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Abstract: This paper addresses the problem of the maintenance of a complex system of
heterogeneous components. With the decreasing costs of sensors, it now becomes possible to
really benefit of on-line adaptive prognostic methods in order to support the optimization of
the maintenance actions and scheduling. In this paper, we propose a generic health monitoring
architecture that encompasses the available prognostic methods and provides a common support
for the maintenance decision on a complex system. The output of this architecture takes into
account the composed nature of the system by not only providing component prognoses but also
function prognosis. In order to provide a prognosis for the whole system, component prognoses
are combined by taking into account functional dependencies in the system.

Keywords: Complex systems, dynamic degradation, maintenance engineering, probabilistic
models, supervision.

1. INTRODUCTION

Nowadays, the maintenance efficiency of systems is an
important economical and commercial issue. Maintaining
a system basically consists in replacing components that
are unable to perform their functions by new ones. In
order to optimize the maintenance cost, it is necessary to
perform preventive maintenance to prevent failure occur-
rence. Preventive maintenance actions consist in replacing
components during a scheduled maintenance phase that
are not faulty yet but that will probably become faulty
before the date of the next scheduled maintenance phase.
In the classical case, preventive maintenance is only based
on reliability analyses that do not take into account the
stress factors really influencing each component of the
system during its own life. Among stress factors are in-
cluded the system operational conditions, faults and their
consequences that can occur on a component or on any
components in its neighborhood. In order to take into
account real stress factors that occur on a component it is
required to perform dynamic preventive maintenance (also
called predictive maintenance). This maintenance must
be decided relying on an efficient and complete analysis
of the health of the system when it is operating, which
requires a diagnostic and prognostic analysis (Byington
et al. (2004)). With the help of new technologies, it is
now possible to embed within the system an on-line su-
pervision architecture that is in charge of monitoring the
system, detecting any problems, faults which require some
maintenance actions and performing prognostics.

Prognostics is the capability to predict the remaining use-
ful life (RUL for short) of systems in service: the RUL
is defined as the remaining time until the system does
not successfully fulfill its goal anymore and has to be
repaired (Engel et al. (2000)). By performing a prognostic
reasoning over the system, the maintenance architecture

establishes whether a preventive action is pertinent at a
given time. It is possible to provide an adaptive prognosis
by taking into account real stress factors that occur on the
system that will modify its RUL. Model-based prognostics
is a technically comprehensive modelling approach often
used for system failure prognostics (Valentin et al. (2003);
Kirkland et al. (2004); Vachtsevanos et al. (2006); Muller
et al. (2008)). Such a method relies on a continuous physics
model of the system degradation and provides an accurate
prognosis by identifying the possible stress causes. How-
ever, these methods consider the system as monolithic and
do not handle the composed and heterogeneous nature of
integrated systems.

In this paper, prognostics are performed in order to
support preventive maintenance decisions for aeronautical
systems 1 by developing two points:

• Characterization of Function Prognoses
Determining prognosis for a complex system consists
in determining the time until the next failure (func-
tion loss). Then system prognostics does not only
rely on component prognoses but also on function
prognoses that rely on functional dependencies in the
system. Let us consider the example of a function in
a complex system that is implemented by at least
two redundant components. If one of the components
is not able to perform its function, it may not be
replaced if the function is still performed by the other
component. From a system view, the function is not
lost.

• Presentation of a generic on-line health maintenance
architecture for a complex system.
A generic on-line health maintenance architecture for

1 This work is supported by the research project ARCHISTIC on the
maintenance of aeronautical systems in collaboration with AIRBUS
and the National Engineering School of Tarbes, FRANCE.



a complex system is presented that takes into account
the fact that the system components are heteroge-
neous, thus several prognostic methods can be used
depending on the available models and the available
sensors. This architecture provides a common repre-
sentation as prognosis output for the system functions
in order to combine them to provide the prognosis of
the complex system. Our generic architecture fits in
the Health Assessment and the Prognostics modules
of the OSA/CBM architecture introduced in Lebold
and Thurston (2001).

This paper is organized as follows. Section 2 presents the
modeling of a complex system and the formalism used in
following sections. Section 3 introduces the health mainte-
nance architecture for complex systems and its objective.
In Section 4, the prognostic function is characterized. Then
the prognosis output is defined for a component and a way
to combine component prognoses is presented in order to
get a prognosis for the whole system. Finally, Section 5
presents an example that illustrates the prognosis combi-
nation.

2. MODELING OF A COMPLEX SYSTEM

An aircraft is composed of several aeronautical systems
(braking system, air-conditioning system, ... ). Each aero-
nautical system is a complex system that can be split
down into a set of subsystems, any subsystem implement-
ing a function. A function also relies on subfunctions.
The prognosis for a complex system relies on functional
dependencies. This section introduces the formalism and
presents a model of a complex system taking the functional
dependencies into account.

2.1 Structural Model

A complex system S is composed of a set of components.
A component is a line replaceable unit (LRU for short)
which is the smallest device that can be replaced for
maintenance purposes. Let Comp denote the set of system
components. A component Ci ∈ Comp implements a set of
functionalities noted FuncTi. The set of functionalities im-
plemented by the whole system is denoted FuncT , where
FuncT =

⋃
i FuncTi. A functionality Fuj ∈ FuncTi is

an elementary function that is implemented by a com-
ponent Ci and supported by a set of resources gathered
in this component Ci. Let Ri denote the set of resources
contained in the component Ci and R the set of system
resources, where R =

⋃
i Ri. In this paper, the problem is

restricted to the case where a functionality Fuj ∈ FuncTi

is supported by only one resource in Ri. A function results
from an association of functionalities. The functions are
combined to finally perform the system functions. Let
SFunc denote the set of system functions and Func be
the set of all functions and subfunctions performed by the
system, then SFunc ⊆ Func and FuncT ⊆ Func.

Formally, the functionalities in FuncT supported by a
resource in R are defined by the mapping Fr on the set of
component resources R:{
R Fr−→ P (FuncT )
Ri

Fr−→ Fr(Ri) = {Fu1 . . . Fum},

where P (FuncT ) denotes the power set of FuncT . Now,
we redefine the system S from a functional view by taking
into account the functions it has to realize.
Definition 1. (functional system). A system S is com-
posed of a set Sys(m) of m components {C1, . . . , Cm} and
performs a set of functions SFunc:

S =< Sys(m), {SFu1, . . . , SFup} >,

where Sys(m) denotes a subsystem of m components in
Comp and {SFu1, . . . , SFup} is the set of the functions
provided by the system S, SFunc = {SFu1, . . . , SFup}.

A system S has functional requirements and provides high-
level functions {SFu1, . . . , SFup} to its environment. In
this way, a system can be viewed as a super-component
and can also be defined as a set of subsystems. Then the
role of the system is to implement higher-level functions.
The set of functions SFunc provided by a system S can
be defined as an extension Fs of the previously defined
mapping Fr. Let P (Comp) denote the power set of Comp:{

P (Comp) Fs−→ P (Func)
S

Fs−→ Fs(S) = {SFu1, . . . , SFup}
.

Figure 1 illustrates all the relationships that have been
previously defined.
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Fig. 1. System, resources and functionalities

The mapping Af defines the aggregation of the functional
dependencies existing between a system function SFui

performed by a system S and the functionalities imple-
mented by the components of this system:{

P (FuncT )
Af−→ SFunc

{Fuj , . . . , Fuk}
Af−→ Af ({Fuj , . . . , Fuk}) = SFui.

The functionality set {Fuj , . . . , Fuk} is involved in the
realization of the system function SFui. A mapping Ar

between each resource Ri ∈ R and the system S can be
defined by S = F−1

s [Af [Fr(Rj)]] = Ar(Rj). The relations
between functionalities are described in a functional model
of the system by introducing two new mappings Pred and
n/m.

2.2 Functional dependencies

A functional model describes the interactions between
functionalities in FuncT and illustrates dependencies be-
tween functions from which the system functions in SFunc
can be performed. The mapping Pred helps to repre-
sent these functional dependencies. The notation Fui ∈
Pred(Fuj) means that Fui is directly involved in the
realization of Fuj . Fui is called a predecessor of Fuj .



{
Func

Pred−→ P (Func)
Fui

Pred−→ Pred(Fui) = {Fuj , . . . , Fuk}

This mapping Pred can be used to redefine a functionality
and a system function. A function Fui in FuncT ⊆ Func
is an elementary function, a functionality, if it has no
predecessor in the functional representation of the system:

Pred(Fui) = ∅.
A functionality does not depend on the realization of
another functionality or function. A function is noted
SFui as a system function iff it is not a predecessor of
another function in the system Si:

∀Fuj ∈ Func, SFui /∈ Pred(Fuj).

The mapping Pred can be graphically represented as
a tree structure, called a function tree (Rausand and
Hoyland (2004)). The definition of the mapping Pred is
not accurate enough if a function has several predecessors,
several functions in Pred(Fui). The relation between these
predecessors is not specified. For example, if Pred(Fu1) =
{Fu2, Fu3}, the relation between Fu2 and Fu3 is not
expressed and it could be a conjunction (Fu2 and Fu3)
or a disjunction (Fu2 or Fu3 ). For this purpose another
mapping n/m is associated to Pred to clarify relations
between functions. The mapping n/m means that at least
n functions among the m functions in Pred(x) must work
to make the function x work. The n/m mapping is defined
by:{

P (Func)
n/m−→ P [P (Func)]

n/m[(Pred(Fut)] = {X ⊆ Pred(Fut) s.t. ||X|| = n}

With this notation n/m[Pred(Fut)] = {X1, X2...Xk},
each Xi is a set of n Fuj whose interaction is sufficient
to make Fut work properly and only one Xi is required
to ensure the proper work of Fut. It must be noticed that
the n/m mapping is an extension of the classical AND
and OR logical operators. Indeed, it is easy to show that:

• m/m[Pred(Fut)] = {{Fu1...Fum}} : m Fuj are
required,

• 1/m[Pred(Fut)] = {{Fu1}...{Fum}} : at least one
Fuj is required.

The sets Comp, Func and the mappings Fr, Fs, P red
derive from the knowledge available at the system design.

3. HEALTH MANAGEMENT ARCHITECTURE FOR
COMPLEX SYSTEMS

3.1 Prognosis and diagnosis

Our prognosis problem consists in predicting the remain-
ing useful life (RUL for short) of an avionic system. An
avionic system is a complex system S composed of a set
of heterogeneous components Comp (pieces of hardware,
software) that implement a set of functions Func rely-
ing on a set of resources R. Available knowledge about
each resource Ri ∈ R may be very different then several
methods for prognostics have to be used. This knowledge
is described into ageing models for each resource in R
(Wilkinson et al. (2004)). The ageing of resources is firstly
initialized to the mean time to failure (mttf for short)
associated to components in which they are contained.

Another challenge facing prognostics for complex systems
is to enhance the exploitation of current diagnostic results
for a more precise prognosis. When a fault (also called
anomaly in Brotherton et al. (2000)) occurs on one of
its components, the functioning mode of the system is
degraded and its RUL tends to drastically decrease and
does not follow the nominal ageing law anymore: this is
for instance the case when a crack occurs in a rotor blade
of an helicopter (Vachtsevanos et al. (2006)). There is thus
a direct link between the prognostic approach and the
diagnostic results which is illustrated by Figure 2.
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Fig. 2. Prognostics with diagnostic results

Diagnosis helps to estimate the deviations from the nom-
inal ageing law by detecting the fault occurrences at a
given time. The link between faults and the age of the
component resource must be taken into account in order
to provide a precise adaptive prognosis. More details about
the diagnosis influence on the RUL can be found in Ribot
et al. (2008).

3.2 Health Management and Maintenance Architecture

This section presents a generic maintenance architecture
for a complex system that takes into account the het-
erogeneity of components by finally providing the same
prognostic representation for every monitored component
in Comp. Our generic architecture for the health man-
agement and the maintenance of the complex system is
presented in Figure 3.
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Fig. 3. Health Management and Maintenance Architec-
ture.

This architecture is mainly divided into two modules. The
first module is the health monitoring module. It is in



charge of monitoring the system S when it is operating.
The second module is a decision support module: it is
in charge of deciding for maintenance actions relying on
the outputs provided by the health monitoring module
(Wilkinson et al. (2004)).

The health monitoring module is composed of four types of
submodules. The monitoring module contains the sensors
and all the communication protocols between sensors and
the other modules in order to get the necessary observa-
tions for the diagnostic and the prognostic modules.

The diagnostic modules are in charge of performing fault
diagnosis on the system S. These modules classically rely
on a knowledge about the nominal behavior of the system
components in Comp (nominal models usually coming
from the specification of the system) and some faulty
behaviors (fault models usually coming from a failure
mode and effect analysis, FMEA for short).

A local prognostic module is in charge of providing a
current prognosis about a component Ci of the system S
(see Section 4). It relies on a set of ageing models provided
by the component designers that contain the knowledge
about the resources in Ri and a specification of mission
classes. To each resource in Ri corresponds an ageing
model. An ageing model may rely on measured stress
(physical or estimation models) or not (statistical models).
Depending on the nature of the ageing models for resources
in Ri and the type of the modeled component Ci ∈ Comp,
the local prognostic module for a component Ci determines
the ageing of Ri in terms of fault probability (in terms
of number of cycles in Valentin et al. (2003)). A mission
class describes a set of possible missions that the system
S can realize: each class describes the expected stress
conditions induced by any of these missions on the ageing
of Ri if such a mission is effectively achieved. From these
fault probabilities of resources, the local prognostic module
provides failure probabilities for each functionalities in
FuncTi implemented by the component Ci. Finally, a
composition module provides prognoses of functions in
Func and the ageing probability of the whole system S
(see Section 4.3).

The decision support module is in charge of providing
maintenance recommendations. Recommendations may be
to actually perform maintenance actions by replacing
faulty components in Comp or components suspected to
fail in the future. Deciding whether a non-faulty compo-
nent Ci has to be replaced or not depends on the failure
probability of the system functions in SFunc but also
depends on the missions that the system S is supposed to
perform before the next maintenance phase and the eco-
nomical risk if the system fails before the next scheduled
maintenance phase (see Ribot et al. (2008)).

4. CHARACTERIZATION OF THE PROGNOSTIC
FUNCTION

To identify the output of the prognostic module, a generic
prognostic function has to be characterized in order to
provide component and function prognoses. The knowl-
edge about each resource in Ri is contained in ageing
models from which the failure probability of functionalities
in FuncTi can be determined at any time.

4.1 Generic representation of prognosis output as Weibull
probability density function

Due to its flexibility, the Weibull model can be used to rep-
resent the failure probability of functionalities and func-
tions implemented by the system S that rely on resources
in R (Humphrey et al. (2002) Kirkland et al. (2004)). The
prognostic function provides Weibull probability density
functions (pdf for short) for any functionality or function
in Func from which the decision support system deter-
mines the estimated time to failure (ettf for short) of
system functions in SFunc and then estimates the RUL
of the system S (see Section 3.2). The ettf is defined as
the remaining time until the next failure (function loss).

The Weibull model is often used in the field of reliability
and life data analysis (Vachtsevanos et al. (2006)) to
define a pdf. It is a parametrized probability distribution
that is able to reproduce the behavior of other statistical
distributions such as the exponential distribution and the
normal distribution:

f(t;β, η, γ) =
β

η

( t− γ

η

)(β−1)

e−( t−γ
η )β

for t ≥ 0, β ≥ 0, η ≥ 0 and γ ≥ 0. In our case, γ = 0
that means failures are assumed to occur from t = 0. The
parameter values β and η change the shape and the scale
of the Weibull pdf. The shape parameter β is determined
such that the Weibull model follows the idealized bathtub
curve from reliability (Humphrey et al. (2002); Wilkinson
et al. (2004)). In the sequel of this paper, the problem is
restricted to the useful life period of any resource in R.
The Weibull pdf models the useful life period by fixing the
value of the shape parameter β = 1, so that the Weibull
model represents an exponential law.

The ettf evaluation for any functionality or function in
Func consists in determining the time tp for which the
failure probability of the considered function has reached
a given threshold Pr:

ettf = tp so that
∫ tp

0

f(t;β, η)dt = Pr,

where Pr is a probability threshold deriving from the risk
level suitable with the next mission.

4.2 Local Prognostic Module

A local prognostic module for a component Ci aims to
determine the ettf of each functionality in FuncTi by
providing a Weibull pdf for each functionality implemented
by Ci that represents its failure probability density. The
ettf of the functionality is firstly initialized to the mttf
of the associated resource. The failure probability of a
functionality in FuncTi which relies on a resource Rj ∈ Ri

evolves according to the ageing model of the resource Rj

and the stress influencing the component Ci by which
they are implemented. A stress on a component can be
generated by a fault occurrence or an abnormal solicitation
from other parts of the system. This stress affects the
second parameter η of the Weibull pdf. The value of η
modifies the scale of the Weibull pdf from which the ettf
is evaluated. If the component Ci is highly and frequently
used, the value η decreases, then the ettf of a functionality
Fui ∈ FuncTi is shortened. If Ci is less stressed than



expected, the value η increases and the ettf may also get
longer.

The parameter η of the Weibull pdf can be determined by
a function of the stress factors extracted from the set of
available ageing models:

η = f(EF,DR, I, MC),
where EF are the environmental factors, DR is the diag-
nosis result, I represents the interactions between compo-
nents in Comp, and MC is the class of future missions
before the next maintenance phase.

Interactions between components in Comp may induce
some stress. If a component is abnormally used (or
stressed), it can have an impact on other components
in its neighborhood and then modify the ageing laws of
resources in R and the failure probability of functionalities
in FuncT . An extended FMEA could be used to quantify
these interactions.

Some future stress can also be estimated by knowing
the future missions (for instance energy required for the
next missions). The future missions are sorted into mis-
sion classes according to the stress (low/medium/high
frequency of use for instance) they induce. To each mission
class corresponds a stress level, thus a value of η.

Fig. 4. Weibull probability densities for each mission class

The local prognostic module of a component Ci computes
for each functionality in FuncTi a set of Weibull proba-
bility density functions with different values of η for the
different mission classes, as shown in Figure 4.

4.3 Composition for System RUL

The concepts introduced by the previous section are about
a component Ci and its functionalities in FuncTi. Now,
the challenge is to determine the global RUL for a specific
system (Goebel and Eklund (2007)). The RUL of a system
corresponds to the remaining time until the system could
not perform one of its functions anymore. Then the RUL
for a system S is evaluated from the ettf of its functions in
SFunc that are obtained by composing the Weibull pdf of
functionalities in FuncT provided by the local prognostic
modules.

This composition relies on functional dependencies in the
system S. According to the scheme described in Section
3.2, the computation of the RUL for a system must take
the future missions into account (stress and risk). As the
ettf for a functionality is a monotonic increasing and
positive function of the parameter η, the reasoning about
ettf can be directly done on the parameter η. The scheme

described in the sequel is valid for a given mission class and
must be repeated for each class of mission. For a function
Fui which requires that all functions in Pred(Fui) work
properly, the η of the function Fui is given by the function
in Pred(Fui) with a minimal η:

η(Fui) = Min
Fuj∈Pred(Fui)

[η(Fuj)].

On the contrary, for a function Fui which requires that
only one function in Pred(Fui) works properly, the η is
given by the function with a maximal η:

η(Fui) = Max
Fuj∈Pred(Fui)

[η(Fuj)].

More generally, if the requirements for Fui to be normal
can be written using the n/m mapping, the η of the
function Fui can be expressed as follows:

η(Fui) = Max
X∈n/m[Pred(Fui)]

[
Min

Fuj∈X
η(Fuj)

]
,

where ‖X‖ = n and ‖Pred(Fui)‖ = m.

This definition points out that it is not necessary to
calculate the ettf of each subset of n functions to get the
result. It is sufficient to consider the set of the n functions
whose η are the greatest and then to take the minimum of
their η. This technique allows to compute the η parameter
of each intermediate functions and to compose them later
till having the ettf of the system functions in SFunc.
The RUL of the system corresponds to the remaining
time until the system does not perform successfully one
of its functions then the RUL of the system is evaluated
as the minimal value of the ettf of the system functions
{SFu1, . . . , SFup}:
RUL(S) = min[ettf(SFu1), . . . , ettf(SFup)].

5. ILLUSTRATIVE EXAMPLE

Figure 5 depicts a simple but composed system with seven
LRU whose goal is to enlighten. The system is composed
of three power sources PS1, PS2 and PS3, two electrical
switches SW1 and SW2, three wires W1, W2 and W3
and a lamp. This system is modelled by
Comp = {C1, C2, . . . , C7},
R = {PS1, PS2, PS3,W1,W2,W3, SW1, SW2, Lamp},
FuncT = {Fu1, Fu2, . . . , Fu9}(respectively associated to
the nine resources),
SFu1 the system function (lighting).

PS1 PS2 PS3

C1 C2 C3

C5

SW1

SW2

W1

W2

Lamp

C7

W3

C6

SW2W2
C4

Fig. 5. Example of a lighting System

The system function SFu1 is realized by the association
of functionalities in FuncT as it is represented in Figure
6. The root node is the system function SFu1, the leaves
are the functionalities in FuncT that rely on the system
resources in R and the internal nodes are intermediate



functions (subfunctions). The mapping n/m specifies the
relation between the functions at each node in the graph-
ical representation.
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(PS1)

(PS2)

(PS3)
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Fig. 6. Functional Dependency Model

This function tree is the graphical representation of the
mapping Pred.

Pred(SFu1) = {Fu9, Fu10, Fu14},
P red(Fu14) = {Fu4, Fu13},
. . .
P red(Fu1) = ∅.

The functional relations must also be represented using
the mapping n/m as follows:

SFu1 = 3/3[Fu9, 2/3(Fu1, Fu2, Fu3)),
2/2(Fu4, 1/2(2/2(Fu5, Fu6), 2/2(Fu7, Fu8)))]

Assuming that η(PS2) = η(PS3) > η(PS1) (PS2 and
PS3 are identical and more robust than PS1) η(Wi) >>
η(SWj) (switches are more often faulty than wires)
and η(SWi) > η(Lamp) (the lamp is weaker than the
switches), we can determine that

η(Power supply) = η(PS2),

η(Power transmission) = Max[η(SW1), η(SW2)],

η(Lighting) =

Min[η(PS2),Max(η(SW1), η(SW2)), η(Lamp)].

Only two power sources are required to enlighten, then
power sources are redundant. In the case where the ettf
of Fu2 is long, the replacement of PS1 is not necessary
at the next maintenance phase, even if the ettf of Fu1

is very short, because the ettf of the system function only
depends on PS2 in this example. The value of η(Lighting)
characterizes the Weibull pdf for the function Lighting
from which the ettf of the system function and then the
RUL of the system can be determined by the Decision
Support System.

6. CONCLUSION

This paper presents a generic framework for the develop-
ment of a health monitoring architecture that supports the
preventive maintenance of complex systems with prognos-
tics. There are several key points for implementing such
an architecture.

Firstly it has to take into account the heterogeneity of
the components of the system. This heterogeneity implies
the use of different types of ageing models, prognostic
methods. However, as the prognosis for the whole system

does not only rely on component prognoses but also
on functional dependencies in the complex system, it is
necessary to get the same representation as Weibull pdf
for the function prognoses in order to combine them to
provide the system prognosis.

Secondly, as ageing models become more and more in-
formative, it is important to use specialized sensors for
prognostics in order to measure the stress factors and
provide adaptive prognosis. Some stress factors can also
be deducted from faulty behaviors which means that di-
agnostics is necessarily an input for adaptive prognostics
and that is why our architecture is strongly related to the
diagnosis module.

Finally, maintenance decisions do not only rely on failure
probability of functions but also on the expected missions
before the next scheduled maintenance phase. Depending
on the expected missions, the set of required functionalities
may change.

This paper describes a basic solution to compute prognos-
tics and determine the RUL of a complex system. Future
works will focus on two aspects. We will generalize our
approach by extending it to the case in which functionality
relies on several resources and we will take into account
the acceptable probability threshold at the system level to
compute the RUL of a system by combining the ettf .
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