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Abstract
We address the problem of fault diagnosabilty in
distributed discrete-event systems. Previous works
mainly propose different ways to check whether a
fault is diagnosable or not. Nowadays, due to the
complexity of the engineered systems, this check-
ing is not enough and a better feedback is required
in order to redesign and guarantee the diagnosabil-
ity of a fault. This paper defines the problem of
the automatic computation of design requirements
for the diagnosability of distributed discrete event
system as a cost optimization problem.

1 Introduction
We address the problem of fault diagnosis in distributed
discrete-event systems. It consists in determining the occur-
rences of fault events from observations and system knowl-
edge. This problem has been studied for many years, [Sam-
path et al., 1995], [Debouk et al., 2002], [Console et al.,
2002], [Lamperti and Zanella, 2003]. In these previous
works, the objective is to model the system and to apply mon-
itoring algorithms on it but they all share the same weakness:
none of them takes into account any diagnosablility issue
about the system. If a diagnosability analysis is performed
on the system, then the diagnosis algorithm is more efficient
and less costly because new information is taken into account
before implementing it.

In this paper, we adopt the following point of view.
Due to the complexity of new large systems and the new
requirements such as maintenance, reliability or security,
the diagnosability study must be performed at the design
stage to specify a system or to modify its specification.
One difficulty in the design of a distributed system is
that it is usually conceived by different designers which
are in charge of only a part of the system. It follows
that the integration of the different parts of the system
is very complex and has a direct impact on the difficulty
to guarantee the diagnosability objective of the whole system.

Our aim is to design a monitoring and diagnostic architec-
ture for the maintenance of aeronautical systems 1. For this

1Archistic project in collaboration with Airbus and Enit, France.

purpose, we try to determine design requirements of the dis-
tributed system as modifications which could be useful for
the different designers to improve and to guarantee some di-
agnosability objectives of the whole system. This analysis re-
lies on both the design of the distributed system itself (design
and integration of components and their communication) and
the design of the monitoring architecture in charge of diag-
nosing the system. We propose to formalize this problem as
a cost optimization problem in a distributed framework. We
then show the relationship between optimizing the cost of the
design of the distributed system and optimizing the choice for
a suitable monitoring architecture.

The paper is organized as follows. Section 2 recalls formal
background on fault diagnosis and diagnosability. Section 3
defines the optimization cost problem for guaranteeing diag-
nosability in a distributed discrete-event system. Section 4 in-
troduces a methodology that determines, given a pre-specified
system and a set of observations, a set of design requirements
for diagnosability that takes into account the inherent charac-
teristics of a distributed system and minimizes the implemen-
tation cost.

2 Background
2.1 Formal definition of the DES formalism
Our study takes place in a discrete event system framework
for model-based diagnosis as defined in [Sampath et al.,
1995]. This framework has been developed for several years
and is used for different application types (communication
networks, business processes, middleware, ...).

Let us consider a distributed system Γ composed of inter-
acting components Γ = {Γ1,Γ2, . . . ,Γn} which evolve by
the occurrence of events. We suppose that we already have a
specification of this distributed system with an initial analysis
of its behavior in the case where faults occur. This analysis is
provided by designers, such as FMEA (Failure Mode Effect
Analysis) data for example. The distributed system can then
be modelled as a set of finite state machines (see Figure 1),
each finite state machine (FSM) representing the model of a
component (i.e. a local model). Depending on the context, Γ
shall denote the system or its model.

Definition 1 (Local model) A local model Γi is a FSM Γi =
(Qi,Σi, Ti, q0i) where:
• Qi is a finite set of states;
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Figure 1: Models of system components : Γ1,Γ2,Γ3

• Σi is the set of events occurring on Γi;
• Ti ⊆ Qi × Σi ×Qi is the set of transitions;

• q0i is the initial state.

Different events can occur on a component. The set Σi
is partitioned into two disjoint sets : Σli , the set of events
local to the component Γi and Σci , the set of interactive
events which allow the communication between the different
components. Local events of Σli can be either observable or
unobservable: Σli ⊆ Σoi ∪ Σuoi , where Σoi (resp. Σuoi )
is the set of observable (resp. unobservable) events. Σfi
denotes the set of fault events occurring on the component Γi
which are to be diagnosed. Diagnosis algorithms are based
on the location of fault events on components, so we suppose
that Σfi ⊆ Σli . We authorize some interactive events to be
observable : Σci ⊆ Σoi ∪ Σuoi .

A subsystem γ is a non-empty set of m components
of the system. The behavior of the subsystem γ is de-
scribed by the prefix-closed language L(γ) which denotes
the set of all event sequences starting from the initial
state. L(γ) ⊆ Σ∗γ , where Σ∗γ denotes the Kleene closure
of the set Σγ =

⋃
Γi∈γ Σi. In the following, we note

Σfγ =
⋃

Γi∈γ Σfi , Σcγ =
⋃

Γi∈γ Σci , Σoγ =
⋃

Γi∈γ Σoi
and Σlγ =

⋃
Γi∈γ Σli . In the case where γ = Γ, previous

notations are simplified as follows: Σf = ΣfΓ , Σc = ΣcΓ ,
Σo = ΣoΓ , Σl = ΣlΓ .

The language L(γ) is generated by the FSM ‖γ‖ obtained
from the classical synchronization operation, denoted ‖ and
whose definition can be found in [Pencolé et al., 2006].
The FSM ‖γ‖ results from the synchronized product of m
component models on the set of interactive events Σcγ :
‖γ‖ = Γ1‖ . . . ‖Γm. The behavior of the system is ex-
plicitly represented by ‖Γ‖ (also called the global model in
[Sampath et al., 1995]). In the following, we will suppose
that the components of the system are live and the system is
deadlock-free. The consideration of problems directly linked
to blocked states is not in the classical theory. New defini-
tions and adhoc resolutions are required but they are not the
topic of this paper.

The second assumption is that any model Γi is globally
consistent. Before defining the global consistency of a local

model, we need to introduce the projection operation. The
projection operation can be recursively defined as follows.
Let ε denote the empty sequence in Σ∗.

Definition 2 (Projection) The projection operation PΣ′ :
Σ∗ → Σ

′∗ is such that PΣ′(ε) = ε and for all uv ∈ Σ∗,
u ∈ Σ,

PΣ′(uv) =
{
uPΣ′(v) if u ∈ Σ′
PΣ′(v) otherwise.

Definition 3 (Global consistency) A model Γi is globally
consistent if the following condition holds:

L(Γi) = PΣΓi
(L(Γ0‖Γ1‖ . . . ‖Γn)).

A model Γi is globally consistent if every transition defined
from any state of the model is fired in a global behavior of
the system. Given any model of Γ = {Γ1,Γ2, . . . ,Γn}, it is
always possible to obtain an equivalent set of models that are
globally consistent using techniques like in [Su and Wonham,
2004] for instance.

2.2 Fault diagnosis on a subsystem
The diagnosis problem is similar to the one specified in [Pen-
colé et al., 2006]. The problem resolution requires the com-
putation of a set of diagnosers. Let F be a fault event oc-
curring on a component Γi which belongs to a subsystem γ,
a diagnoser of the subsystem γ is in charge of diagnosing
F . In the following, F ∈ w denotes the occurrence of F in
the event sequence w. After any sequence of observations σ
emitted by γ, the diagnoser is a function that provides a di-
agnosis information ∆γ(F, σ) which is one of the following
three types.

• ∆γ(F, σ) = F -sure if ∀w ∈ L(γ) such that PΣoγ
(w) =

σ, F ∈ w.

• ∆γ(F, σ) = F -safe if ∀w ∈ L(γ) such that PΣoγ
(w) =

σ, F /∈ w.

• ∆γ(F, σ) = F -ambiguous if ∃w, v ∈ L(γ) such that
PΣoγ

(w) = σ and PΣoγ
(v) = σ, F ∈ w but F /∈ v.

The global diagnosis is given by {∆Γ(F, σ), F ∈ Σf}.

We represent the diagnoser function as a deterministic
FSM ∆γ(F ). This machine is built from the projection of
the model ‖γ‖ on the observable events in Σoγ . Then the
diagnoser describes the observable behavior of γ. The F -
diagnoser ∆γ(F ) can be formally defined as follows.

Definition 4 (F -Diagnoser of a subsystem γ) Given an ob-
servation set Σoγ , the F -diagnoser ∆γ(F ) of a subsystem γ
in charge of diagnosing a fault F is a deterministic finite state
machine ∆γ(F ) = (Qdγ ,Σdγ , Tdγ , qdγ0) where:

1. Qdγ ⊆ 2Qγ×{{F},∅} is the set of states which contain
the diagnosis information;

2. Σdγ = Σoγ is the set of events;

3. Tdγ ⊆ Qdγ × Σdγ ×Qdγ is the set of transitions;

4. qdγ0
= (q0, ∅) is the initial state.



The transitions of Tdγ are the transitions qdγ
e−→

q′dγ reachable from the initial state qdγ0
= {(q0, ∅)},

with qdγ = {(q1, f1), . . . (qn, fn)} and q′dγ is the set
{(q′1, f ′1), . . . (q′m, f

′
m)}, such that for any (qi, fi) ∈ qdγ there

exists a transition sequence qi
uo1−−→ x1 . . . xp−1

uop−−→ xp
e−→

q′j in the model ‖γ‖with uok ∈ Σuoγ∪Σfγ , ∀k ∈ {1, . . . , p},
∀j ∈ {1, . . . ,m} and f ′ = f ∪ ({F} ∩ {uo1, . . . , uop}}).
Two examples of diagnosers are illustrated in Figure 2.

We note Diag(qdγ) the diagnosis function associated to
the state qdγ :

1. Diag(qdγ) = F -safe if ∀(qi, fi) ∈ qdγ , fi = {F};
2. Diag(qdγ) = F -sure if ∀(qi, fi) ∈ qdγ , fi = ∅;
3. Diag(qdγ) = F -ambiguous otherwise.

2.3 Diagnosability
Diagnosability defines a property that measures the ability of
the monitoring system to diagnose faults occurring in the su-
pervised system. We rephrase the diagnosability definition
from [Sampath et al., 1995] and [Pencolé, 2005].

Definition 5 (Global diagnosability) The fault event F is
globally diagnosable in a system Γ iff

∃l ∈ N,∀u, v such that |PΣo(v)| ≥ l⇒ ∆Γ(F, σ) = F -sure,
(1)

where u is an event sequence in Γ from the initial state q0

ending with the occurrence of the fault event F to a state
qf , v is an event sequence in Γ from qf and σ is the ob-
servable sequence produced by the event sequence uv (i.e.
σ = PΣo(uv)).

Several tools allow the checking of diagnosability [Sam-
path et al., 1995], [Jiang et al., 2001], [Yoo and Lafortune,
2002].

3 Design for Diagnosability
The objective is to establish requirements to designers to en-
sure the diagnosability of the different parts of the distributed
system. Two different ways can be considered to reach the
objective. The first one consists in providing requirements for
the design of a diagnosable system (diagnosability analysis is
performed at the design stage of the system) and the second
one relies on a feedback for redesigning the system and in-
creasing the system diagnosability. Both issues are related
to the problem of assistance to the design like in [Pencolé,
2005]. In this paper, we focus on the first approach.

3.1 General requirements for diagnosability
Global diagnosability implies the use of a global centralized
diagnostic architecture on the whole system which may not
be always feasible in practice. Moreover the global diagnos-
ability checking requires the computation of the global model
‖Γ‖ which is very complex and also not always feasible. We
thus prefer to reason locally to subsystems in order to remove
this limitation for large distributed systems. We want to de-
termine subsystems that are sufficient to monitor in order to
diagnose an anticipated fault event occurring on a component.
We introduce the definition of local diagnosability based on

the fault diagnosis on a subsystem γ (see Section 2.2). This
definition can be applied to any subsystem γ.

Definition 6 (Local diagnosability) The fault event F is lo-
cally diagnosable in a subsystem γ iff

∃l ∈ N,∀u, v such that |PΣoγ
(v)| ≥ l⇒ ∆γ(F, σγ) = F -sure,

(2)
where u is an event sequence in γ from the initial state q0

ending with the occurrence of the fault event F to a state
qf , v is an event sequence in γ from qf and σγ is the ob-
servable sequence produced by the event sequence uv (i.e.
σγ = PΣoγ

(uv)).

Global diagnosability corresponds to local diagnosability
on the whole system Γ [Pencolé, 2004].

The second requirement is that the observability of the
whole system has to be live (i.e. PΣo(L(Γ)) is live) as ex-
plained in [Debouk et al., 2002]. In practice, if we want to
diagnose a fault F on a subsystem γ, we have to specify this
condition locally by the observation fairness of the system.
The observability of a system is globally fair when the ob-
servability of each component is globally fair.

Definition 7 (Observation fairness) Observation fairness
means that any observable component of the system will
always emit observations after a finite number of events.

As each observable component is live, observation fairness
holds if there is no cycle of unobservable events in the
component. It follows that for a subsystem γ, each event
sequence in L(γ) must always be continued by a finite
event sequence which ends with an observable event of γ
: ∀w ∈ L(γ), ∃p ∈ N such that ∀ww′ ∈ L(γ), |w′| =
p,∃σγ ∈ Σ∗oγ\{ε}, PΣoγ

(ww′) = PΣoγ
(w).σγ .

The following property states the relationship between lo-
cal and global diagnosability [Pencolé, 2004].

Property 1 Under the assumption of observation fairness, if
a fault F is locally diagnosable on a subsystem then F is
globally diagnosable.

By this property, it may be unnecessary to observe the
whole system to diagnose a fault F occurring on a component
of Γ. Observing only a subsystem γ can thus be sufficient.

To ensure diagnosability of the system, some modification
operations have to be considered depending on the monitor-
ing architecture. These operations consist in increasing the
subsystem observability.

3.2 Types of modifications for the system design
The first operation consists in increasing the observability by
selecting types, location and number of sensors. The added
sensors are supposed to be reliable and without noise. This
operation type tends to be similar to a sensor selection prob-
lem like in [Debouk et al., 1999] or [Jiang et al., 2003]. The
second operation acts directly on the behavior of the subsys-
tem. Based on the specification of a system (preexistent mod-
els), some possible operations are enumerated hereafter. All
these modifications are followed by their physical significa-
tion.



1. Observing an event e (that may be a fault) which occurs
in a component of the subsystem γ: e ∈ Σlγ ∩ Σoγ .
Making an event observable means to add a sensor that
is able to detect the occurrence of such an event on a
component in the studied subsystem.

2. Observing an event e which occurs on an other compo-
nent α which interacts with γ: e ∈ Σlα ∩ Σoα , where
α /∈ γ. To observe an event on a component which in-
teracts with the subsystem, we need to place a sensor on
this component and to consider a communication proto-
col in the diagnostic architecture.

3. Observing an interactive event i between the subsystem
γ and an other component α: i ∈ Σcγ∩Σcα∩Σoγ∩Σoα ,
where α /∈ γ. To make an interactive event observable
consists, for example, in putting a sensor on the commu-
nication bus between two components or on a middle-
ware.

4. Observing an event e ∈ Σlγ only if given condi-
tions cond are verified by introducing two new events
cond:e ∈ Σoγ and ¬cond:e /∈ Σoγ . To observe an event
in a given condition we need to have a specific sensor
which can be controlled on-line depending on other in-
formation. This sensor allows an active acquisition of
information like in [Thorsley and Teneketzis, 2007].

5. Adding/Deleting a transition t in the model of γ. New
sensors can be generated like an alarm sensor after a
given sequence of observations for example or new pro-
tocols can be implemented (communication protocol for
instance). Transitions are reorganized by this new im-
plementation and some of them may be deleted.

To each modification on the system is associated a cost
which is known and listed in a modification dictionary. For
example, a sensor cost depends on the type of the sensor, a
pressure sensor would be more expensive that a temperature
sensor. The cost of all modifications performed on the system
is denoted CD. Some modifications are infeasible. An infi-
nite cost is associated to such modifications like for example
the observation of some fault events.

3.3 Specification of the diagnostic architecture
Having sensors is not enough to ensure diagnosability. A di-
agnostic architecture using these sensors must be deployed
upon them and have access to them. Accessing to these in-
formation resources induces a cost CM for the monitoring
system that depends on the diagnostic architecture type. The
goal is to make the system diagnosable by optimizing the cost
of modifications listed above (for example the cost associated
to the sensor placement) but also the cost of the monitoring
system (algorithm, computational resources, sensors utiliza-
tion).

There mainly exist three different types of diagnostic archi-
tecture. In a centralized diagnostic architecture like in [Sam-
path et al., 1995], all information from the components are
centralized in the same place. In this architecture type, the
data analysis is complex because all data are collected by the
monitoring system without any processing. A lot of memory

resources and communications are necessary for the monitor-
ing system and induce the cost CM . A centralized architec-
ture may be not well suited for distributed systems. For large
distributed systems it is more natural to adopt a decentralized
or a distributed diagnostic architecture. In a decentralized di-
agnostic architecture, diagnosis decisions are sent from local
diagnosers, which do not necessary communicate with each
other. These decisions are then merged by a coordinator in
order to establish a global diagnosis and to allow to make
global decisions about the whole system. In a distributed ar-
chitecture, there is a diagnoser per component or per subsys-
tem that performs its own diagnosis. In order to get globally
consistent diagnoses, the diagnosers need to exchange a lot
of information. This communication between the diagnosers
induces a bandwidth cost which is included in the cost of the
monitoring algorithm CM .

3.4 Problem formalization like a cost optimization
problem

The goal is to give some requirements to the designers about
how to make a system diagnosable by minimizing the total
cost of operations on the system, denoted CD, and minimiz-
ing the cost of the monitoring system algorithm CM :

CG = min

p∑
i=1

(CDi + CMi
), (3)

where p is the number of faults that may occur in the system
and for which diagnosability must be guaranteed.

The challenge is to determine a trade-off between both
costs (sensor placement and the cost of the associated moni-
toring architecture).

For example, one possible modification is to observe an
event on another component in the neighbourhood. For this
purpose, the monitoring system needs to use a communica-
tion protocol to get back the observation from the component.
So we have to consider the cost CM of the algorithmic pro-
cedure to communicate information to the monitoring system
in addition to the cost directly associated to the sensor.

The second difficulty in the cost optimization problem is
that all fault events F ∈ Σf must be considered. Since
the components of the system communicate by interactive
events from Σc, it could be interesting to observe interactions
even if this event type has a high cost because its observa-
tion could bring useful information to diagnose more than one
fault event and thus reduces the monitoring cost.

4 Methodology
This section introduces a methodology that provides combin-
ing requirements and their costs for the designers. It relies on
two properties : accuracy and monotony. We show how these
properties can help to establish the methodology. In this sec-
tion, the problem is restricted to operation of the non-active
sensor placement. The only possible modification is the addi-
tion of observable events (operations from 1. to 3. in Section
3.2).



4.1 Accuracy
Independently from the diagnosability of a fault F , finding a
subsystem whose diagnosis is accurate is interesting because
it is a way to bound the size of the subsystem to monitor and
thus the cost of the monitoring algorithm CM . The diagno-
sis of a subsystem γ is said to be accurate if it is sufficient
to observe it in order to provide a diagnosis which is consis-
tent with the whole set of observations. Then the monitoring
system does not require information from any other compo-
nent. We are sure to have a diagnosis equivalent to the global
diagnosis at any time.

Accuracy is formally defined as follows. Let ∆γ(F ) be
the diagnoser of the subsystem γ and σγ = PΣoγ

(σ) be the
projection of the sequence σ ∈ Σ∗o on the observable events
of γ.

Definition 8 The diagnosis of a subsystem γ is accurate for
a fault event F ∈ Σfγ iff the diagnoser ∆γ(F ) is such that

∀σ ∈ Σ∗o, ∆Γ(F, σ) = ∆γ(F, σγ). (4)

We can always find a subsystem whose diagnosis is accu-
rate (diagnosis of the global system Γ is always accurate).
The accuracy property is defined from the global diagnosis
but there exists a sufficient local criterion to check it.

How to check accuracy
Diagnosis accuracy for a subsystem γ can be checked from
a finite state machine called an interactive diagnoser. An
interactive diagnoser ∆int

γ (F ) is an extension of the diag-
noser ∆γ(F ) defined in Section 2.2. Let us suppose an ob-
servable configuration Σoγ for the subsystem γ, the interac-
tive diagnoser ∆int

γ (F ) results from Definition 4 (see Figure
2). The interactive diagnoser is represented by the quadru-
ple ∆int

γ (F ) = (Qdiγ ,Σdiγ , Tdiγ , qdiγ0), where Σdiγ =
Σoγ ∪ Σintγ . The set Σintγ represents the events of γ which
interact with the other components : Σintγ = Σcγ ∩ ΣcΓ\γ .

Like in the classical diagnoser, the states of ∆int
γ (F ) con-

tain the diagnosis information. We recall that Diag(qdi) de-
notes the diagnosis information contained in the state qdi of
∆int
γ (F ) which is one of the following three types: F -sure,

F -safe or F -ambiguous. The determination of a subsystem
with an accurate diagnosis relies on a criterion introduced in
[Pencolé, 2005] that we recall in Property 2. The notation
qi

w−→ qj means that there exists an event sequence w from
the state qi which leads to the state qj in ∆int

γ (F ). Let S(σγ)
be the set of event sequences in ∆int

γ (F ) from qdi0 whose
observable part is exactly σγ ∈ Σ∗oγ .

Property 2 The diagnosis of a subsystem γ is accurate if
the following criterion holds: ∀σγ , ∀qdi, q′di ∈ Qdiγ such

as qdi0
w−→ qdi and qdi0

w′−→ q′di with w,w′ ∈ S(σγ),
Diag(qdi) = Diag(q′di).

Figure 2 presents the interactive diagnoser ∆int
γ (F3)

and an accurate F3-diagnoser defined on the subsystem
γ = {Γ3} for Σoγ = {e5, s3}.

Figure 2: ∆γ(F3) and ∆int
γ (F3) on the subsystem γ = {Γ3}

for Σoγ = {e5, s3}

Any event sequence in ∆int
γ (F3) projected on the observ-

able events of Σoγ leads to states which contain the same di-
agnosis information, which have the same label. For exam-
ple, every path from the initial state emitting the observable
sequence s3e5s3∗ is F3-sure and every path emitting the se-
quence e5s3e5∗ is F3-ambiguous. Observations from other
components could give information about the occurrence of
the event s4 which is not observable but the diagnosis result
provided by ∆int

γ (F3) after the occurrence of e5 does not de-
pend on the occurrence of s4. So in this case observations
from other components cannot disambiguate the diagnosis.

How to make a subsystem accurate
By property 2, we notice that if all interactions of γ with other
components are observable the previous criterion holds. Then
a simple way to make a system accurate is to observe the
interactive events [Ribot et al., 2007]. Let Σintγ be the set of
events of γ that interact with the other components : Σintγ =
Σcγ ∩ ΣcΓ\γ .

Property 3 Let γ be a subsystem, the diagnoser ∆γ(F ) is
F -accurate for all F ∈ Σfγ if Σintγ ⊆ Σoγ .

4.2 Property monotony
The methodology consists in determining a set of modifica-
tions that guarantee observability fairness, diagnosability and
accuracy. It is interesting to know if one of these properties
can be preserved after the modifications realized to guarantee
the other ones.

Definition 9 (Monotony) Let Prop be a boolean applica-
tion (∀X, P rop : P (X) 7→ {0, 1}, where P (X) represents



the power set of X), Prop is monotonic iff

∀X, Y, X ⊆ Y ⊆ X, P rop(X)⇒ Prop(Y ). (5)

This definition shows that for two sets X and Y , if X is in-
cluded in Y , any property which is verified by X is also veri-
fied by Y . In our study case X and Y are two sets of observ-
able events (X ⊆ Σ, Y ⊆ Σ). The monotony of some prop-
erties like observability, normality or diagnosability has been
studied in [Jiang et al., 2003]. The observation fairness (Def-
inition 7) is obviously a monotonic property. If any observ-
able component of the system always emits an observation in
a finite delay, the addition of new observations preserves this
property.

Property 4 If F is diagnosable with an observation set Σo
satisfying the observation fairness, then F is diagnosable
with an observation set Σ′o = Σo ∪ {o}.

Proof: By the negation of Definition 6 (Local diagnosabil-
ity), a fault F is not diagnosable for an observation set Σ′o if
there exists an infinite sequence of observations σ such that
the diagnosis ∆γ(F, σ) is F -ambiguous: there exist at least
two infinite event sequences p1 and p2, such that F is in p1
and F is not in p2, whose projection on the observations of
Σ′o is σ. Let Σo be a new set of observations deprived of the
event o : Σo = Σ′o\{o}. We prove that if F is not diagnos-
able with Σ′o, then F is not diagnosable with Σo. If o /∈ σ,
we still have the infinite sequence σ such that the diagnosis
is F -ambiguous. If o ∈ σ, as the observable configuration
Σo satisfies the observability fairness (Definition 7), then we
obtain a new infinite sequence σ\o of observations deprived
of o, such that the diagnosis is F -ambiguous as it is the
projection of p1 and p2 on the observations of Σo. �

Property 5 Accuracy is not a monotonic property.

Proof: We have shown in Figure 2 that we have an
accurate F3-diagnoser by observing {e5, s3} on Γ3. We
consider a new observation e6 on the component Γ3. Let σ1

and σ2 denote two global observable sequences in Σ∗o such
that σ1 = e6e7e7e5 and σ2 = e6e7e3e5. After observing
σ1, the global diagnosis is F -safe and after σ2, the global
diagnosis is F -sure. The projection of both event sequences
σ1 and σ2 on events of Γ3 is e6e5. Locally, σ1 and σ2 are
not distinguishable and the local diagnosis after observing
e6e5 is F -ambiguous. The local diagnosis is not equiva-
lent to the global diagnosis, then the diagnosis of F3 is not
accurate anymore by considering the observation e6 on Γ3. �

Accuracy is a non monotonic property but it can be pre-
served in the case where all interactions of the subsystem γ
with the other components are observable. In this specific
case described by Property 2, accuracy still holds after the
addition of a new observation.

Diagnosability property is always preserved by consider-
ing new observations whereas accuracy property is preserved
only in some specific cases. The monotony can help with the
sensor choice by determining some selection criteria in order
to preserve diagnosability and accuracy properties.

4.3 Algorithm
This section presents an algorithm that determines a subsys-
tem and proposes some modifications on it in order to make
a fault occurring on one of its component with an accurate
diagnosis and minimal costs. We consider a system of n
components with an initial minimal observable configuration
Σo. The system may be specified with an initial set of
sensors which are already available. The initial observable
configuration may be empty (no sensors already placed on
the system), this case is illustrated by an example in 4.4.

Algorithm 1 selects a subsystem for which the total cost
CG is minimal (between the supervision cost CM , the
cost CA to make it accurate and the cost CD to make it
diagnosable for the fault F in component Γi). It also returns
the requirements Req as a set of modifications to perform
on the subsystem. In this study, we consider modifications
from the sensor placement (i.e. operations from types 1., 2.
or 3. of Section 3.2). Since diagnosability is a monotonic
property, we look for an observable configuration that makes
the system diagnosable before considering accuracy. If the
subsystem is diagnosable, the diagnosability property will be
preserved by adding observable events to get accuracy. If the
subsystem is not diagnosable, the optimization is performed
simultaneously on both costs : CA et CD.

In the proposed algorithm, the expression
subsystem(Γi, k) denotes the set of subsystems com-
posed of k components and containing Γi. We first need
to determine if there is a solution to the sensor placement
problem. The function SolutionExistence(γ, F ) relies on
the Property 6.

Property 6 If the fault event F occurring on a component of
the subsystem γ is not diagnosable in γ by considering all
events (except the fault events) as observable, then there is no
solution for the sensor placement problem.

If all events are observable and F is not diagnosable, no
event from other components which interacts with γ will
provide more information to make F diagnosable. The only
way to make F diagnosable in the component is then to
redesign it, by considering operations of type 4. or 5. (see
Section 3.2) which is out of the topic of this methodology, in
order to have F diagnosable by considering the new set of all
observations.

The functionMonitoring induces a cost CM for the mon-
itoring of a subsystem depending on the implementation of
the diagnosis architecture as explained in 3.3. The func-
tions CheckingAccuracy and CheckingDiagnosability
are boolean. The first function applies the criterion of Prop-
erty 2 to determine if the considered subsystem is accurate or
not and the second one uses an algorithm to check the sub-
system diagnosability for a fault F as in [Jiang et al., 2001],
[Pencolé, 2004]. These algorithms are polynomial in the
number of states in ‖γ‖. The functions MakeDiagnosable
and MakeAccurate use modifications from types 1., 2. or
3. of Section 3.2 and techniques from sensor placement as in
[Jiang et al., 2003] to obtain a diagnosable subsystem γ. The



Algorithm 1 Requirements and costs for diagnosability
1: Input: F ∈ Σfi ,Γ = {Γ1, . . . ,Γn},Σo
2: C0

G ←∞; k ← 1; Req = ∅
3: repeat
4: CkG ←∞
5: for all γ ∈ subsystem(Γi, k) do
6: if ¬SolutionExistence(γ, F ) then
7: Go step 24
8: end if
9: CM ←Monitoring(γ); CD = 0; CA = 0;

10: if CheckDiagnosability(γ, F ) then
11: if ¬CheckAccuracy(γ) then
12: (Req,CA)←MakeAccurate(γ)
13: end if
14: else
15: (Req,CA, CD) ← MakeDiagnosable(γ, F ) ∧

MakeAccurate(γ)
16: end if
17: CγG ← CM + CA + CD
18: CkG ← min(CkG, C

γ
G)

19: end for
20: k ← k + 1
21: until (Ck−1

G ≥ Ck−2
G ) ∧ (k ≥ 2) ∧ (k ≤ n)

22: CG ← Ck−2
G

23: Go to step 25
24: Output: No solution
25: Output: γ; CG; Req

function MakeAccurate could also rely on Property 3. It is
a simple mean to obtain an accurate subsystem. The chosen
configurations of observations have to guarantee some prop-
erties. The observable configurations required to make a fault
F diagnosable with an accurate diagnoser has to guarantee
that properties obtained for diagnosing another fault F ′ are
not lost, hence the importance of the property monotony.

4.4 Illustrative example
We develop an example for the specification of the system
illustrated in Figure 1.

We analyze the diagnosability of the fault F1 on the com-
ponent Γ1. The initial observable configuration is empty:
Σo = ∅. We check that a solution for the sensor placement
problem exists by considering all events (except the fault F1)
as observable in the model Γ1. Then we determine the possi-
ble observable configurations to such that F1 is diagnosable
and ∆Γ1(F ) is accurate. We prefer the minimal one: Σo1 =
{e1, s2, s3}. The global cost CΓ1

G includes the cost of these
observations, (CD +CA), and the monitoring cost associated
to the component Γ1, CM . We now consider the subsystems
of two components containing Γ1 and another component in-
teracting with Γ1 : ‖γ1‖ = Γ1‖Γ2 and ‖γ2‖ = Γ1‖Γ3. In γ1,
F1 is diagnosable with an accurate diagnoser for the same
observable configuration: Σo1 = {e1, s2, s3}. But the mon-
itoring cost for two components is obviously higher than for
one component. So the global cost Cγ1

G for this subsystem
is greater than CΓ1

G . Following the same reasoning for the
subsystem γ2, we find that the global cost Cγ2

G is also greater

than CΓ1
G . Then we prefer to consider Γ1 only with the ob-

servable configuration Σo1 = {e1, s2, s3} and a cost CΓ1
G .

Here Req = {e1, s2, s3} because the observable configura-
tion was empty before starting the algorithm. We could have
obtained an observable configuration guaranteeing objectives
with a lower global cost by considering the subsystem γ1 and
γ2, if the new cost (CD + CA) for these subsystems were
smaller than the difference between the monitoring cost for
component Γ1 and the monitoring cost for γ1 or γ2.

Then we study the diagnosability of the fault F2 in the
component Γ2. The initial observable configuration is not
empty anymore: Σo = {e1, s2, s3}. We first check the so-
lution existence for the sensor placement problem by con-
sidering all events (except the fault F2) as observable in the
model of Γ2. There is no way to make F2 diagnosable in Γ2

by techniques from the sensor placement. The only solution
is to modify the structure of Γ2.

The initial observable configuration is still Σo =
{e1, s2, s3} for the diagnosability analysis of F3 in Γ3, be-
cause no more observations are brought by analysis of F2 (no
solution for diagnosing F2). There exists a solution for the
sensor placement problem in Γ3, so we determine the observ-
able configurations to make F3 diagnosable with an accurate
diagnoser : {e5, e6, s4} ∈ Σo. The global cost CΓ3

G includes
the cost of the observations and the monitoring cost associ-
ated to the component Γ3. We now consider the subsystems
of two components containing Γ3 and another component in-
teracting with Γ3: ‖γ1‖ = Γ3‖Γ1 and ‖γ2‖ = Γ3‖Γ2. In
the subsystems γ1 and γ2, F3 is diagnosable with the same
observable configuration as in the component Γ3. The mon-
itoring cost for two components is higher than for one com-
ponent, so the global costs associated to these subsystems are
higher than the previous one. The fault F3 is diagnosable in
Γ3 with Req = {e5, e6, s4} and a global cost CΓ3

G .
Finally, the distributed system is diagnosable for the

faults F1 and F3 with the observable configuration Σo =
{e1, e5, e6, s2, s3, s4} and a diagnostic architecture com-
posed of two diagnosers : one on the component Γ1 for di-
agnosing F1 and one on the component Γ3 for diagnosing
F3. Even if F2 cannot be diagnosable in the system, the
diagnosis of F2 is accurate with the chosen observable con-
figuration (all interactive events of Γ2 are observable) so we
could place another diagnoser on the component Γ2.

5 Related Work
In the literature, there are many works about fault diagnosis
and diagnosability on discrete-event systems. Our framework
is based on the classical framework defined in [Sampath et
al., 1995]. The problem of checking diagnosability has been
studied for many years and several algorithms have been pro-
posed for centralized monitoring architectures [Jiang et al.,
2001], [Yoo and Lafortune, 2002]. Our proposal relies on
the diagnosability of distributed discrete event systems that
has been defined in [Pencolé, 2004]. None of these works
propose any design feedback to increase the system diagnos-
ability.

A possible way to provide design requirements for diag-
nosability is to solve the sensor placement problem. In the



sensor placement problem, it is assumed that there always
exist modifications of type 1 (see section 3.1) by adding sen-
sors that guarantee the diagnosability of the whole system.
Moreover, the cost of the monitoring architecture is supposed
to be negligible. In [Debouk et al., 1999], the problem is to
select an optimal subset of available sensors by inferring a
set of sensor tests. This inference assumes that the cost of
n + 1 sensors is always greater than the cost of n sensors
(i.e. optimal = minimal) which may be a restrictive assump-
tion from an economical point of view. [Jiang et al., 2003]
proposes a methodology to select a minimal set of sensors to
preserve properties like normality, diagnosability and proves
that this problem is NP-hard. In [Narasimhan et al., 1998],
the problem is defined over a qualitative model and in [Torta
and Torasso, 2007] it is extended by parametrizing some dis-
criminability relations of the system. Here also, optimality is
equivalent to minimality. In [Spanache et al., 2004], the se-
lection is performed by a genetic algorithm to make a contin-
uous system more diagnosable. The cost of the sensor takes
into account the economical issue.

To our best knowledge, there is no work about improving
diagnosability in a distributed framework. In [Pencolé, 2005],
the question of improving diagnosabilty in a distributed dis-
crete event systems has been introduced. The idea is to detect
local undiagnosable scenarios that can be used to provide de-
sign requirements for the elimination of such scenarios.

6 Conclusion and Perspectives
This paper defines a framework based on a classical model-
based diagnosis formalism in order to extend automatic diag-
nosability analyses and provide design requirements for a dis-
tributed dynamic system. We propose to define the problem
as a cost optimization problem where not only the costs about
the design of the system but also the costs about the mon-
itoring architecture are taken into account in order to mini-
mize the integration costs of the distributed system. Finally,
we claim that the design requirements for diagnosability are
closely related to the design requirements for accuracy as this
property is a way to isolate a subsystem above which it is
possible to design a monitoring architecture that provides a
diagnosis as accurate as possible. In this paper, we have pre-
sented an algorithm which selects a subsystem for which the
total cost CG is minimal. The solution is not unique but the
algorithm can be extended to provide a set of possible sub-
systems which have a minimal cost. Our perspectives are to
develop this methodology in detail by integrating the differ-
ent methods (diagnosability checkers, sensor placement se-
lectors) and automatically provide design requirements for
distributed systems. Then we would like to apply this work in
the Archistic project framework for the maintenance of aero-
nautical systems.
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