σo = {o1, . . . , o6}

and Σ f = { f1, f2}.

For example, consider all paths of the system shown
in Figure 1 that would explain why first o2 then o3

and finally o5 is observed, that is consider the paths

x0
f2
→ x12

o2
→ x6

o3
→ x7

o5
→ x9 and x0

f2
→ x12

o2
→

x6
o3
→ x7

f1
→ x16

o5
→ x9. The failure sets consistent with

the sequence S = [o2, o3, o5] are FS = {{ f2}, { f1, f2}}.
Note that consistent failure sets need to be determined
only for the observable system behaviour, that is for
all observable sequences defined in G.

Definition 3. (Possible observable sequence). An ob-
servable sequence S = [o1, . . . , ok] with oi ∈ Σo, ∀oi

is called possible with respect to a system G =

〈X,Σo,Σ f , x0, T 〉, iff the following condition holds:

psbl(S ) ⇔

∃ path p = PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x in G

with Start(PFi1
) = x0 and PFi is failure path

(as defined in definition 2)



For instance, in the system depicted in Figure 1, the
sequence S = [o2, o3, o5] is possible as shown above.
In contrast, the sequence S = [o3, o4] is not possible.
The observable system behaviour constitutes of all
possible observable sequences.

3. FAILURE IDENTIFIER

The previous section has shown how the system model
can be used to retrieve all failure sets consistent with
a sequence of observations. However, the computation
of these failure sets requires the retrieval of all paths
that explain the observed event sequence, which can
be very slow for large complex systems. Now a model,
the failure identifier, that efficiently maps all possible
observable sequences to the corresponding consistent
failure sets is introduced.

Definition 4. (Failure Identifier). Given a system G =
〈X,Σo,Σ f , x0, T 〉. The model of a failure identifier is a
deterministic finite state machine F̃I = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉,
with states X̃, state labels F̃ ⊆ 22Σ f, transition labels
Σ̃ = Σo, initial state x̃0, state labelling function R̃ :
X̃ → F̃ with R̃(x̃0) = ∅ and transitions T̃ ⊆ X̃ × Σ̃ × X̃
such that

∀S = [o1, . . . , ok] such that psbl(S )

∃p̃ = x̃0
o1
→ x̃ j1 · · ·

ok−1
→ x̃ jk−1

ok
→ x̃ jk in F̃I with

R̃(x̃ jk ) = {
⋃

j

Event(PF j ) |

PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x

is path in G with Start(PF1 ) = x0}

Consider, for instance, the system depicted in Fig-
ure 1. The possible observable sequences are
[o1, o3, o3, o4, o5, o∗6], [o2, o3, o4, o5, o∗6] and [o2, o3, o5, o∗6]
and any subsequences of it containing the first k ∈ N
events. 3 Figure 2 illustrates some of its failure iden-
tifiers. The examples show, that the failure identifiers
of a system cannot only differ in the number of states
and transitions, but also in the number of observable
sequences for which they are defined. For instance, the
sequence S = [o3, o4] is defined for F̃IC but not for
F̃IA. However, since this sequence is not observable,
it is irrelevant whether a failure identifier defines it
or not. Only the possible observable sequences of a
system need to be defined in all its failure identifiers.

In order to compute the failure sets that are consistent
with a sequence of observable events S based on an
arbitrary failure identifier of the system, it is sufficient
to follow the unique path of F̃I transitions labelled
with the observed events and to look up the label
of the target state. Consider for example the failure
identifier F̃IB depicted in Figure 2. When observing
the events o2, o3, and o5, it is sufficient to follow the
path b0

o2
→ b4

o3
→ b5

o5
→ b7 and to retrieve the consistent

3 The notion o∗6 refers to an infinite number of observations o6.

F̃IA
a0
{}

a1
{}

o1

a6
{f1}, {f2}

o2

a2
{f1}, {f2}

o3

a7
{f2}

o3

a5
{f2}, {f1, f2}

o6

a9
{f2}, {f1, f2}

o6

a3
{f1}, {f2}

o3

a4
{f2}

o5

a8
{f2}

o5

o4

a10
{f2}, {f1, f2}

o5

o6

o4

F̃IB
b0
{}

b1
{}

o1

b4
{f1}, {f2}

o2

b2
{f1}, {f2}

o3

b5
{f2}

o3

b3
{f1}, {f2}

o3

b6
{f2}

b7
{f2}, {f1, f2}

o5

o4

o5

o6

o4

F̃IC
c0
{}

o1

c1
{}

o4

c3
{f1}, {f2}

o2

c2
{f1}, {f2}

o3

o5

c4
{f2}

o3

o1

o3

o4

o4

c5
{f2}, {f1, f2}

o5

o6

Figure 2. Three failure identifiers for the system
shown in Figure 1.

failure sets directly from the label of state b7 which is
{{ f2}, { f1, f2}}.

The classical diagnoser (Sampath et al., 1996) is a
special instance of a failure identifier. Its states are
not only labelled with the consistent failure sets but
also with the system states that are consistent with a
sequence of observations. Furthermore the diagnoser
has the special property that it is only defined for
sequences of observations that are possible in the
system.

Definition 5. (Diagnoser). Let G = 〈X,Σo,Σ f , x0, T 〉
denote the model of the system, P the set of path
defined in G, and L = 2Σ f the set of failure labels.

The model of a diagnoser is a deterministic finite
state machine D̂ = 〈X̂, Π̂, Σ̂, x̂o, R̂, T̂ 〉, where X̂ =

{x̂1, . . . , x̂q} is the set of diagnoser states, Π̂ = X × L
is the set of pairs that can belong to diagnoser state
labels, Σ̂ = Σo is the set of diagnoser transition labels,
x̂0 is the initial diagnoser state, R̂ : X̂ 7→ Π̂ is the
diagnoser state labelling function that verifies R̂(x̂0) =



{(x0, ∅)}, and T̂ ⊆ X̂ × Σ̂ × X̂ is the set of diagnoser
transitions, which verify:

x̂
σ

→ x̂′ ∈ T̂ iff

R̂(x̂′) ={
(x′, l′) | ∃(x, l) ∈ R̂(x̂) such that either

x
σ

→ x′ ∈ T and l′ = l,
or

PF
σ

→ x′ ∈ P with S tart(PF) = x, and
l′ = l ∪ Event(PF)

}

y0
x0, {}

y1
x1, {}o1

y2
x4, {f1}
x6, {f2}

o2

y3
x2, {f1}
x3, {f2}

o3

y4
x7, {f2}

o3
y8

x10, {f2}
x10, {f1, f2}

o6

y7
x4, {f1}
x5, {f2}

o3

y6
x8, {f2} o5o4

y5
x9, {f2}

x9, {f1, f2}

o5
o6

o4

Figure 3. Diagnoser for the system shown in Figure 1.

Figure 3 depicts the diagnoser for the example shown
in Figure 1. Let R̂F : Π̂ → F̃ denote the function that
abstracts the system states from the diagnoser state
label. The diagnoser definition verifies

∀S = [o1, . . . , ok] such that psbl(S )

∃p̂ = x̂0
o1
→ x̂i1 · · ·

ok−1
→ x̂ik−1

ok
→ x̂ik in Ĝ with

R̂(x̂ jk ) =
{
(x,
⋃

j

Event(PF j )) |

PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x

is path in G with Start(PF1 ) = x0

}
and

R̂F(R̂(x̂ jk )) =
{⋃

j

Event(PF j ) |

PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x

is path in G with Start(PF1 ) = x0

}

This means that the diagnoser is indeed a failure iden-
tifier as defined in definition 4. In contrast to a fail-
ure identifier in general, the diagnoser is only defined
for the possible observable system behaviour and is
uniquely determined. It can be computed directly from
the system description and can be used for efficiently
retrieving the consistent failure sets. However, such an
algorithm has a very high space complexity due to the
need of storing the diagnoser. As stated, for instance,
in (Pencolé et al., 2002) the size of the diagnoser con-
stitutes a major problem. Since the time complexity of
computing the consistent failure sets is the same for all
failure identifiers of a system, it is interesting to obtain
one with minimal size.

4. RESTRICTED FAILURE IDENTIFIER

This section defines the smallest failure identifier that
is defined only for the possible observable sequences
of a system. For this purpose it is necessary to in-
troduce the concept of bisimilarity (Milner, 1980)
(Park, 1981). The essence of bisimilarity as stated in
(Hennessy and Milner, 1985), “is that the behaviour of

a program is determined by how it communicates with
an observer”. This implies that there is no need to dis-
tinguish two states of a finite state machine that have
the same set of outgoing transitions and for which
the transition pairs with the same label lead to two
states that are also not distinguishable. With respect
to the failure identifier bisimulation is referred to in
the following way:

Definition 6. (Bisimulation). A bisimulation is a bi-
nary Relation B on two states x̃i, x̃ j of a failure identi-
fier F̃I = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉 iff the following condition
holds:

B(x̃i, x̃ j)⇔ R̃(x̃i) = R̃(x̃ j) and

∀x̃i
′
∈ X̃ and ∀σ ∈ Σ̃ such that (x̃i

σ

→ x̃i
′) ∈ T̃

∃(x̃ j
σ

→ x̃ j
′) ∈ T̃ with B(x̃i

′
, x̃ j
′) and

∀x̃ j
′
∈ X̃ and ∀σ ∈ Σ̃ such that (x̃ j

σ

→ x̃ j
′) ∈ T̃

∃(x̃i
σ

→ x̃i
′) ∈ T̃ with B(x̃i

′
, x̃ j
′)

Let F̃I = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉 denote a failure identifier
with the bisimular state pair B(x̃i, x̃ j). The removal of
state x̃ j leads to the new state set X̃′ = X̃\{x̃ j} and new

transition set T̃ ′ = T̃ \ {x̃a
o
→ x̃b | x̃a = x̃ j or x̃b = x̃ j}∪

{x̃a
o
→ x̃i | x̃a

o
→ x̃ j ∈ T̃ }. The finite state machine

F̃I
′
= 〈X̃′, F̃, Σ̃, x̃o, R̃, T̃ ′〉 is also a failure identifier

since for all paths p̃ = x̃0
o1
→ x̃a1 · · ·

ok
→ x̃ak in F̃I

there exists a path p̃ = x̃0
o1
→ x̃b1 · · ·

ok
→ x̃bk in F̃I

′

with

R̃(xac ) = R̃(xbc ) and x̃bc =

{
x̃i if x̃ac = x̃ j

x̃ac otherwise

Note that when removing all bisimular states of a finite
state machine, it is not necessary to check whether the
target states of the removed state are still reachable
from the initial states, since all target states of a bisim-
ular state are also bisimular and therefore removed.

Consider for instance the failure identifier F̃IA de-
picted in Figure 2. The states a5, a9 and a10 are pair-
wise bisimilar as well as the states a4 and a8. F̃IB of
the same Figure shows the failure identifier after the
removal of all bisimular states.

Definition 7. (Restricted failure identifier). The failure
identifier F̃Irest of a system G is called restricted iff
it is defined only for the observable behaviour of the
system and if it does not contain bisimilar states.

Every system G has a unique restricted failure iden-
tifier. It can be obtained from the diagnoser by re-
moving all bisimilar states as described above. For the
example system (see Figure 1) the restricted failure
identifier F̃IB is shown in the middle of Figure 2.



5. REDUCED FAILURE IDENTIFIERS AND
THEIR COMPUTATION

The size of the restricted failure identifier can be
reduced by merging states that share the same failure
label and that do not contain any transitions with
the same label that lead to different target states.
Latter condition verifies that the resulting finite state
machine is also deterministic.

Definition 8. (Mergable states). A set of states Z̃ ⊆ X̃
of the restricted failure identifier F̃Irest = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉
is called mergable iff the following condition holds:

merg(Z̃) ↔ ∀x̃i, x̃ j ∈ Z̃ it holds R̃(x̃i) = R̃(x̃ j) and

∀o ∈ Σ̃ x̃i
o
→ x̃′i ∈ T̃ and x̃ j

o
→ x̃′j ∈ T̃

implies either x̃′i = x̃′j or merg({x̃′i , x̃
′
j})

Hence two states are mergable even if their outgoing
transition labels are not identical. In fact, since the
restricted failure identifier does not contain any bisim-
ular states, a merge of states results necessarily in a
generalisation of the observable system behaviour.

Let Z̃i = {x̃i1 , . . . , x̃ir } ⊆ X̃ denote a set of mergable
states of F̃Irest. The merge of the states in Z̃i to
state z̃i results in the finite state machine F̃Imgr =

〈X̃mgr, Π̃, Σ̃, x̃0mgr , R̃, T̃mgr〉, where

X̃mgr = X̃ ∪ z̃i \ Z̃i

x̃0mgr =

{
z̃i if x̃0 ∈ Z̃i

x̃0 otherwise

T̃mgr = T̃ \ {x̃a
o
→ x̃b | x̃a ∈ Z̃i or x̃b ∈ Z̃i}

∪ {x̃a
o
→ z̃i | x̃a

o
→ x̃b ∈ T̃ with x̃b ∈ Z̃i}

∪ {̃zi
o
→ x̃b | x̃a

o
→ x̃b ∈ T̃ with x̃a ∈ Z̃i}

Definition 9. (Valid mergable state partition). A state
partition X̃1, . . . , X̃s = {x̃11 , . . . , x̃1r }, . . . , {x̃s1 , . . . , x̃sr }

of the failure identifier F̃Irest = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉
is called mergably valid iff the following condition
holds:

valid(X̃1, . . . , X̃s) ↔ merg(X̃i) ∀i = 1 . . . s and
∀X̃i, ∀x̃i, x̃ j ∈ X̃i, ∀o ∈ Σ̃

x̃i
o
→ x̃′i ∈ T̃ and x̃ j

o
→ x̃′j ∈ T̃

implies ∃X̃ j s.t. x̃′i , x̃
′
j ∈ X̃ j

The mergable state partition condition verifies that the
resulting finite state machine is deterministic. Refer-
ring to the failure identifier F̃IB depicted in Figure 2,
the state partition {b0, b1}, {b2, b3}, {b4}, {b5, b6}, {b7} is
mergably valid. The merge of these states leads to the
finite state machine F̃IZ which is shown in Figure 4.

Proposition 1. (Merging states leads to a failure iden-
tifier)
Let Z̃1, . . . , Z̃s = {x̃11 , . . . , x̃1r }, . . . , {x̃s1 , . . . , x̃sr } de-
note a valid state partitioning of the failure identifier
F̃IO = 〈X̃, F̃, Σ̃, x̃o, R̃, T̃ 〉. The finite state machine

F̃Imgr = 〈Z̃, F̃, Σ̃, x̃0mgr , R̃, T̃mgr〉 derived from merging

all states of set Z̃i to state z̃i for all sets of the partition
is a failure identifier.

Proof 1.

∀S = [o1, . . . , ok] such that psbl(S )

∃p̃ = x̃0
o1
→ x̃ j1 · · ·

ok−1
→ x̃ jk−1

ok
→ x̃ jk in F̃Irest with

R̃(x̃ jk ) =
{⋃

j

Event(PF j ) |

PF1

o1
→ PF2 · · ·

ok−1
→ PFk

ok
→ x

is path in G with Start(PF1 ) = x0

}

(since F̃Irest is a failure identifier)
And therefore

∃p̃mgr = z̃0
o1
→ z̃ j1 · · ·

ok−1
→ z̃ jk−1

ok
→ z̃ jk in F̃Imgr with

x̃ ji ∈ Z̃ ji ∀x̃ ji and R̃(̃z jk ) = R̃(x̃ jk )
(see definition 9) �

Hence the size of a restricted failure identifier can
be reduced without loosing its property of efficiently
retrieving all failure sets consistent with a sequence of
observations.

Definition 10. (Reduced failure identifier). A failure iden-
tifier F̃Ired of a system G is called reduced if it does
not contain any states that can be merged.

The reduced failure identifiers of a system are not
uniquely defined. Figure 4 illustrates the smallest re-
duced failure identifiers for the system shown in Fig-
ure 1.

q0
{}

o1

q1
{f1}, {f2}

o2

q2
{f1}, {f2}

o3
q3

{f2}
o3

o4
o3

o4

q4
{f2}, {f1, f2}

o5

o6

z0
{}

o1 z2
{f1}, {f2}o2

z1
{f1}, {f2}

o3
z3

{f2}

o3

o3 o4

o4

z4
{f2}, {f1, f2}

o5

o6

Figure 4. Smallest reduced failure identifiers F̃IQ (on
top) and F̃IZ (on bottom) for the system depicted
in Figure 1.

6. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In order to determine the decrease of size of a reduced
failure identifier in comparison to the classical diag-
noser we chose to implement the state merge proce-
dure symbolically in C++ using the efficient symbolic
framework presented in (Schumann et al., 2004). The
procedure has been tested based on an example de-
rived from a telecommunication network application
consisting of a switch and two control stations (Rozé
and Cordier, 2002).



In this example, there are 9 observable events, 6
failure types, and 8 other unobservable events. The
switch model has 12 states and 18 transitions, the
primary control station 13 states and 15 transitions
and the backup control station 19 states and 28 tran-
sitions. This yields a global model of 1062 states and
2911 transitions. In order to observe how the two ap-
proaches scale, two “lighter” versions of the example,
where groups of failure types are fusioned are also
considered. This yields 3 different Versions V1 . . .V3,
with a number of failure types ranging from 3 to the
original 6.

Figure 5 shows for each of the 3 example versions the
size of the diagnoser in comparison to the size of a
reduced failure identifier. In all cases the reduced fail-
ure identifiers are considerably smaller. This results on
the one hand from the reduction of the model’s states
and transitions and on the other hand from the fact
that the states of the failure identifier are only labelled
by the consistent failure sets and not additionally by
the system states as it is the case for the diagnoser
state labels. Note that the diagnoser reduction is con-
siderably faster than its computation. Thus the size
decrease gained from the reduction can be achieved
at little expense.

Figure 5. Size of reduced failure identifiers in compar-
ison to the diagnoser size

7. CONCLUSION AND FUTURE WORK

The paper defines a finite state machine, the failure
identifier, that allows the efficient identification of
possible failures that are consistent with a sequence
of observations. The failure identifiers of a system
are not uniquely determined and can differ in the
size and the set of observable sequences for which
they are defined. It has been shown how the restricted
failure identifier can be derived, that is the smallest
failure identifier that is defined only for the observable
behaviour of the system and it has been described
how a failure identifier with even smaller size can be
obtained by merging states and thus generalising the
observable behaviour.

In the future we plan to analyse whether one can
compute a reduced failure identifier with minimal size

based on the restricted failure identifier and aim to
determine heuristics for the state merge that will lead
to the efficient computation of small reduced failure
identifiers.

Furthermore we plan to extend the failure identifier
approach to a decentralised setting. Rather than pre-
computing the failure identification information for
the whole system, we plan to precompute them for lo-
cal subsystems and to combine this information as the
observations become available. By relying on failure
identifiers rather than diagnosers we want to reduce
the space and possibly the time 4 complexity of the
diagnosis approach.

REFERENCES

Christensen, Soren, Hans Huttel and Colin Stirling
(1992). Bisimulation equivalence is decidable for
all context-free processes. In: International Con-
ference on Concurrency Theory. pp. 138–147.

Gold, E. M. (1972). System identification via state
characterization. Automatica 8, 621–636.

Hennessy, J. and R. Milner (1985). Algebraic laws
for nondeterminism and concurrency. Journal
of the Association for Computing Machinery
32(1), 137–161.

Lamperti, G. and M. Zanella (2001). Diagnosis of
active systems. Kluwer Academic Publishers.

Milner, R. (1980). A calculus of communicating sys-
tems. Lecture Notes in Computer Science.

Park, D. M. R. (1981). Concurrency and automata
on infinite sequences. Lecture Notes in Computer
Science 104, 167–183.

Pencolé, Y., M. O. Cordier and L. Rozé (2002). A de-
centralized model-based diagnostic tool for com-
plex systems. International Journal on Artificial
Intelligence Tools 11(3), 327–346.

Rozé, L. and M. O. Cordier (2002). Diagnosing
discrete-event systems : extending the ”diagnoser
approach” to deal with telecommunication net-
works. Journal on Discrete-Event Dynamic Sys-
tems : Theory and Applications 12(1), 43–81.

Sampath, M., R. Sengupta, S. Lafortune, K. Sinnamo-
hideen and D. Teneketzis (1996). Failure diagno-
sis using discrete event models. IEEE Transac-
tions on Control Systems Technology 4(2), 105–
124.

Schumann, A., Y. Pencolé and S. Thiébaux (2004).
Diagnosis of discrete-event systems using bi-
nary decision diagrams. In: 15th International
Workshop on Principles of Diagnosis – DX’04.
pp. 197–202.

Zad, S. H., R. H. Kwong and W. M. Wonham (2003).
Fault diagnosis in discrete-event systems: Frame-
work and model reduction. IEEE Transactions on
Automatic Control 48(7), 1199–1212.

4 Due to the smaller model size (in comparison to the diagnoser)
more local models can be merged off-line, which leads to a decrease
in time complexity (Pencol é et al., 2002).


