
Diagnosis of Discrete-Event Systems
using Binary Decision Diagrams
Anika Schumann1, Yannick Pencoĺe1 and Sylvie Thiébaux1,2

Abstract. We improve the efficiency of Sampath’s diagnoser ap-
proach by exploiting compact symbolic representations of the sys-
tem and diagnoser in terms of binary decision diagrams. We present
an algorithm for synthesising the symbolic diagnoser with promising
results on test cases derived from a telecommunication application.

1 INTRODUCTION

Approaches to the diagnosis of discrete-event systems usually suf-
fer from poor on-line performance or space explosion. At one ex-
tremity of the spectrum lie on-line simulation-based approaches such
as [1]. Given a decentralised model of the system (a model of the
individual components and their interactions as communicating au-
tomata), these approaches track the possible system behaviors as ob-
servations become available. The reliance on a decentralised model
makes them space efficient, but the set of possible behaviors is so
large that on-line computation is time inefficient. At the other extrem-
ity lie diagnoser-based approaches [12]. They compile, off-line, a
centralised system model into another finite state machine (the diag-
noser) which efficiently maps observations to possible failures. Here
the space required by the centralised model, let alone that required
by the diagnoser, constitutes a major problem.

Clearly, approaches that offer a more appropriate space/time trade-
off are needed. One current research direction focuses on extending
the diagnoser approach to handle decentralised models and produce
local subsystem diagnosers whose results are merged at run-time
[10]. The present paper follows a different path: we remain within
the classical diagnoser approach [12], but use symbolic representa-
tions based on binary decision diagrams (BDDs) [3] to improve its
space efficiency and scale up to larger systems. BDDs are compact
representations of boolean functions which enable the encoding and
implicit manipulation of sets of states and transitions, without the
need for explicit enumeration. In a range of areas, such as verifica-
tion, controler synthesis, or AI planning, BDD-based representations
have given rise to algorithms capable of exploiting the structure of
the system, resulting in significant space and time gains. Experiments
with our approach on test cases derived from a telecommunication
network application yield similarly promising results.

The idea of exploiting symbolic representations in the context of
discrete-event systems diagnosis is not new [4, 8, 15], but has tradi-
tionally been applied to different problems, e.g. checking diagnos-
ability or off-line diagnosis, using off-the-shelf model-checkers. An

1 Computer Sciences Laboratory, The Australian National Uni-
versity, Canberra, ACT 0200, Australia. email:{anika, pencole,
thiebaux}@csl.anu.edu.au.

2 Knowledge Representation & Reasoning Program, National ICT Australia.
NICTA is funded through the Australian Government’sBacking Australia’s
Ability initiative, in part through the Australian Research Council.

0

1
a1

a2

b1

a3

b2

b3

Figure 1. BDD for (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3). Dash = low edges.

exception is [9], which recasts a form of diagnoser synthesis in terms
of polynomial equations. In contrast to that work, we focus on the
BDD-level encoding of the system and diagnoser, and describe, di-
rectly in terms of BDD operations, fully implemented algorithms for
synthesizing the symbolic diagnoser.

2 BINARY DECISION DIAGRAMS

We start with a brief introduction to BDDs. An ordered binary deci-
sion diagram (OBDD, or BDD for short), is a rooted directed acyclic
graph representation of a boolean functionBn 7→ B. As can be seen
in Figure 1, a BDD has one or two leaf nodes marked with 0 or 1, and
a set of internal nodes each marked with one of the function’s vari-
ables. Internal nodes have two outgoing edges:high and low edge.
Given a truth assignment of the variables, the value of the function is
determined by traversing the BDD top down and following the high
edge if the variable marking the current node is true, and the low
edge otherwise. The function’s value istrue if the leaf marked 1 is
reached, andfalseotherwise.

OBDDs obey the constraint that every path in the graph respects
a linear ordering of the variables. A BDD is also reduced such that
(1) no two distinct nodes are marked with the same variable and have
identical low and high successors, and (2) no node has identical low
and high successors. These reductions make the BDD a canonical
representation of the function given the chosen variable ordering,
hence checking equality is a constant time operation. In fact, any
boolean operationf ? g on two BDDsf andg can be carried out in
O(|f ||g|) at most. Furthermore, while the BDD representation still
requires exponential space inn in the worst case, the reductions often
make the BDD of a function exhibiting some structure much smaller
than its disjunctive normal form (DNF). The size of a BDD is sensi-
tive to the chosen variable ordering. Finding an optimal ordering is
a co-NP-complete problem [3], but fortunately, standard BDD pack-
ages feature good heuristics [14].

BDDs are useful in compactly representing finite state machines.
The set of eventsΣ = {σ1, . . . , σp} labelling the transitions can be
encoded withdlog2 pe boolean variablesbΣ

1 . . . bΣ
dlog2 pe. Similarly,

the set of statesX = {x1, . . . , xm} can be encoded withdlog2 me

boolean variablesbX
1 . . . bX

dlog2 me; the initial state of the automaton
is then simply given by a boolean function (represented by a BDD)
over these state variables. For instance, in a 6 state automaton, the
statex2 would be given by the conjunction¬bX

3 ∧ bX
2 ∧ ¬bX

1 , and
the set of states{x2, x5} by the DNF¬bX

3 ∧ bX
2 ∧ ¬bX

1 ∨ bX
3 ∧

¬bX
2 ∧ bX

1 . Transitions require the introduction of another set of
dlog2 me boolean variablesbX′

1 . . . bX′

dlog2 me, called the primed vari-
ables, which are used to represent the target states of the transitions.
Each transition can then be given as a conjunction involving the state
variables, event variables, and primed variables. For instance, in an
automaton of 6 states and 3 events, the transitionx2

σ1→ x5 would be
given by¬bX

3 ∧ bX
2 ∧ ¬bX

1 ∧ ¬bΣ
2 ∧ bΣ

1 ∧ bX′
3 ∧ ¬bX′

2 ∧ bX′
1 . The

transition relation, i.e, a set of transitions, can then be given e.g., as
a DNF which the BDD data structure will hopefully greatly reduce.

3 OVERVIEW OF THE APPROACH

Our aim is to exploit BDD representations of finite state machines
to improve the efficiency of Sampath’s diagnoser approach [12], and
in particular its space requirements. Starting from a symbolic system
representation in terms of BDDs, we want to compute a symbolic
diagnoser using BDD operations.

Sampath’s framework starts with a set of individual component
models. These are composed to obtain a centralised global system
model from which the diagnoser is computed. Here, to simplify the
computation of our symbolic diagnoser and its presentation, we find
it useful to add an intermediate step to the process: instead of com-
puting the diagnoser directly from the global model, we first abstract
the global model from irrelevant features such as unobservable non-
failure events and order of failures.

The three next sections detail the three steps of our approach: com-
putation of the global model by composition of the individual com-
ponent models, abstraction of the global model, and computation of
the diagnoser from the abstracted model. The various steps are for-
malised into logic, suitable for the derivation of BDD algorithms. For
each step, we describe the mapping between the logical specification
and the algorithm. This description constitutes an informal proof of
correctness.

4 COMPONENT AND GLOBAL MODELS

Let Gi = 〈Xi, Σo, Σu, Σf , x0i , Ti〉, i = 1 . . . n, be n individ-
ual component models characterised by their set of statesXi =
{x1i , . . . , xmi}, their set of eventsΣ = {σ1, . . . , σp} which is par-
titioned into observableΣo and unobservableΣu events, their set of
failure eventsΣf ⊆ Σu, their initial statex0i , and their transition
relationTi ⊆ Xi × Σ ×Xi. For simplicity of the presentation, and
without loss of generality, we assume that all components share the
same event setΣ. The report [13] shows how to handle events that
are local to components and take advantage of them to speed up com-
putations.

The global modelG = 〈X, Σo, Σu, Σf , x0, T 〉 is defined as the
synchronous composition of the component models:X = Πn

i=1Xi,
x0 = Πn

i=1x0i , T = {(x1, . . . , xn)
σ→ (x′1, . . . , x

′
n) | ∀i ∈

1 . . . n, xi
σ→ x′i ∈ Ti}. The composition ensures that a transition

is possible in a given global state(x1, . . . , xn) iff it is possible in the
respective individual states of all components.

Now, symbolically, the individual components are en-
coded as3 Gi = 〈bX

i , bX′
i , bΣ, Xi, Σo, Σu, Σf , x0i , Ti〉,

3 We give identical names to sets and to the corresponding boolean functions,

Algorithm 1 ComputeGlobal(Gi, i← 1 . . . n)

1: INPUT: symbolic component modelsGi

2: x0 ← ∧n
i=1x0i

3: X ← x0

4: newX ← x0

5: T ← false
6: while IsDef(newX) do
7: newT ← newX ∧ ∧n

i=1Ti

8: T ← T ∨ newT
9: newX ←Swap(Extract(newT, bX′

), bX , bX′
)

10: newX ← newX ∧ ¬X
11: X ← X ∨ newX
12: end while
13: OUTPUT: symbolic reachable global statesX and transitionsT

IsDef(bdd) returns true iff bdd does not representfalse.
Extract(bdd, B) deletes from bdd all occurrences of variables
not in B. Swap(bdd, {a1, . . . , ak}, {b1, . . . , bk}) renames, inbdd,
variableai with bi, i = 1 . . . k, and vice versa.

where bX
i = {bx

1i
, . . . , bx

dlog2 miei
} are the state variables,

bX′
i = {bx′

1i
, . . . , bx′

dlog2 miei
} are the primed variables,

bΣ = {bσ
1 , . . . , bσ

dlog2 pe} are the event variables,Xi is the

boolean function overbX
i characterising the set of states,Σo, Σf ,

and Σu are the boolean functions overbΣ characterising the set
of observable, unobservable, and failure events,x0i is the boolean
function overbX

i characterising the initial state, andTi is the boolean
function overbX

i ∪bΣ∪bX′
i characterising the transition relation. The

symbolic global modelG = 〈bX , bX′
, bΣ, X, Σo, Σu, Σf , x0, T 〉

is easy to define:bX = ∪n
i=1b

X
i , bX′

= ∪n
i=1b

X′
i , X = ∧n

i=1Xi,
x0 = ∧n

i=1x0i , andT = ∧n
i=1Ti. The latter conjunction implements

strong synchronisation by guaranteeing that the event variables,
which are shared across components, have consistent values.

In practice, it is very useful to restrictX (resp.T) to the states
(resp. transitions) that are reachable fromx0, as these form a small
subset of the above. Algorithm 1 computes such anX andT . X and
the setnewX of newly reached states are first initialised tox0 (lines
2-4). Then until a fixed point is reached (line 6), the set of transitions
newT that can be fired from the newly reachable states are computed
and added toT (lines 7-8). The set of newly reachable states is com-
puted by extracting the set of target states from those transitions. The
variables used to encode those states need to be renamed (unprimed),
before the new states are added toX (lines 9-11).

5 ABSTRACTED MODEL

In order to speed up the computation of the diagnoser, we first ab-
stract the global model in the following way. We note that only ob-
servable events and possible sets of failures that have occurred before
an observable event have an impact on the diagnoser. In particular,
the construction of the diagnoser does not depend on the kind of un-
observable events which are not failures, on the order of successive
failures, and on the global states encountered within a sequence of
unobservable events. Therefore, our abstracted global model consists
only of those states that are the origin or target of an observable tran-
sition (and of the initial state). It has two types of transitions: (1) the
observable transitions of the global model, and (2) failure transitions,
each of which is labelled with asetof failure events that has occurred

e.g.Σo, X, etc. This should not cause confusion.

2

on some path from the origin state of the transition to its target state.
Figure 2 gives an example.

s1

s2

u1

s3
f1

s4

f2

f2

s5

f1
u1

f2

f1
s6

o1

s1 s5
{f1}

{f1, f2}
s6

o1

Figure 2. Global model (top) and its abstraction (bottom).
Σo = {o1}, Σu = {u1}, Σf = {f1, f2}

Formally, letG = 〈X, Σo, Σu, Σf , x0, T 〉 be the global model.
The abstracted model is̃G = 〈X̃, Σ̃o, F̃ , x̃0, T̃o, T̃F 〉, where the set
of abstracted states is̃X = {x0} ∪ {x ∈ X | ∃σ ∈ Σo,∃x′ ∈
X s.t.x

σ→ x′ ∈ T or x′
σ→ x ∈ T}, the set of observable transition

labels isΣ̃o = Σo, the set of failure transition labels is̃F = 2Σf ,
the initial state is̃x0 = x0, the set of observable transitions is̃To =
{x σ→ x′ ∈ T | σ ∈ Σo andx, x′ ∈ X̃}, and the set of failure
transitionsT̃F ⊆ X̃ × F̃ × X̃ is defined as follows:

{x1
l→ xk | (∃x, x′ ∈ X̃,∃σ, σ′ ∈ Σ̃o such that

(x1 = x̃0 or x
σ→ x1 ∈ T̃o) andxk

σ′
→ x′ ∈ T̃o), and

(∃σ1 . . . σk ∈ Σu,∃x2 . . . xk−1 ∈ X such that

∀j = 1 . . . k, xj

σj→ xj+1 ∈ T andσj ∈ l iff σj ∈ Σf)}

In the symbolic setting, the abstracted model̃G =

〈bX , bX′
, bΣ, bF , X̃, Σ̃o, F̃ , T̃o, T̃F 〉 is encoded using the same

boolean variables as the global model and an additional|Σf |
variablesbF = {bf

1 , . . . , bf
|Σf |
} needed for the failure transition

labels inF̃ . There is a one to one correspondence between failure
events and these variables, and a failure transition label is encoded
as a conjunction of literals overbF whose signs depend on whether
the corresponding failure belongs to the label.

The BDDsX̃, T̃o and T̃F representing the abstracted states and
transitions are computed using Algorithms 2 and 3. ComputingT̃o

andX̃ is straightforward (lines 2-4 of Algorithm 2). Next, all origin
states of failure transitions are computed by retrieving all states that
are origins of unobservable transitions in the global modeland that
are target states of observable transitions (line 5). Finally, for each of
those origin states, all failure transitions are determined and added to
T̃F (lines 6-10). This is achieved by retrieving each origin statex̃ in
turn and calling the function GetFailTrans of Algorithm 3. Treating
states separately is necessary to avoid the introduction of additional
boolean variables. This ensures that memory usage during execution
is commensurable with that needed to represent the result. Recall
indeed that our aim is to minimise space requirements which are the
bottleneck for these off-line algorithms.

GetFailTrans(x̃) in Algorithm 3 returns a BDDbddT x̃ represent-
ing the abstracted failure transitions originating atx̃. In the algo-
rithm, bddP represents information about irredundant4 prefixes of
paths of the global model originating at̃x and free of observable
events. This information is encoded as a set of triples〈σ, x′, l〉 con-

4 A path prefix is redundant iff it contains the same transitionx
σ→ x′ more

than once.

Algorithm 2 AbstractGlobal(G=〈bX, bX′
, bΣ, X, Σo, Σu, Σf , x0, T 〉)

1: INPUT: symbolic global modelG
2: T̃o ← T ∧ Σo

3: bddTarg ←Swap(Extract(T̃o, b
X′

), bX , bX′
)

4: X̃ ← x0∨ Extract(T̃o, b
X) ∨ bddTarg

5: bddOrig ←Extract(T ∧ Σu, bX) ∧ (x0 ∨ bddTarg)
6: while IsDef(bddOrig) do
7: x̃←GetDisj(bddOrig)
8: bddOrig ← bddOrig ∧ ¬x̃
9: T̃F ← T̃F ∨GetFailTrans(x̃)

10: end while
11: OUTPUT: symbolic abstracted states̃X; transitionsT̃o andT̃F

GetDisj(bdd): returns an arbitrary disjunct of the DNF represented
by bdd.

sisting of the last event, the last state, and the set of failures encoun-
tered along the prefix. This is initialised with prefixes of length 1, that
is with transitions originating at̃x, and with an empty failure label
(line 3). For those triples such thatσ is a failure event, the event is
added tol (lines 7-13). This is done by examining the subsetsbddS
of triples ofbddP labelled with each givenσ in turn (lines 8-9), re-
trieving the variablebf

j such thatj is the index ofσ in the event set
(line 10), and setting this variable to true by removing it from and
adding a positive occurrence of it tobddS (line 11). In lines 12-15,
the prefixes so modified are added to the setbddN of pairs〈x′, l〉
consisting of the end state and label ofnewirredundant prefixes (the

transitionx̃
l→ x′ is not yet inbddT x̃). In line 16, these prefixes are

further extended for the next iteration step: the unobservable tran-
sitions originating atx′ are triggered and the corresponding triples

stored inbddP . Once all transitions̃x
l→ x′ are computed, only

those such thatx′ is the origin of an observable transition are kept
and returned (line 18).

Algorithm 3 GetFailTrans(x̃)

1: INPUT: abstracted statẽx
2: bddT x̃← false
3: bddP ← Abstract(x̃ ∧ T ∧ Σu, bX)∧ bddEmptyLabel
4: while IsDef(bddP) do
5: bddN ← bddP ∧ ¬Σf

6: bddP ← bddP ∧ ¬bddN
7: while IsDef(bddP) do
8: bddS ←Extract(GetDisj(bddP), bΣ) ∧ bddP
9: bddP ← bddP ∧ ¬bddS

10: bf
j ←GetFailVar(bddS)

11: bddS ←Abstract(bddS, {bf
j }) ∧ bf

j

12: bddN ← bddN ∨ bddS
13: end while
14: bddN ←Extract(bddN, bX′

∪ bF) ∧ ¬bddT x̃
15: bddT x̃← bddT x̃ ∨ bddN
16: bddP ←Abstract(Swap(bddN, bX , bX′

) ∧ T ∧ Σu, bX)
17: end while
18: bddT x̃← bddT x̃∧Swap(Extract(T̃o, b

X) bX , bX′
) ∧ x̃

19: OUTPUT: setbddT x̃ of abstracted failure transitions originat-
ing atx̃

bddEmptyLabel= ∧|Σf |
i=1 ¬bf

i . Abstract(bdd, B) deletes frombdd all
occurrences of variables inB. GetFailVar(bdd) returns the boolean
variablebf

j such thatj is the index of the (unique) failure event en-
coded bybdd.

3

6 DIAGNOSER

A diagnoser is a deterministic finite state machine whose transitions
correspond to observations and whose states correspond to the set of
system states and failures that are consistent with the observations.
More explicitly, its transitions are labelled with observable events,
and its states are labelled with sets of pairs(v, l) denoting a state and
a failure label of the abstracted model. On-line, the diagnoser effi-
ciently maps observations to sets of possible system states and fail-
ures: it suffices to follow the path labelled by the actual observations
and look up the label of the resulting diagnoser state.

Formally, letG̃ = 〈X̃, Σ̃o, F̃ , x̃0, T̃o, T̃F 〉 be the abstracted model
and letV = {x̃0} ∪ {x′ ∈ X̃ | ∃σ ∈ Σ̃o,∃x ∈ X̃ s.t.x

σ→ x′ ∈
T̃o} be the set of target states of observable transitions. The diagnoser
is Ĝ = 〈X̂, Π̂, Σ̂, x̂o, R̂, T̂ 〉, whereX̂ = {x̂1, . . . , x̂q} is the set of
diagnoser states,̂Π = V × F̃ is the set of pairs that can belong
to diagnoser state labels,Σ̂ = Σ̃o is the set of diagnoser transition
labels,x̂0 is the initial diagnoser state,̂R ⊆ X̂ × Π̂ is the diagnoser
state labelling relation which associates a state to the pairs in its label
and verifiesR̂(x̂0) = {(x̃0, ∅)} (by abuse of notation, we use the
function notationR̂(x̂) for the label of statêx), andT̂ ⊆ X̂× Σ̂×X̂

is the set of diagnoser transitions, which verify:x̂
σ→ x̂′ ∈ T iff

R̂(x̂′) =

{(v′, l′) | ∃(v, l) ∈ R̂(x̂) such that either
v

σ→ v′ ∈ T̃o andl′ = l, or

∃v l′′→ v′′ ∈ T̃F and∃v′′ σ→ v′ ∈ T̃o andl′ = l ∪ l′′}
In practice, we need of course to restrict the set of states and transi-
tions to those reachable from the initial diagnoser state, i.e., to restrict
attention to the smallest̂X containingx̂0 and closed under̂T ; how-
ever, for readability, we here again spare the reader with the logical
definition of closure.

In the symbolic setting, the diagnoserĜ =

〈bS , bS′
, bX , bX′

, bΣ, bF , X̂, Π̂, Σ̂, x̂o, R̂, T̂ 〉 is encoded using
the same boolean variables as the abstracted model, together with
an additional2dlog2 qe variablesbS = {bs

1, . . . , b
s
dlog2 qe} and

bS′
= {bs′

1 , . . . , bs′

dlog2 qe} needed to encode diagnoser states in
their role of origin and target of transitions. A complication here is
that the numberq of diagnoser states, and therefore the number of
variables needed, isa priori unknown and even difficult to estimate.
In the worst caseq = 2|Π̂| and therefore2|V ||F̃ | new variables are
theoretically needed. However, in practice,q will be much smaller
and introducing that many variables will lead to an unnecessarily
costly representation. To remedy this, we start with one single vari-
able to encode the initial diagnoser state, and continually increase
the number of variables, as needed during execution. Every time a
new variablebs

j is needed, we update all BDDs containing variables

in bS (resp.bS′
) by conjoining them with¬bs

j (resp.¬bs′
j).

Algorithms 4 and 5 show the symbolic computation of the set of
statesX̂, and of the labelling and transition relationŝR and T̂ of
the diagnoser. In Algorithm 4, the initial diagnoser statex̂0 is first
computed (line 2) using the function GetNewState which returns the
encoding of a new diagnoser state and if needed, handles the intro-
duction of new variables tobS as discussed above. Then, the diag-
noser labelling relation̂R, the set of diagnoser stateŝX, and the set
newX̂ of diagnoser states from which transitions still need to be
computed are initialised (lines 3-5). Until a fixed point is reached, a
new diagnoser statêx is retrieved fromnewX̂ (lines 7-8), and in-
formationbddTrans x̂ about all diagnoser transitions originating at
x̂ is computed (line 9) using the function GetTrans given in Algo-

rithm 5. GetTrans returns a BDD representing the set of all observ-
able events involved in these transitions, together with the labels of
the respective diagnoser states reached. To finish processingx̂, we
first need to obtain all the system states and sets of failures consis-
tent with each single observable eventbddSingleObs in turn; these
will form the labelbddLab x̂′ of the diagnoser statêx′ successor of
x̂ via bddSingleObs (lines 10-14). Then,̂x′ is computed using the
function GetExistingState (line 15). This function returns the diag-
noser state with labelbddLab x̂′ if it exists, and false otherwise.5 In
the latter case (line 16), a new state needs to be introduced (line 17)
and X̂, newX̂ and R̂ updated. Finally, the computed transition is
added toT̂ (line 22).

Algorithm 4 BuildDiag(G̃=〈bX, bX′
, bΣ, bF, X̃, Σ̃0, F̃ , x̃0, T̃o, T̃F 〉)

1: INPUT: symbolic abstracted model̃G
2: x̂0 ← GetNewState()
3: R̂← x̂0 ∧ x̃0 ∧ bddEmptyLabel
4: X̂ ← x̂0

5: newX̂ ← x̂0

6: while IsDef(newX̂) do
7: x̂←GetDisj(newX̂)
8: newX̂ ← newX̂ ∧ ¬x̂
9: bddTrans x̂← GetTrans(x̂)

10: bddObs←Extract(bddTrans x̂, bΣ)
11: while IsDef(bddObs) do
12: bddSingleObs←GetDisj(bddObs)
13: bddObs← bddObs ∧ ¬bddSingleObs
14: bddLab x̂′←Abstract(bddSingleObs∧ bddTrans x̂, bΣ)
15: x̂′ ← GetExistingState(bddLab x̂′)
16: if ¬IsDef(̂x′) then
17: x̂′ ← GetNewState()
18: R̂← R̂ ∨ (x̂′ ∧ bddLab x̂′)
19: X̂ ← X̂ ∨ x̂′

20: newX̂ ← newX̂ ∨ x̂′

21: end if
22: T̂ ← T̂ ∨ (x̂ ∧ bddSingleObs∧Swap(x̂′, bS , bS′

))
23: end while
24: end while
25: OUTPUT: symbolic diagnoser states, labelling and transition re-

lationsX̂, R̂, T̂

GetTrans, shown in Algorithm 5, takes a diagnoser statex̂ as in-
put, and returns the setbddTrans of observable events labelling the
diagnoser transitions originating atx̂ together with the sets of la-
bels of the resulting diagnoser states. To computebddTrans, we
are interested in two types of transitions of the abstracted model:
the observable transitionsbddObsTrans originating at any of the
system states in the labelbddLabel of x̂, and two step transitions
bddFailTrans consisting of a failure transition originating at any
of the system states inbddLabel followed by an observable tran-
sition. The algorithm starts by computing the labelbddLabel of x̂
(line 2), andbddObsTrans (line 3), that is the set{(σ, (v′, l)) |
∃v s.t.(v, l) ∈ R̂(x̂) andv

σ→ v′ ∈ T̃o}. (lines 4-16), that is

the set{(σ, (v′, l ∪ l′′)) | ∃v, v′′ s.t.(v, l) ∈ R̂(x̂), v
l′′→ v′′ ∈

T̃f , andv′′
σ→ v′ ∈ T̃o}. This is done as follows. For each fail-

ure setbddFailures in x̂’s labelbddLabel (lines 5,6 and 8), the set

5 The symbolic implementation of GetExistingState does not enumerate in-
dividual states: the set of existing states whose label is a subset of the given
one is computed, and then filtered to select those states whose label is a
superset of the given one; see [13] for details.

4

bddStates of system states paired with these failures inbddLabel
is determined (lines 7 and 9). Then, the setbddNewFailTrans of
failure transitions originating at those states in the abstract model
are triggered,bddFailures is added to the failure set labelling
each of those transitions, and the resulting transitions are added to
bddFailTrans (lines 10-13). After all first steps of the two-step
transitions have been considered, the second steps are considered by
triggering observable transitions in the system states resulting from
the first step (lines 15-16). Finally, the function returns the union of
bddObsTrans andbddFailTrans, with appropriate naming of the
state variables (line 17).

Algorithm 5 GetTrans(x̂)

1: INPUT: diagnoser statêx
2: bddLabel←Abstract(x̂ ∧ R̂, bS)

3: bddObsTrans←Abstract(bddLabel ∧ T̃o, b
X)

4: bddFailTrans← false
5: while IsDef(bddLabel) do
6: bddFailures←Extract(GetDisj(bddLabel), bF)
7: bddStates← bddFailures ∧ bddLabel
8: bddLabel← bddLabel ∧ ¬bddStates
9: bddStates← Extract(bddStates, bX)

10: bddNewFailTrans← bddStates ∧ T̃F

11: if IsDef(bddNewFailTrans) then
12: bddFailTrans← bddFailTrans ∨

AddFail(bddFailures, bddNewFailTrans)
13: end if
14: end while
15: bddFailTrans←Swap(Abstract(bddFailTrans, bX), bX , bX′

)

16: bddFailTrans←Abstract(bddFailTrans ∧ T̃o, b
X)

17: bddTrans←Swap(bddObsTrans∨bddFailTrans, bX , bX′
)

18: OUTPUT: setbddTrans of the observable events that can be
triggered fromx̂ together with the labels of the corresponding
target diagnoser states.

WherebddL represents a setl of failures andbddT a set{v1
l1→

v′1, . . . , vk
lk→ v′k} of failure transitions of the abstracted model,

AddFail(bddL, bddT) returns a bdd representing the set of failure

transitions{v1
l1∪l→ v′1, . . . , vk

lk∪l→ v′k}.

7 RESULTS

Our symbolic approach has been implemented in C++ on top of the
CUDD BDD package [14]. In order to compare the performance of
our algorithms with Sampath’s original approach, we used our own
enumerative implementation for two reasons: first, the original one,
the UMDES-LIB software library, was only able to compute the first
of our examples and second, it did not report the distinct space re-
quirements for the diagnoser representation. Our implementations
enable us to present experimental evidence that the symbolic ap-
proach yields important gains in time and space, taking a system con-
sisting of a switch and two control stations of the Transpac telecom-
munication network as example [11].

In this example, there are 9 observable events, 11 failure types,
and 8 other unobservable events. The switch model has 12 states and
18 transitions, the primary control station 13 states and 15 transi-
tions and the backup control station 19 states and 28 transitions. This
yields a global model of 1062 states and 2911 transitions. In order to
observe how the two approaches scale, we also considered “lighter”

versions of the example, where groups of failure types are fusioned.
This yields 5 different VersionsV1 . . . V5, with a number of failure
types ranging from 3 to the original 11. Table 1 shows the number of
states and transitions of the diagnoser for the various versions.

Table 1 Diagnoser size

V1 V2 V3 V4 V5

|X̂| 353 921 2500 4355 18474
|T̂ | 2183 5774 16530 31024 120698

Experiments were run on a 1GHz pentium III with 512 Mbytes
of memory. The top chart in Figure 3 compares the time taken by
the symbolic and enumerative methods to produce the diagnoser. Af-
ter 2 days of computation, the enumerative approach was unable to
compute a diagnoser for the two larger versions, while the symbolic
approach remained feasible. In order to determine the space require-
ments for the enumerative diagnoser representation for these exam-
ples, we retrieved Sampath’s diagnoser on the basis of the symbolic
one. This was done by examining the paths of the BDDs used to rep-
resent the diagnoser.

Figure 3. Time and space performance comparison

The bottom chart in Figure 3 compares the space needed to store
the resulting diagnoser.6 The superiority of the symbolic method in-
creases with the model size, and exceeds an order of magnitude for
the largest version. From the results, it can be conjectured that the
space requirements of the symbolic approach for large models will
often only represent a neglectable portion of those of the enumerative

6 Given the space requirements to represent one BDD node, the size of the
symbolic diagnoser was determined by counting the nodes of the BDDs
representing the diagnoser.

5

setting. [13] shows that this remains true even if we omit the system’s
states in the labels of the diagnoser states.

We found that, for both approaches, most of the space was used
to store labels. In particular, our symbolic encoding only performs
marginally better than the enumerative approach with respect to stor-
ing diagnoser transitions. This is due to the fact that the boolean
variables introduced to represent transition sets allow the represen-
tation of all transitions that are theoretically possible, while in prac-
tice, the diagnoser is deterministic and not all observations are pos-
sible in each given diagnoser state. For instance, the diagnoser for
versionV5 only contains 0.004% of the theoretically possible transi-
tions. [13] discusses alternative encodings which may remedy some
of these problems at the expense of computation time.

Finally, it is worth mentioning that the symbolic representation
appears to preserve the real-time property of the diagnoser for on-
line diagnosis. We found that there was little variation in diagnosis
time across the different example versions, and in our experiments,
the time taken to treat 1000 observations never exceeded 100 ms.

8 CONCLUSION, RELATED & FUTURE WORK

We have presented a symbolic framework based on binary decision
diagrams for the diagnosis of discrete-event systems. The framework
enables the synthesis of a symbolic version of Sampath’s diagnoser
[12], while requiring considerably lower space and time than the enu-
merative approach. This results from the fact that BDDs are partic-
ularly suitable to compactly represent the large sets of system states
and failures labelling the diagnoser states.

Our framework is not limited to fault diagnosis using the diag-
noser approach. In [13], we also give algorithms for checking diag-
nosability, as well as fault diagnosis algorithms based on all the mod-
els presented here: abstracted model, global model, and component
model. While the diagnoser yields much superior diagnosis time per-
formance7, the ability to diagnose based on the other models is also
important since the diagnoser will not always be computable. In par-
ticular, the abstracted model appears to be an interesting alternative
to the diagnoser.

In the past, off-the-shelf symbolic model-checkers have been used
for failure diagnosis by Cordier and Largouët [8] and for checking di-
agnosability by Cimatti and colleagues [4]. In [8], the model checker
is the diagnoser, so to speak. It checks whether traces of the system
exist which satisfy a temporal logic formula stating what the obser-
vations are and expressing constraints between their time of occur-
rence. While this approach is very attractive for off-line diagnosis,
it is much less suited to on-line diagnosis because symbolic model-
checkers do not provide facilities for incremental computation.

The work by Marchand and Rozé [9] is the closest to ours. They
present a theoretical framework for modelling a system in terms of
polynomial equations which are generalisations of boolean formulae,
and define a form of non-deterministic diagnoser within this frame-
work. The framework is state-based, meaning that observations and
failures are directly associated to states (by means of polynomial
equations). The non-deterministic diagnoser is obtained by gathering
the states of the global model into observational/failure equivalence
classes. This non-deterministic diagnoser is quite different from ours
and still requires computations of non-trivial complexity to be per-
formed on-line. Arguably, the traditional event-based view we adopt

7 For instance, we found that the ratio of the diagnosis time based on the
component model over that based on the diagnoser was even higher than
the ratio of the space occupied by the diagnoser over that occupied by the
component model

is more natural than the state-based view for modelling the systems
typically considered in model-based diagnosis. Also, our event-based
framework lends itself to a straightforward extension to intermittent
faults along the lines of [7], while extending a state-based framework
in this direction is more difficult. However, it would be interesting to
implement the approach by Marchand and Rozé ([9] does not report
any implementation), and compare the results to ours.

In the future, we plan to improve our results by experimenting with
alternative encodings described in [13], dedicated heuristics for vari-
able ordering, and transition relation partitioning techniques [5]. The
symbolic framework can also be used for decentralised diagnosis, as
in [10], and we shall investigate this possibility in detail. Another
line of work is to extend our framework to stochastic systems and
compute probability distributions on diagnoses, using for instance
algebraic decision diagrams which are generalisation of BDDs to
real-valued functions over the booleans (see e.g. [14]). Finally, in-
tegrating diagnosis and planning for repair or reconfiguration actions
is one of the most significant challenges faced by the field of model-
based diagnosis [6]. Given the recent success of planning techniques
based on symbolic model-checking (see e.g. [2]), we believe that our
framework will prove a good basis for addressing this challenge.

References
[1] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of large

active systems’,Artificial Intelligence, 110(1), 135–183, (1999).
[2] P. Bertoli, A. Cimatti, J. Slaney, and S. Thiébaux, ‘Solving power sup-

ply restoration problems with planning via symbolic model-checking’,
in Proc. 15th European Conference on Artificial Intelligence (ECAI-
02), pp. 576–580, (July 2002).

[3] R. E. Bryant, ‘Graph-based algorithms for boolean function manipula-
tion’, IEEE Transactions on Computers, C-35(8), 677–691, (1986).

[4] A. Cimatti, C. Pecheur, and R. Cavada, ‘Formal verification of diag-
nosability via symbolic model checking’, in18th International Joint
Conference on Artificial Intelligence (IJCAI-03), (2003).

[5] E. Clarke, O. Grumberg, and D. Peled,Model Checking, MIT Press,
1999.

[6] L. Console and O. Dressler, ‘Model-based diagnosis in the real world:
lessons learned and challenges remaining’, in16th International Joint
Conference on Artificial Intelligence (IJCAI-99), (1999).

[7] O. Contant, S. Lafortune, and D. Teneketzis, ‘Failure diagnosis of dis-
crete event systems: The case of intermittent faults’, inProc. 41st
IEEE Conference on Decision and Control (CDC-02), pp. 4006–4011,
(2002).

[8] M. O. Cordier and C. Largoüet, ‘Using model-checking techniques for
diagnosing discrete-event systems’, in12th International Workshop on
Principles of Diagnosis (DX-01), pp. 39–46, (2001).

[9] H. Marchand and L. Roźe, ‘Diagnostic de pannes sur des systèmesà
événements discrets: une approcheà base de mod̀eles symboliques’, in
13ème Congr̀es AFRIF-AFIA de Reconnaissances des Formes et Intel-
ligence Artificielle, pp. 191–200, (2002). In French.

[10] Y. Pencoĺe, M. O. Cordier, and L. Roźe, ‘A decentralized model-based
diagnostic tool for complex systems’,International Journal on Artifi-
cial Intelligence Tools, 11(3), 327–346, (2002).

[11] L. Roźe and M.-O. Cordier, ‘Diagnosing discrete-event systems: ex-
tending the ”diagnoser” approach to deal with telecommunication net-
works’, Journal of Discrete Event Dyanmic Systems: Theory and Ap-
plications, 12(1), (2002).

[12] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, ‘Failure diagnosis using discrete event models’,IEEE
Transactions on Control Systems Technology, 4(2), 105–124, (1996).

[13] A. Schumann,Is symbolic technology applicable to the diagnosis of
discrete event systems?, Master’s thesis, Faculty of Business, Adminis-
tration, Economics and Social Sciences, University of Rostock, 2003.

[14] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0.
University of Colorado at Boulder, 1998.

[15] J. Sztipanovits and A. Misra, ‘Diagnosis of discrete event systems using
ordered binary decision diagrams’, inSeventh International Workshop
on Principles of Diagnosis, (1996).

6

