
Diagnosis of Discrete-Event Systems using BDDs
Anika Schumann1, Yannick Pencoĺe1 and Sylvie Thiébaux1

Abstract. We improve the efficiency of Sampath’s diagnoser ap-
proach by exploiting compact symbolic representations of the system
and diagnoser in terms of BDDs. We show promising results on test
cases derived from a telecommunication application.

1 Introduction

Approaches to the diagnosis of discrete-event systems usually suffer
from poor on-line performance or space explosion. At one extrem-
ity of the spectrum lie on-line simulation-based approaches. Given a
decentralised model of the system (a model of the individualcom-
ponents and their interactions), these approaches track the possible
system behaviors as observations become available. The reliance on
a decentralised model makes them space efficient, but the setof pos-
sible behaviors is so large that on-line computation is timeinefficient.
At the other extremity lie diagnoser-based approaches [2].They com-
pile, off-line, a centralised system model into another finite state ma-
chine (the diagnoser) which efficiently maps observations to possible
failures. Here the space required by the centralised model,let alone
that required by the diagnoser, constitutes a major problem.

We aim to avoid this problem by representing and computing the
Sampath’s diagnoser [2] symbolically using a graphical representa-
tion of a boolean functionBn 7→ B, namely binary decision dia-
grams (BDDs) [1]. Starting from a symbolic system representation
in terms of BDDs, we compute first the according global model,ab-
stract this model and retrieve then the symbolic diagnoser from it.
The next three sections detail how each of these models can berep-
resented symbolically (see [4] for their symbolic computation).

2 Component and Global Models

Let Gi = 〈Xi, Σoi
, Σui

, Σfi
, x0i

, Ti〉, i ∈ {1, . . . , n}, be a
component model characterised by its statesXi = {x1i

, . . . , xmi
},

its eventsΣi = {σ1i
, . . . , σpi

} which are observable (Σoi
) or unob-

servable (Σui
), its failure eventsΣfi

⊆ Σui
, its initial statex0i

, and
its transition relationTi ⊆ Xi×Σi×Xi. Symbolically, each compo-
nent is encoded as2 Gi = 〈bX

i , bX′

i , bΣ
i , Xi, Σoi

, Σui
, Σfi

, x0i
, Ti〉,

where bX
i = {bx

1i
, . . . , bx

⌈log
2

mi⌉i
} are the state vari-

ables, bX′

i = {bx′

1i
, . . . , bx′

⌈log
2

mi⌉i
} are the target variables,

bΣ
i = {bσ

1i
, . . . , bσ

⌈log
2

p⌉i
} are the event variables,Xi is the boolean

function over bX
i characterising the states,Σoi

, Σfi
, and Σui

are the boolean functions overbΣ
i characterising the observable,

unobservable, and failure events,x0i
is the boolean function over

bX
i characterising the initial state, andTi is the boolean function

overbX
i ∪ bΣ

i ∪ bX′

i characterising the transition relation.

1 Computer Sciences Laboratory, The Australian National University and Na-
tional ICT Australia. email:{anika, pencole, thiebaux}@csl.anu.edu.au.

2 We give identical names to sets and to the corresponding boolean functions,
e.g.Σoi

, X, etc. This should not cause confusion.

The global modelG = 〈X, Σo, Σu, Σf , x0, T 〉 with its state set
X, its sets of observable, unobservable and failure eventsΣo, Σu

and Σf , its initial statex0 and its transition setT is defined as
synchronous composition of the component models. Its symbolic
representation isG = 〈bX , bX′

, bΣ, X, Σo, Σu, Σf , x0, T 〉, where
bX = ∪n

i=1b
X
i , bX′

= ∪n
i=1b

X′

i , X = ∧n
i=1Xi, Σo = ∨n

i=1Σoi
,

Σu = ∨n
i=1Σui

, Σf = ∨n
i=1Σfi

andx0 = ∧n
i=1x0i

. The setsbΣ

andT are more difficult to define (see [3] for details).
For example, consider the global model depicted in Figure 1:let

enc(u1) = bσ
1 ∧ bσ

2 ∧ bσ
3 , enc(x1) = bx

1 ∧ bx
2 ∧ bx

3 andenc(x′
2) =

bx′

1 ∧ bx′

2 ∧ bx′

3 denote the encoding of the eventu1, the statesx1

andx′
2 respectively, the transitionx1

u1→ x′
2 can then be encoded as

enc(x1) ∧ enc(u1) ∧ enc(x′
2). A BDD can then be generated from

the disjunction of all transitions which represents the component.

3 Abstracted Model

To speed up the computation of the diagnoser, we first abstract the
global model, since the diagnoser does not depend on unobservable
events which are not failures, on the order of successive failures, and
on the global states encountered within a sequence of unobservable
events. Hence the abstracted model consists only of those states that
are the origin or target of an observable transition (and of the initial
state). It has two types of transitions: (1) the observable transitions of
the global model, and (2) failure transitions, each of whichis labelled
with a set of failure events that has occurred on some path from the
origin state of the transition to its target state (see Fig. 1).

The abstracted model is̃G = 〈X̃, Σo, F̃ , x0, T̃o, T̃F 〉: the states
areX̃ = {x0} ∪ {x ∈ X | ∃σ ∈ Σo,∃x′ ∈ X s.t.x

σ
→ x′ ∈

T or x′ σ
→ x ∈ T}, the new failure labels arẽF = 2Σf , the observ-

able transitions arẽTo = {x
σ
→ x′ ∈ T | σ ∈ Σo ∧ x, x′ ∈ X̃}, and

the failure transitions̃TF ⊆ X̃ × F̃ × X̃ are defined as follows:

{x1
l
→ xk | (∃x, x′ ∈ X̃,∃σ, σ′ ∈ Σ̃o such that

(x1 = x̃0 or x
σ
→ x1 ∈ T̃o) andxk

σ′

→ x′ ∈ T̃o), and
(∃σ1 . . . σk ∈ Σu,∃x2 . . . xk−1 ∈ X such that

∀j = 1 . . . k, xj

σj
→ xj+1 ∈ T andσj ∈ l iff σj ∈ Σf)}

Symbolically, G̃ = 〈bX , bX′

, bΣ, bF , X̃, Σo, F̃ , x0, T̃o, T̃F 〉 is
encoded using the same boolean variables as the global modeland
an additional|Σf | variablesbF = {bf

1 , . . . , b
f

|Σf |
} needed for the

failure transition labels iñF . There is a one to one correspondence
between failure events and these variables. A failure transition label
is encoded as a conjunction of literals overbF whose signs depend on
whether the corresponding failure belongs to the label. Forinstance,
the failure label{f1} of the abstracted model shown in Figure 1 is

encoded asenc({f1}) = b
f
1 ∧ b

f
2 .

x1

x2
u1

x3
f1

x4

f2

f2

x5

f1

u1

f2

f1

x6
o1

o2

x1 x5
{f1}

{f1, f2}
x6

o1

o2

x1, {N}
x6, {f1}

x6, {f1, f2}
o1

o2

Figure 1. Global (top), abstracted (left), and diagnoser model (right).
Σo = {o1}, Σu = {u1}, Σf = {f1, f2}

4 Diagnoser

A diagnoser is a deterministic finite state machine whose transitions
correspond to observations and whose states correspond to the sys-
tem states and failures that are consistent with the observations. More
explicitly, its transitions are labelled with observable events, and its
states are labelled with sets of pairs(v, l) denoting a state and a fail-
ure label of the abstracted model. On-line, the diagnoser efficiently
maps observations to the possible system states and failures: it suf-
fices to follow the path labelled by the actual observations and look
up the label of the resulting diagnoser state.

LetV = {x̃0}∪{x′ ∈ X̃ | ∃σ ∈ Σo,∃x ∈ X̃ s.t.x
σ
→ x′ ∈ T̃o}

be the set of target states of observable transitions. The diagnoser is
Ĝ = 〈X̂, Π̂, Σo, x̂o, R̂, T̂ 〉, whereX̂ = {x̂1, . . . , x̂q} is the set of
diagnoser states,̂Π = V × F̃ is the set of pairs that can belong to
diagnoser state labels,x̂0 is the initial diagnoser state,̂R ⊆ X̂ × Π̂
is the diagnoser state labelling relation which associatesa state to
the pairs in its label and verifieŝR(x̂0) = {(x̃0, ∅)} (by abuse of
notation, we use the function notation̂R(x̂) for the label of statêx),
and T̂ ⊆ X̂ × Σo × X̂ is the set of diagnoser transitions, which
verify: x̂

σ
→ x̂′ ∈ T̂ iff

R̂(x̂′) = {(v′, l′) | ∃(v, l) ∈ R̂(x̂) such that
eitherv

σ
→ v′ ∈ T̃o andl′ = l,

or ∃v
l′′

→ v′′ ∈ T̃F and∃v′′ σ
→ v′ ∈ T̃o andl′ = l ∪ l′′}

Ĝ = 〈bS , bS′

, bX , bX′

, bΣ, bF , X̂, Π̂, Σo, x̂o, R̂, T̂ 〉 is the sym-
bolic diagnoser. It is encoded using the same boolean variables
as the abstracted model, with an additional2⌈log2 q⌉ variables
bS = {bs

1, . . . , b
s
⌈log

2
q⌉} and bS′

= {bs′

1 , . . . , bs′

⌈log
2

q⌉} needed to
encode theq diagnoser states. A complication here is that the number
q of diagnoser states, and therefore the number of variables needed, is
a priori unknown. In the worst caseq = 2|Π̂| and therefore2|V ||F̃ |
new variables are theoretically needed. However, in practice,q will
be much smaller and introducing that many variables will lead to an
unnecessarily costly representation. To remedy this, we start with one
single variable to encode the initial diagnoser state, and continually
increase the number of variables, as needed during execution. Every
time a new variablebs

j is needed, we update all BDDs containing

variables inbS (resp.bS′

) by conjoining them with¬bs
j (resp.¬bs′

j).
The diagnoser is described using two BDDs: one to represent the

transitions over the variablesbS ∪ bS′

∪ bΣ and one to represent the
information of the individual states using the variablesbS ∪bX ∪bF .

5 Results

Our approach has been implemented on top of the CUDD BDD pack-
age [5]. We present empirical evidence that our diagnoser represen-
tation yields important gains in space, taking a system consisting of

a switch and two different control stations of a telecommunication
network as example.

In this example, there are 9 observable events, 11 failure types,
and 8 other unobservable events. The switch model has 12 states and
18 transitions, the primary control station 13 states and 15transi-
tions and the backup control station 19 states and 28 transitions. This
yields a global model of 1062 states and 2911 transitions. Toobserve
how the two approaches scale, we considered “lighter” versions of
the example, where groups of failure types are fusioned. This yields
5 versionsV1 . . . V5, with a number of failure types ranging from 3
to 11. Table 1 depicts the version’s diagnoser properties and its size.

Table 1 Diagnoser properties

V1 V2 V3 V4 V5

States 353 921 2500 4355 18474
Transitions 2183 5774 16530 31024 120698

space symb. (Kb) 126 322 903 1696 7916
space enum. (Kb) 451 1531 7054 15851 172089

The superiority of the symbolic method increases with the model
size, and exceeds an order of magnitude for the largest version. From
the results, it can be conjectured that the space requirements of the
symbolic approach for large models will often only represent a ne-
glectable portion of those of the enumerative setting.

It is also worth mentioning that the symbolic representation ap-
pears to preserve the real-time property of the diagnoser for on-line
diagnosis: there was little variation in diagnosis time across the dif-
ferent example versions and the time taken to treat 1000 observations
never exceeded 100 ms.

6 Conclusion and Future Work

We have presented a symbolic framework based on BDDs for the di-
agnosis of discrete-event systems. It enables the synthesis of a sym-
bolic version of Sampath’s diagnoser [2], while requiring consider-
ably lower space and, as shown in [4], less time than the enumerative
approach. This results from the fact that BDDs are suitable to com-
pactly represent the large sets of system states and failures labelling
the diagnoser states.

Our framework is not limited to fault diagnosis using diagnosers.
In [3], we also give algorithms for checking diagnosability, as well
as fault diagnosis algorithms based on all the models presented here.
Our research agenda includes improving our results by experiment-
ing with alternative encodings described in [3], dedicatedheuris-
tics for variable ordering. We also plan to extend our framework to
stochastic system diagnosis using algebraic decision diagrams (see
e.g. [5]). Finally, we shall investigate the use of symbolicrepresenta-
tion in the context of decentralised diagnosis.

References
[1] R. E. Bryant, ‘Graph-based algorithms for boolean function manipula-

tion’, IEEE Transactions on Computers, C-35(8), 677–691, (1986).
[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and

D. Teneketzis, ‘Failure diagnosis using discrete event models’, IEEE
Transactions on Control Systems Technology, 4(2), 105–124, (1996).

[3] A. Schumann,Is symbolic technology applicable to the diagnosis of dis-
crete event systems?, Master’s thesis, University of Rostock, 2003.

[4] A. Schumann, Y. Pencolé, and S. Thiébaux, ‘Diagnosis of discrete event
systems using ordered binary decision diagrams’, inFifteenth Interna-
tional Workshop on Principles of Diagnosis, (2004).

[5] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0. Uni-
versity of Colorado at Boulder, 1998.

