Diagnosis of Discrete-Event Systems
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Abstract. We improve the efficiency of Sampath’s diagnoser ap-
proach by exploiting compact symbolic representations of the sys-
tem and diagnoser in terms of binary decision diagrams. We present
an algorithm for synthesising the symbolic diagnoser with promising
results on test cases derived from a telecommunication application.

1 INTRODUCTION Figure 1. BDD for (a1 Ab1) V (a2 Ab2) V (a3 A bs). Dash = low edges.

Approaches to the diagnosis of discrete-event systems usually suf-

fer from poor on-line performance or space explosion. At one exexception is [9], which recasts a form of diagnoser synthesis in terms
tremity of the spectrum lie on-line simulation-based approaches sucbf polynomial equations. In contrast to that work, we focus on the
as [1]. Given a decentralised model of the system (a model of th@DD-level encoding of the system and diagnoser, and describe, di-
individual components and their interactions as communicating aurectly in terms of BDD operations, fully implemented algorithms for
tomata), these approaches track the possible system behaviors as gpnthesizing the symbolic diagnoser.

servations become available. The reliance on a decentralised model

makes them space efficient, but the set of possible behaviors is so

large that on-line computation is time inefficient. At the otherextrem-2 BINARY DECISION DIAGRAMS

ity lie diagnoser-based approaches [12]. They compile, off-line, a

centralised system model into another finite state machine (the diagye s(tﬁrt with aobéggntrogg(l:)tl?n tOhB?D.S' An o;dgrgd b'tn ?jry dec|‘|-
noser) which efficiently maps observations to possible failures. Her ion diagram ( »or or short), is a rooted directed acyclic

the space required by the centralised model, let alone that requirecHaph representation of a boolean functigh — 5. As can be seen
by the diagnoser, constitutes a major problem. In Figure 1, a BDD has one or two leaf nodes marked with 0 or 1, and

Clearly, approaches that offer a more appropriate space/timetradg-set of internal nodes each marked with one of the function’s vari-

off are needed. One current research direction focuses on extendi les. Internal nodes have two outgoing eddgh andlow edge.

the diagnoser approach to handle decentralised models and produ ven a truth assignment of the variables, the value of the function is

local subsystem diagnosers whose results are merged at run-ti gtermlned by traversing the BDD top down and following the high

[10]. The present paper follows a different path: we remain withinedge if the v_ariable ma”‘if‘g the currt_ant _node is true, and th? low
the classical diagnoser approach [12], but use symbolic representgggehogherwt;e' Tthhe fupcﬂons valuetise if the leaf marked 1 is
tions based on binary decision diagrams (BDDs) [3] to improve tsreached, antaiseotherwise. .

space efficiency and scale up to larger systems. BDDs are compactOBDDS obey the constraint that every path in the graph respects

representations of boolean functions which enable the encoding anadllnear ordering of the variables. A BDD is also reduced such that

implicit manipulation of sets of states and transitions, without the_(l) no wo distinct nodes are marked with the same variable and have

need for explicit enumeration. In a range of areas, such as verifica{glentlcal low and high successors, and (2) no node has identical low

tion, controler synthesis, or Al planning, BDD-based representationé‘nd hlghts?ccesfs,(t);]s. f‘l’he?e reductlotr;]s mﬁke the BPEI a cz(ajnoplcal
have given rise to algorithms capable of exploiting the structure o epresentation of the function given the chosen vanable ordering,

the system, resulting in significant space and time gains. Experimen enlce CheCk'n? equality LS aé:ggstant t(ljme optte)ratlon._ lg fatt:t_, any

with our approach on test cases derived from a telecommunicatio oolean operatioff x g on two S.f andg can be carmed outin

network application yield similarly promising results. O(|f_HgD at most..Furtherm_o_re, while the BDD representation sl
The idea of exploiting symbolic representations in the context of cqulres exponential spaceririn the worst case, the reductions often

discrete-event systems diagnosis is not new [4, 8, 15], but has traginake the BDD of a function exhibiting some structure much smaller

tionally been applied to different problems, e.g. checking diagnosEhan its disjunctive normal form (DNF). The size of a BDD is sensi-

ability or off-line diagnosis, using off-the-shelf model-checkers. An tive to the chosen variable ordering. Finding an optimal ordering is
a co-NP-complete problem [3], but fortunately, standard BDD pack-
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boolean variables;" ... b7, ,,1; the initial state of the automaton  Algorithm 1 ComputeGlobal(Gi,i — 1... n)
is then simply given by a boolean function (represented by a BDD) - |NPUT: symbolic component modets;
over these state variables. For instance, in a 6 state automaton, thg. . A, z0,

statezz would be given by the conjunctionby A b3 A =bY, and 5y . T
the set of state§zo, x5} by the DNF—b3 A by’ A —b V b3 A 4 newX — o

—b3 A by . Transitions require the introduction of another set of 5. 7 false

[log, m] boolean variabley ... b7, ., called the primed vari- . while isDef(new X) do

ables, which are used to represent the target states of the transitionsg.  ,,c.07 — newX A AT

Each transition can then be given as a conjunction involving the stateg: 7 . 7 v newT

variables, event variables, and primed variables. For instance, in ary. e X —SwapExtrac{newT’, bX’)7 b, bX’)
automaton of 6 states and 3 events, the transitip®* 5 would be 10: newX «— newX A =X

given by —b3 A bX A —b A —bF ABE ALY A-bX ALY .The 111 X — X V newX

transition relation, i.e, a set of transitions, can then be given e.g., ag2: end while

a DNF which the BDD data structure will hopefully greatly reduce. 13: OUTPUT: symbolic reachable global stat¥sand transitiong”

IsDef(bdd) returns true iff bdd does not representfalse
3 OVERVIEW OF THE APPROACH Extractpdd, B) deletes frombdd all occurrences of variables
Jot in B. Swapbdd, {a1,...,ax},{b1,...,bx}) renames, irbdd,

Our aim is to exploit BDD representations of finite state machine A ;
with b;, 7 = 1...k, and vice versa.

to improve the efficiency of Sampath's diagnoser approach [12], ang@"ablea;
in particular its space requirements. Starting from a symbolic system

representation in terms of BDDs, we want to compute a symboligvhere b = {bf,,... b\, ,..1,} are the state variables,
diagnoser using BDD operations. bX' = {bf,... blig, m,,} are the primed variables,
Sampath’s framework starts with a set of individual component,z  _ {b9,... . b%g, ,n} are the event variables; is the

models. These are composed to obtain a centralised global SyStet%olean functi
model from which the diagnoser is computed. Here, to simplify the
computation of our symbolic diagnoser and its presentation, we fin

it useful to add an intermediate step to the process: instead of co inction over characterising the initial state, aiflis the boolean

uting the diagnoser directly from the global model, we first abstrac . / . . .
puting 9 y 9 ’ tunction ovehX UbZUbX " characterising the transition relation. The

the global model from irrelevant features such as unobservable non- . ¥ x5
failure events and order of failures. symbolic global modety = (b=,b% ,b%, X, X, 5, X, 20, T)

. . i hep X — o n b X pX o m X ar
The three next sections detail the three steps of our approach: cort® €8sy to defineb™ = UiL,b7, b° = UiLibi , X = ALy X,

putation of the global model by composition of the individual com- To = Ai=1Zo;, andT’ = AiL, Ti. The latter conjunction implements
ponent models, abstraction of the global model, and computation ctrong synchronisation by guaranteeing that the event variables,
the diagnoser from the abstracted model. The various steps are fofhich are shared across components, have consistent values.
malised into logic, suitable for the derivation of BDD algorithms. For  In practice, it is very useful to restrick’ (resp.T) to the states
each step, we describe the mapping between the logical specificatid[eSp- transitions) that are reachable frop as these form a small

and the algorithm. This description constitutes an informal proof ofSUbset of the above. Algorithm 1 computes suctXaandT'. X and
correctness. the sethew X of newly reached states are first initialisedrip(lines

2-4). Then until a fixed point is reached (line 6), the set of transitions

newT that can be fired from the newly reachable states are computed
4 COMPONENT AND GLOBAL MODELS and added t@" (lines 7-8). The set of newly reachable states is com-
Let G = (Xi,%0,%u,5s,20,,T3), i = 1...n, ben individ- put_ed by extracting the set of target states from those transitions._ The
variables used to encode those states need to be renamed (unprimed),
before the new states are addedidlines 9-11).

on oveb® characterising the set of states,, ¥y,
nd ¥, are the boolean functions ovéF characterising the set
f observable, unobservable, and failure evengs,is the boolean

ual component models characterised by their set of states=
{z1,,...,Tm,}, their set of event& = {o4,...,0,} which is par-
titioned into observabl&, and unobservablE., events, their set of
failure events¥; C X, their initial statexo,, and their transition 5 ABSTRACTED MODEL

relationT; C X; x ¥ x X;. For simplicity of the presentation, and

without loss of generality, we assume that all components share thg order to speed up the computation of the diagnoser, we first ab-
same event sef. The report [13] shows how to handle events that stract the global model in the following way. We note that only ob-
are local to components and take advantage of them to speed up cogervable events and possible sets of failures that have occurred before

putations. an observable event have an impact on the diagnoser. In particular,
The global modelz = (X, %,, X, X¢, 20, T) is defined as the  the construction of the diagnoser does not depend on the kind of un-
synchronous composition of the component mod&ls= II; X5,  observable events which are not failures, on the order of successive
zo = Wywo,, T = {(z1,...,2n) = (¢4,...,23) | Vi € failures, and on the global states encountered within a sequence of
1...n,z; = x; € T;}. The composition ensures that a transition unobservable events. Therefore, our abstracted global model consists
is possible in a given global state., . . ., z,) iff itis possible inthe  only of those states that are the origin or target of an observable tran-
respective individual states of all components. sition (and of the initial state). It has two types of transitions: (1) the
Now, symbolically, the individual components are en- observable transitions of the global model, and (2) failure transitions,
coded a¥ G = (b, bf/, b=, Xi, Y0, 2w, B, w0, Th), each of which is labelled with setof failure events that has occurred

3 We give identical names to sets and to the corresponding boolean functions, €.9.%,, X, etc. This should not cause confusion.



on some path from the origin state of the transition to its target state

1 X1 X2
Figure 2 gives an example. Algorlthm 2 AbstractGlobal(G=(b"7b",b7 X, X0, Xu, X¢, z0,T))

1: INPUT: symbolic global modefz

T, — T A S, B

: bddTarg —SwapExtrac{T,, bX"), b, %)

- X — a0V Extrac(T,,b%) vV bddTarg

: bddOrig —Extrac(T A L., b%) A (zo V bddTarg)

: while IsDef(bddOrig) do

z «—GetDisjbddOrig)

bddOrig < bddOrig A -z

Tr «— Tr V GetFailTrans(x)

: end while _ _ _
: OUTPUT: symbolic abstracted stat&s transitionsT, andTr

f2
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Figure 2. Global model (top) and its abstraction (bottom). GetDisjbdd): returns an arbitrary disjunct of the DNF represented

Yo ={o1},Zu = {u1},2f ={f1, f2} bybdd

Formally, letG' = (X Y. S Ef E > be the global model. sisting of the last event, the last state, and the set of failures encoun-

The abstracted model & = (X, S, F, o, To, Tr), where the set tered along the prefix. This is initialised with prefixes of length 1, that
of abstracted states ¥ — {(zo} U{z € X | 30 € 5,30 € is with transitions originating at, and with an empty failure label

y L o 0 o . (line 3). For those triples such thatis a failure event, the event is
X stz —a' € Tora’ — z €T}, the set of observable transition o yjaq'tg (lines 7-13). This is done by examining the subselds

iy i iti = = . . . . .
labels isX, = X, the set of failure transition labels 1§ = 2%/, of triples of bdd P labelled with each giver in turn (lines 8-9), re-
the |n|t|al state isvo = xo, the set of observable transitionslis = trieving the variable’/ such thatj is the index ofs in the event set
{r 2’ €T |oe,andz,a’ € X}, and the set of failure (line 10), and setting this variable to true by removing it from and
tranSItlonSTF C X x F x X is defined as follows: adding a positive occurrence of it bddS (line 11). In lines 12-15,
{z1 LN x| Bz, 2’ € X7§|gyg € 3, such that the prefixes so modified are added to thetgetN of pairs (z’, 1)
(@ Goorz Sz C T~) anda o o c f) and consisting of the end state and labehefvirredundant prefixes (the
1 = 2o 1 o k o)s . ~ 1 . . ~ . .
(301 ...0% € X, 3xa. .. xx_1 € X such that transitionz - =’ is not yetinbddT _z). In line 16, these prefixes are

further extended for the next iteration step: the unobservable tran-

sitions originating at:’ are triggered and the corresponding triples
In the symbollc settlng, the abstracted modél = stored inbddP. Once all transitiong - 2’ are computed, only

(b*, bX b=, bF, X EO,F TO,TF> is encoded using the same those such that’ is the origin of an observable transition are kept

boolean variables as the global model and an additidhgl| and returned (line 18).

variablesb” = {bf,..., ‘fz '} needed for the failure transition

Vj:l...k,x]-g:leeTandaj c Liff O']'sz)}

labels inF. There is a one to one correspondence between fallurAlgomhm 3 GetFailTrans(z)

events and these variables, and a failure transition label is encoded: INPUT: abstracted state
as a conjunction of literals ovél” whose signs depend on whether 2: bddT -z — false N
the corresponding failure belongs to the label. 3: bddP « Abstractz AT A X, b™ )A bddEmptyLabel

The BDDs X, T, andTr representing the abstracted states and 4 While IsDef(bdd P) do

transitions are computed using Algorithms 2 and 3. Compuiing 50 bddN « bddP N Xy
and X is straightforward (lines 2-4 of Algorithm 2). Next, all origin 6 bddP — bddP N —bddN
g g - Next, 9N 2. while IsDef(pddP) do

states of failure transitions are computed by retrieving all states that
are origins of unobservable transitions in the global meatel that

are target states of observable transitions (line 5). Finally, for each o{ )
those origin states, all failure transitions are determined and added to '
Tr (lines 6-10). This is achieved by retrieving each origin siaie :
turn and calling the function GetFailTrans of Algorithm 3. Treating
states separately is necessary to avoid the introduction of additiona®®
boolean variables. This ensures that memory usage during executi
is commensurable with that needed to represent the result. Rec
indeed that our aim is to minimise space requirements which are th
bottleneck for these off-line algorithms.

GetFailTranér) in Algorithm 3 returns a BDDydT = represent-
ing the abstracted failure transitions originatingzatin the algo-
rithm, bddP represents information about irredundaptefixes of
paths of the global model originating atand free of observable pddEmptyLabel= A\ b/ . Abstractbdd, B) deletes frombdd all
events. This information is encoded as a set of tripies’, 1) con-  gccurrences of variables if. GetFailVarpdd) returns the boolean

- . ) o variableb! such thatj is the index of the (unique) failure event en-
4 A path prefix is redundant iff it contains the same transitiof> x’ more coded byg)dd

than once.

bddS —Extrac({GetDisjbddP), b*) A bdd P

bddP « bddP A —bddS

b/ —GetFailVa(bdds)

bddS —Abstractbdds, {b]}) A b

12: bddN — bddN V bddS

end while

bddN —Extrac{bddN, b U bF) A —bddT T

bddT T «— bddT T V bddN

bddP —AbstractSwagbddN, b, bX') AT A S, b¥)
17: end while _

18: bddT % « bddT ZASwagExtrac(T,, b*) 6%, bX' ) AT

19: OUTPUT: sethddT -z of abstracted failure transitions originat-

ing atz

o ©®




6 DIAGNOSER rithm 5. GetTrans returns a BDD representing the set of all observ-

. ) . . . able events involved in these transitions, together with the labels of
A diagnoser is a deterministic finite state machine whose transmonﬁw respective diagnoser states reached. To finish processing

correspond to observations and whose states correspond to the Setfﬁ)ét need to obtain all the system states and sets of failures consis-

system states and failures that are consistent with the observatior}%m with each single observable evéitSingleObs in turn; these
More explicitly, its transitions are labelled with observable events, . form the labelbddLab_i’ of the diagnoser stat# succéssor of

and its states are labelled with sets of péird) denoting astateand . i bddSingleObs (lines 10-14). Thenj’ is computed using the

a failure label of the abstracted model. On-line, the diagnoser effiy o GetExistingState (line 15). This function returns the diag-
ciently maps observations to sets of possible system states and faH'oser state with labékdLab_3 if it exists, and false otherwiseln

ures: it suffices to follow the path labelled by the actual observationg,q |atter case (line 16), a new state needs to be introduced (line 17)

and look up the label of the resulting diagnoser state. and X, newX and R updated. Finally, the computed transition is
Formally, letG = (X, %,, F, %o, T, Tr) be the abstracted model 54ded tai’ (line 22).

andletV = {#}U{2' € X |Fo € 8o, Ir € X stz L2’ €
TD}: be the set of target states of observable transitions. The diagnosgigorithm 4 BuildDiag(G=(bXb*b"bY X, S0, F, %o, To, Tr))
isG = (X,1I,Y, 2., R, T), whereX = {Z1,...,2,} is the set of

diagnoser stated] = V x F is the set of pairs that can belong
to diagnoser state labels, = ¥, is the set of diagnoser transition

1: INPUT: symbolic abstracted modél
2: 550 — GetNewsStatg

o N Ao . 3: R+ %9 A xo A bddEmptyLabel
labels,z is the initial diagnoser stat& C X x II is the diagnoser 4 X — i
state labelling relation wbich associates a state to the pairs inits labef,. =~ ¢ %o
and yerlflesR(xoz = {(z0,0)} (by abuse of notation, we use the .\ 1.0 IsDef(newX) do
Tunctlon notatllonR(x) forthell.abel of sFaté:), a.mdUT cX ><.Z x X 7. & —GetDisfnewX)
is the set of diagnoser transitions, which verify:~ &' € T iff 8  newX — newX A -
R(&") = 9. bddTrans_t «— GetTran$z)
{0 3wl e R(@) such that either 10: bdd_Obs —Extrac(bddTrans_i, b*)
v %o €T, andl = I, or 11:  while IsDef(bddObs) do N
v, o~ oo = , N 12: bddSingleObs —GetDisjbddObs)
Fo =" €Trand3” =o' e Toandl’ =1UI"} 43 pgdObs — bddObs A —bddSingleObs
In practice, we need of course to restrict the set of states and transl4: bddLab_3'+—AbstractbddSingleObs A bddTrans_i, b™)
tions to those reachable from the initial diagnoser state, i.e., to restricts: &'« GetExistingStat@éddLab-z")
attention to the smallest containingzo and closed undef’; how- 16: if —IsDef(z’) then
ever, for readability, we here again spare the reader with the logical7: i’ — GetNewsStatg)
definition of closure. 18: R« RV (&' AbddLab-i")
In the symbolic setting, the diagnoserG = 19: X< XV 7' .
®5,6% b, bX v 6", X 11,5, 4., R,T) is encoded using 20: newX «— newX Vi’
the same boolean variables as the abstracted model, together wi#a: endif ,
an additional2[log, ¢] variablesb® = {b3,...,b%,,, ) and 22 T« TV (& AbddSingleObsASwag(i’, b,b™))
b = {bi‘/,...,b?iogQ 4} needed to encode diagnoser states inij; en?inv(\j/r:/i\g”e

their role of origin and target of transitions. A complication here is 25 OUTPUT: bolic di tates. labelli dt iti
that the numbey of diagnoser states, and therefore the number of ™™ lations X EyTrI‘ olic diagnoser states, labetling and transition re-

variables needed, & priori unknown and even difficult to estimate.

In the worst casg = 2!l and therefor@|V||F'| new variables are ) ) ) ]

theoretically needed. However, in practigewill be much smaller ~ GetTrans, shown in Algorithm 5, takes a diagnoser stats in-

and introducing that many variables will lead to an unnecessarilyPut, and retumns the séiid'rans of observable events labelling the

costly representation. To remedy this, we start with one single varidiagnoser transitions originating attogether with the sets of la-

able to encode the initial diagnoser state, and continually increasgels of the resulting diagnoser states. To compué] 7ans, we

the number of variables, as needed during execution. Every time @€ interested in two types of transitions of the abstracted model:

new variableb; is needed, we update all BDDs containing variablesthe observable transitiorigldObsT'rans originating at any of the

in bS (res bs’) by conjoining them with-b? (res ﬁb“?') system states in the lab&lld Label of z, and two step transitions
Algoritr?r:ns 2 a¥1d 5 Jshowgthe symbolic]comppu.tat?or; of the set OfbddFailTrans consis?ing of a failure transition originating at any

statesX, and of the labelling and transition relatiodsand 7’ of of the system states ibdLabel followed by an observable tran-

the diagnoser. In Algorithm 4, the initial diagnoser stageis first sition. The algorithm starts by computing the labetiLabel of &

. . - ;
computed (line 2) using the function GetNewState which returns thdline 2), andbddObsTrans (I:,ne 3). that is the se{(c, (v',1)) |
encoding of a new diagnoser state and if needed, handles the intrchlp st.(

v,l) € R(@)andv > o' € T,}. (lines 4-16), that is
duction of new variables t6° as discussed above. Then, the diag- the set{(o, (v/,1 U I")) | Jv,v"” s.t(v,1) € R(&), v LIV

noser labelling relatiod?, the set of diagnoser statés and the set fﬁf, andv” Z v € ﬁ,}. This is done as follows. For each fail-
newX of diagnoser states from which transitions still need to beure sethdd Failures in &'s labelbdd Label (lines 5,6 and 8), the set
computed are initialised (lines 3-5). Until a fixed point is reached, a — P— tion of GetExisinaState d " e

. . . > (1 _ . € symbpolic Implementation o etexistingostate does not enumerate In-
new diagnoser state is retrieved fromnew X (lines 7-8), and in dividual states: the set of existing states whose label is a subset of the given

formationbddT'rans_& about all diagnoser transitions originating at  one is computed, and then filtered to select those states whose label is a
Z is computed (line 9) using the function GetTrans given in Algo- superset of the given one; see [13] for details.

4



bddStates of system states paired with these failuresddd Label versions of the example, where groups of failure types are fusioned.
is determined (lines 7 and 9). Then, the &&iNew FailTrans of This yields 5 different Version¥; . .. Vs, with a number of failure
failure transitions originating at those states in the abstract modelypes ranging from 3 to the original 11. Table 1 shows the number of
are triggeredbddFailures is added to the failure set labelling states and transitions of the diagnoser for the various versions.
each of those transitions, and the resulting transitions are added to
bddFailTrans (lines 10-13). After all first steps of the two-step Table 1 Diagnoser size
transitions have been considered, the second steps are considered by ‘ Vi v, Vs V. Vs ‘
triggering observable transitions in the system states resulting frm{u X 353 921 2500 4355 1847

; $s

the first step (lines 15-16). Finally, the function returns the union o
bddObsTrans andbddFailTrans, with appropriate naming of the 2183 5774 16530 31024 1206
state variables (line 17).

Experiments were run on a 1GHz pentium Il with 512 Mbytes

Algorithm 5 GetTrans(z) of memory. The top chart in Figure 3 compares the time taken by
1. INPUT: diagnoser state the symbolic and enumerative methods to produce the diagnoser. Af-
2: bddLabel «Abstractz A R, b%) ter 2 days of computation, the enumerative approach was unable to
3: bddObsTrans —AbstractbddLabel A fo, bX) compute a diag_noser for_the two larger versions_, while the symbol_ic
4: bddFailTrans — false approach remained fea§|ble._ In order to determlng the space require-
5. while IsDef(bddLabel) do ments for thg enumerative dlagnoser representatlo.n for these exam-
6. bddFailures —Extrac{GetDisj(bddLabel), b") ples, we retrieved Sampath’s_ o_Ilagnoser on the basis of the symbolic
7. bddStates — bddFailures A bddLabel one. This was done by examining the paths of the BDDs used to rep-
8  bddLabel — bddLabel A —bddStates resent the diagnoser.

9:  bddStates — Extrac(bddStates, b™) o0000

10:  bddNewFailTrans <+ bddStates A fp [ Symbolic Diagnoser e

11:  if IsDef(pdd N ew FailTrans) then W o™

12: bddFailTrans < bddFailTrans VvV 10000 I

AddFail(bddFailures, bddN ew FailTrans)
13:  endif
14: end while 1000 — —

15: bddFailTrans —SwagAbstractbddFailTrans, b*),b%, bX")

16: bddFailTrans —AbstractbddFailTrans A T,, b™)

17: bddTrans —SwagbddObsTrans\VbddFailTrans, b, bX")

18: OUTPUT: setbddT'rans of the observable events that can be
triggered fromz together with the labels of the corresponding 104

target diagnoser states. V1 v2 I V5
example version

100 — —

diagnoser synthesis time (sec)

WherebddL represents a sétof failures andbddT" a set{v, LN

v, ..., Uk ALY v } of failure transitions of the abstracted model, o 10007 :
AddFail(bdd L, bddT') returns a bdd representing the set of failure =
[ 162.51
transitions{vy R, Byt v} g 1001
© 15.04
S 101 6.74 7.55
el
7 RESULTS % e 162
B 0.86
Our symbolic approach has been implemented in C++ on top of the E 1 gs3
CUDD BDD package [14]. In order to compare the performance of 8 WI ’
our algorithms with Sampath’s original approach, we used our own ? o v v v » v

enumerative implementation for two reasons: first, the original one,
the UMDES-LIB software library, was only able to compute the first
of our examples and second, it did not report the distinct space re- Figure 3. Time and space performance comparison

quirements for the diagnoser representation. Our implementations

enable us to present experimental evidence that the symbolic ap- o

proach yields important gains in time and space, taking a system con- The bottom chart in Figure 3 compares the space needed to store

sisting of a switch and two control stations of the Transpac telecomtN€ resulting diagnoséThe superiority of the symbolic method in-

munication network as example [11]. creases with the model size, and exceeds an order of magnitude for

In this example, there are 9 observable events, 11 failure typedh® largest version. From the results, it can be conjectured that the
and 8 other unobservable events. The switch model has 12 states afAce equirements of the symbolic approach for large models will
18 transitions, the primary control station 13 states and 15 tranSI{_)ften only represent a neglectable portion of those of the enumerative
tl_ons and the backup control station 19 states and 2_8_tran5|t|ons. TanGiven the space requirements to represent one BDD node, the size of the
yields a global model of 1062 states and 2911 transitions. In order to symbolic diagnoser was determined by counting the nodes of the BDDs

observe how the two approaches scale, we also considered “lighter” representing the diagnoser.

example version
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setting. [13] shows that this remains true even if we omit the system’ss more natural than the state-based view for modelling the systems
states in the labels of the diagnoser states. typically considered in model-based diagnosis. Also, our event-based
We found that, for both approaches, most of the space was usddamework lends itself to a straightforward extension to intermittent
to store labels. In particular, our symbolic encoding only performsfaults along the lines of [7], while extending a state-based framework
marginally better than the enumerative approach with respect to stoim this direction is more difficult. However, it would be interesting to
ing diagnoser transitions. This is due to the fact that the booleammplement the approach by Marchand and &¢®] does not report
variables introduced to represent transition sets allow the represeany implementation), and compare the results to ours.
tation of all transitions that are theoretically possible, while in prac- In the future, we plan to improve our results by experimenting with
tice, the diagnoser is deterministic and not all observations are poslternative encodings described in [13], dedicated heuristics for vari-
sible in each given diagnoser state. For instance, the diagnoser fable ordering, and transition relation partitioning techniques [5]. The
versionVs only contains 0.004% of the theoretically possible transi- symbolic framework can also be used for decentralised diagnosis, as
tions. [13] discusses alternative encodings which may remedy somie [10], and we shall investigate this possibility in detail. Another
of these problems at the expense of computation time. line of work is to extend our framework to stochastic systems and
Finally, it is worth mentioning that the symbolic representation compute probability distributions on diagnoses, using for instance
appears to preserve the real-time property of the diagnoser for oralgebraic decision diagrams which are generalisation of BDDs to
line diagnosis. We found that there was little variation in diagnosisreal-valued functions over the booleans (see e.g. [14]). Finally, in-
time across the different example versions, and in our experimentsegrating diagnosis and planning for repair or reconfiguration actions
the time taken to treat 1000 observations never exceeded 100 ms. is one of the most significant challenges faced by the field of model-
based diagnosis [6]. Given the recent success of planning techniques

based on symbolic model-checking (see e.g. [2]), we believe that our
8 CONCLUSION, RELATED & FUTURE WORK framework will prove a good basis for addressing this challenge.

We have presented a symbolic framework based on binary decision

diagrams for the diagnosis of discrete-event systems. The framewofReferences
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