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Abstract: This paper provides a new de�nition of diagnosability, that allows one to check the
diagnosability of any set of system states, and by extension of properties that depend on the
system state. The existing de�nitions and approaches for checking diagnosability apply to faults
or sets of faults, and comparison shows that the new de�nition generalizes the existing ones.
This new de�nition is applied to repair preconditions, and an example shows how this brings
complementary information compared to classical fault diagnosability.
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1. INTRODUCTION

Complex and critical systems require close supervision
when running, and the model-based community has pro-
duced a lot of work in this area. In particular, model-based
diagnosis is an increasingly active research domain, and
the problem of diagnosability analysis has been addressed
many times Sampath et al. [1995], Travé-Massuyès et al.
[2006a], Bayoudh et al. [2008]. In a diagnosable system,
although it is impossible to know the exact state of the
system, the supervisor is aware of which anticipated faults
have happened and which have not. However, the informa-
tion needed by a supervisor in such systems is not limited
to fault presence, and fault diagnosability in a system does
not guarantee that this system is easy to supervise. A
system designer hence needs to verify the diagnosability
of more than just the faults.

This paper presents a de�nition for diagnosability that can
be applied to any set of states in a system. The model
used in this paper is state-based, and most properties can
be mapped to a set of system states. This provides the
possibility to check the diagnosability of state dependent
properties. When a property is diagnosable, the system
supervisor is always able to assess whether the current
system state veri�es this property. Fault presence or ab-
sence are examples of such state dependent properties.
The de�nition can also be used to perform diagnosability
analysis for faults, in the same way as existing approaches
do. But its extension to any set of states also allows one to
check the diagnosability of many other properties, like for
example repair preconditions, which is illustrated in this
paper.

2. RELATED WORK

Diagnosis has been an active research topic for many
years and numerous approaches have been proposed to
cope with on-line as well as post mortem diagnosis Blanke
et al. [2006] Hamscher et al. [1992]. More recently a sig-
ni�cant trend has moved the activities of the diagnosis
community towards the analysis of the properties related

to diagnosis. Several pieces of work deal with de�ning
and checking diagnosability Krysander and Nyberg [2005],
Travé-Massuyès et al. [2006b], Bayoudh et al. [2008] and
a uni�ed characterization bridging state based and event
based modeled systems has been proposed Travé-Massuyès
et al. [2006a]. Diagnosability guarantees that all the an-
ticipated faulty situations of a system are discriminable
one from the other, although the state of the system
is partially observed. This property is quite important
because it indicates that the instrumentation providing
the observations about the system is well designed and
su�cient to provide an explanation of what is going on.
However, nowadays systems are required to run more and
more autonomously and they are expected to cope with
unanticipated situations by themselves, in particular when
faults occur. Hence, diagnosability has been more recently
addressed together with the requirements for repairability
in order to provide a formal de�nition for self-healability
Cordier et al. [2007].

3. EXISTING DIAGNOSABILITY APPROACHES

This section presents diagnosability approaches existing
in the literature, in order to compare them to the new
approach de�ned in section 4. All approaches rely on a
formal description of the system behaviour, in the absence
and in the presence of faults.

3.1 System representation

The system is assumed to be described by a proposition
sd which can be expressed in propositional logic. The set
of models of this proposition is denoted SD, it contains all
variable tuples satisfying sd and describes the set of all the
system states, faulty or non faulty. The set of variables is
denoted V. Some of the variables characterize the presence
or absence of faults, these are called mode variables. O
denotes the set of observable variables. Generally, mode
variables are not observable. The set OBS contains all the
possible system observations. In other words, it contains
the models of the restriction of sd to the variables in O.



3.2 Faults and fault modes

Various faults may occur in the system, modifying its
behaviour and possibly making it unable to ful�ll its
function. Several faults may be present at the same time.

A fault mode characterizes the behaviour of the system
under a given combination of faults. It assesses the pres-
ence of some faults as well as the absence of the other
faults. The normal mode is one of the many fault modes,
it assesses the absence of all faults. The occurrence of a
permanent fault changes the fault mode of the system.

A fault is characterized by one mode variable, whose value
indicates whether the fault is present or not. A fault mode
is identi�ed by a value for the tuple of all mode variables.
SDf is the description of the fault mode f , i.e. the set
of states in which the fault mode is veri�ed. As any state
belongs to exactly one fault mode, the set of all SDf is a
partition of SD, as illustrated in Fig. 1.

3.3 Projection on observable variables

An operation called projection on observable variables
and noted POBS is used. It takes as input a system state
expressed as a variable value tuple, and outputs the tuple
of observable variable values obtained in this state. For
example, if V contains 5 variables, and if the �rst and
third are observable, then:

POBS : SD → OBS
(v1, v2, v3, v4, v5)→ (v1, v3)

The inverse projection P−1
OBS

is de�ned from OBS to 2SD
as follows, s being a state and σ an observation:

P−1
OBS

(σ) = {s ∈ SD,POBS(s) = σ}

The projection POBS associates a system state to the
observation that is received under this state. The inverse
projection associates an observation to the set of all states
that may have originated this observation. When applied
to fault modes, this projection is the base of the classical
diagnosability analysis approaches.

3.4 Fault mode diagnosability

The classical de�nition for fault signature and diagnosabil-
ity is provided now. The de�nition of diagnosability states
that the system cannot produce a common observation
under two di�erent fault modes Travé-Massuyès et al.
[2006a].

De�nition 1. (Fault mode Signature and Diagnosability).
The signature of a fault mode f is the set of all possible
observations when the system state belongs to the mode
f .

Sig(f) = {POBS(s), s ∈ SDf}

A system is diagnosable if and only if, f1 and f2 being
fault modes:

∀f1, f2 f1 6= f2 ⇒ Sig(f1) ∩ Sig(f2) = ∅

When diagnosability according to de�nition 1 holds, the
observations emitted by the system always allow one to
decide which faults have happened, and which faults have
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F0 = {f0}, F1 = {f1, f2}, F2 = {f2, f3}

Fig. 1. The fault modes f0, f1, f2, f3 are not diagnosable.
The set of macrofaults {F0, F1, F2} is diagnosable.

not. But when the signatures of two fault modes intersect,
this means that there exists at least one observation
that can be emitted by the system under two di�erent
fault modes. There are two possible explanations for this
observation, and a diagnosis process would output two
diagnostic candidates.

3.5 Macrofault diagnosability

Another de�nition of diagnosability is given in Cordier
et al. [2007] as an extension of de�nition 1. It is based
on the notion of macrofault, which is a set of fault modes.
It is based on the idea that not all pairs of fault modes
need to be discriminable: fault modes that do not need
to be discriminated one from another are gathered into a
macrofault. The set of states in which the macrofault Fi

is present is noted SDFi =
⋃

f∈Fi
SDf .

This raises a signi�cant di�erence compared to the pre-
vious approach. Whereas fault modes are disjoint, macro-
faults may overlap (e.g. macrofaults {f1, f2} and {f2, f3}
share the states of f2). In the macrofault approach, it is
considered that when the system state belongs to several
macrofaults, it belongs to an overlapping fault mode, and
identifying only one of the macrofaults with certainty is
enough for the system to be diagnosable.

In this approach, only covering sets of macrofaults are
considered, i.e. sets of macrofaults such that every fault
mode belongs to a macrofault. Consequently, there is
always at least one present macrofault, whatever the
system state is.

De�nition 2. (Macrofault, Characteristic signature). A
macrofault Fi is a set of fault modes. Fi is present if and
only if the system is in one of the fault modes fj ∈ Fi.

A characteristic signature cSig(Fi) is a set of observations
that allow one to assess with certainty that the macrofault
Fi is present.

cSig(Fi) ⊆

 ⋃
fj∈Fi

(
Sig(fj)

)
\
⋃

fk /∈Fi

(
Sig(fk)

)
Note that there are several possible characteristic signa-
tures for each macrofault. If O is a characteristic signature
for a macrofault Fi, then any O′ ⊆ O is also a character-
istic signature for Fi.

De�nition 3. (Macrofault Diagnosability). A covering set
of macrofaults {Fi}, i.e. a set of macrofaults that cover all
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Fig. 2. The set of states S1 is not diagnosable. S2 is
diagnosable.

the fault modes, is diagnosable if and only if there exists a
set of characteristic signatures for these macrofaults that
form a partition of OBS.

When such a partition is established as illustrated in
Fig. 1, it is always possible to �nd out at least one present
macrofault. As a state may belong to several macrofaults,
an observation can also correspond to several macrofaults.
However, it is only needed, for each observation, to assess
with certainty that one macrofault is present.

This de�nition is a generalization of de�nition 1, since fault
modes are particular macrofaults. Because macrofaults
may overlap when they contain the same fault mode, this
de�nition applies to a greater range of sets of states than
the fault mode de�nition.

This de�nition is also less constrained than fault mode
diagnosability (de�nition 1), in the sense that in a system
verifying fault mode diagnosability, any set of macrofaults
is diagnosable.

4. DIAGNOSABILITY REVISITED

This section presents a new de�nition of diagnosability,
which applies to any state dependent property. It is based
upon the analysis of the set of states in which a property
holds. It is a generalization of existing diagnosability
de�nitions which only apply to sets of states characterized
by the presence or absence of some faults. Comparisons
show that this new de�nition is consistent with the existing
ones.

4.1 Diagnosability of a property

De�nition 4. (Diagnosable block). Let =OBS be the equiv-
alence relation de�ned on SD by:

∀s1, s2 ∈ SD, s1 =OBS s2 ⇔ POBS(s1) = POBS(s2)

Each equivalence class of =OBS is called a diagnosable block
of the system. The set of diagnosable blocks of the system
is the quotient set of SD by =OBS.

De�nition 5. (Diagnosability). A property or its core-
sponding set of states S ⊆ SD is diagnosable if and only
if S is exactly a union of diagnosable blocks.

Fig. 2 depicts a system with 7 states and 4 possible
observations. The diagnosable blocks are represented by
white sets with dashed lines. Observation o2 is received
in two di�erent states, one inside S1 and one outside.
Thus, when observing o2, a supervisor is unable to decide
whether the system is in S1 or not. On the other hand, it

is always possible to decide from the observations whether
the system state belongs to S2 or not.

4.2 Comparison with fault mode diagnosability

Since de�nition 5 applies to any set of states, it applies
in particular to fault modes. It is shown now that when
applied to fault modes, this de�nition is equivalent to
de�nition 1.

Proposition 1. A system is diagnosable according to def-
inition 1 if and only if for every fault mode f , SDf is
diagnosable according to de�nition 5.

Proof The signatures of two fault modes fi and fj in-
tersect if and only if there exists a state si ∈ SDfi and
another state sj ∈ SDfj leading to the same observation.
These two states obviously belong to the same diagnosable
block, say d, and, since SDfi and SDfj are disjoint, none is
a superset of d. Since diagnosable blocks form a partition of
SD, si (resp. sj) does not belong to any other diagnosable
block than d. Hence, SDfi (resp. SDfj) is not a union of
diagnosable blocks.

If one fault mode fi is not a union of diagnosable blocks,
then since fault modes form a partition of SD, there exists
a diagnosable block d contaning a state si of fi and at least
one state sj belonging to another fault mode fj . These two
states lead to the same observation o, which necessarily
belongs to both Sig(fi) and Sig(fj). Consequently the
signatures of all fault modes are not disjoint. �

4.3 Signature and preemptability

De�nition 5 expresses the diagnosability of a single prop-
erty. This de�nition is interesting when evaluating inde-
pendent or disjoint sets of states. Quality of service is
an example, the system states are partitioned, each part
corresponding to one level of quality of service (good/bad,
good/fair/poor, etc). In this case, quality of service levels
are very similar to fault modes, and their diagnosability
should be evaluated wrt. de�nition 5.

Some other properties, in particular repair preconditions,
are related one to another. First, they may overlap, i.e.
a state may belong to several repair preconditions, which
means that there are several ways to repair the system
in this state. Second, they may preemt, i.e. if two repairs
can be applied and for some reason repair r1 is preferable
to repair r2, then r1 preempts r2. Among the various
reasons that may lead the supervisor to prefer one repair,
we focus on the diagnosability of the repair preconditions:
if among two repair candidates, one of the candidates'
precondition is diagnosable (i.e. we know when the system
state belong to the precondition or not) and the other
is not (the actual system state may be inside or outside
of the repair precondition), there is a point in choosing
the repair with the diagnosable precondition. Macrofault
diagnosability takes into account these overlapping and
preemption aspects: a set of macrofaults is diagnosable
when for every observation, the supervisor can assess the
presence of at least one macrofault with certainty.

Our general de�nition is now extended to a set of proper-
ties. For this, the classical notion of signature is extended
and the notion of preemptability is introduced. The new
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Fig. 3. Signature Sig(S), diagnosable space D(S) and
undiagnosable space UD(S) of a set of states S.

de�nition of the signature applies to sets of states as
opposed to de�nition 1 that applies to fault modes.

De�nition 6. (Signature of a set of states). The signature
of a set of states S, or of the property p mapped to S,
is the set of observations that can be obtained when the
system is under one of these states :

Sig(S) = {POBS(s), s ∈ S}

This de�nition applies equally to the complement set S. As
sets of states generally overlap, comparing their signatures
with one another does not bring much information. It is
worthy to compare their signatures with the signatures of
their respective complements. Indeed, if a set of states cor-
responds to a given property of the system, its complement
corresponds to the negation of the property.

De�nition 7. (Diagnosable space, Undiagnosable space).
The diagnosable space D(S) (resp. undiagnosable space
UD(S)) of a set of states S mapped to a property p is the
subset of S in which it is possible (resp. impossible) to
assert whether the property p holds.

UD(S) = S ∩ P−1
OBS

(
Sig(S) ∩ Sig(S)

)
D(S) = S \UD(S)

As illustrated in Fig. 3, D(S) can also be de�ned as
the union of the diagnosable blocks included in S. The
diagnosable blocks that intersect but are not included in
S form UD(S) ∪ UD(S). The intersection of this set with
S gives UD(S). Hence, when a set of states is diagnosable,
its undiagnosable space is empty.

When a property p is undiagnosable, it can be preemptable
if its undiagnosable space is included in the diagnosable
space of other properties. In this case these other proper-
ties may preempt p in the sense that when the validity of
p is uncertain, one of these other properties is valid, which
makes p unnecessary, as illustrated in Fig. 4.

De�nition 8. (Preemptability). A property or its corre-
sponding set of states S is preemptable by a set of proper-
ties {S′} if and only if:

UD(S) ⊆
⋃
S′

(
D(S′)

)
4.4 Diagnosability of a set of properties

This section presents a de�nition of diagnosability for a
set of properties that accounts for the mutual in�uence

S0

UD(S0)

UD(S1) = UD(S2) = ∅

S1

S2

Fig. 4. The set of states S0 is preemptable by S1 and S2.

that properties may have with one another by the means
of preemptability.

De�nition 9. (Diagnosability of a set of properties). A
set of properties is diagnosable if and only if each property
is either diagnosable or preemptable.

Considering a diagnosable set of properties, the union of
all the corresponding sets of states is diagnosable.

Let Si be the set of states corresponding to the i-th
property of a diagnosable set of properties. For each i,
UD(Si) is either empty or included in the diagnosable
sets of other sets of states. Hence,

⋃
i Si =

⋃
i D(Si) is

diagnosable since each D(Si) is a union of diagnosable
blocks.

4.5 Comparison with macrofault diagnosability

Now it is shown that de�nition 9 is equivalent to de�nition
3 when applied to macrofaults.

Proposition 2. A covering set of macrofaults is diagnosable
according to de�nition 3 if and only if it is diagnosable
according to de�nition 9.

Proof First, given a macrofault Fi, let us consider
Sig(D(Fi)). This set contains no observation from a state
in which Fi is absent, and is hence a characteristic sig-
nature for Fi. Let us map each macrofault Fi to the set
Σi = Sig(D(Fi)) \

⋃
j<i Sig(D(Fj)). Σi is a characteristic

signature for Fi since it is a subset of Sig(D(Fi)).

Second, let o ∈ Sig(D(Fi)). We have either o /∈ Σi, or
o ∈ Σj with j < i, and if o ∈ Σi then necessarily o /∈ Σk

with k 6= i. Hence, the set of all Σi forms a partition of
the set

⋃
i Sig(D(Fi)).

The previous statements are now used to establish the
equivalence. The covering set of macrofaults {F0 . . . Fn} is
diagnosable according to de�nition 9 if and only if the set
of all D(Fi) covers SD (see section 4.4), which is equivalent
to the set

⋃
i Sig(D(Fi)) covering OBS. Consequently,

from the statements above, it follows that the set Π =
{Σ0 . . .Σn} partitions OBS, and the set of macrofaults is
diagnosable according to de�nition 3. �

5. APPLICATION TO REPAIR PRECONDITIONS

When analysing diagnosability of some system property,
the designer needs to choose whether to take preemptabil-
ity into account. This article provides no formal or infor-
mal criterion for the relevance of preemptability. We have
proved in last section that the de�nition of self-healability,
and more precisely the diagnosability of macrofaults given
in Cordier et al. [2007] relies implicitly on preemptability.
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Indeed, when considering repair actions, preemptability
matters.

Repair is an action or a process that modi�es the system
state in order to resore its normal behavior. The process
of repair is not described in the system model; repair
requires the intervention of an entity external to the
system. As we do not assume any a priori knowledge about
repairs, they are considered as atomic actions, and from
its precondition, a repair is su�cient to bring the system
back to a normal state.

De�nition 10. (Repair precondition). A repair precondi-
tion is a set of states, in which the repair can be applied,
and in which the application of the repair brings the
system to a normal state.

This de�nition implies that if two repair preconditions are
veri�ed at the same time, only one repair needs to be
applied.

No assumption is made in this paper about the relation
between fault modes and repair preconditions. A repair
may be applicable in only some of the states of a fault
mode, while each fault mode may be repaired di�erently
according to the current system state.

Each repair precondition is described by a logic propo-
sition rpi. The proposition rpi generally constrains mode
variables as well as variables de�ning the operational state
of the system. The set RPi ⊆ SD contains all the system
states ful�lling rpi. The set RPi is the complement of RPi

in SD, it is the set of system states for which the i-th repair
is not suited.

6. EXAMPLE

The concepts and de�nitions described in the previous
sections are illustrated by a simple example. It is shown
that de�nitions 5 and 9 allow us to analyse diagnosability
at di�erent levels (faults, macrofaults, or repair precondi-
tions) and that the returned information may be di�erent
and complementary.

System The system consists in a �uid pipe with variable
input �ow, which is supposed to provide a constant out-
put �ow. A tank is used to compensate �ow variations.
This tank is �lled when the input �ow is higher that the
expected output, and provides water when the input
�ow is too low.

Faults Two faults are considered. First, the pipe may be
clogged, which reduces greatly the �ow capacity of the
pipe. Second, the tank is supposed to be always able
to deliver water, however in exceptional conditions, the
tank may occur to be empty. When this occurs, the input
�ow is directed in priority to the tank. If the input �ow
is su�ciently high, it can supply both the empty tank
and the output.

Sensors A pressure sensor is placed in the pipe, in order
to detect abnormally high pressures. This happens when
the pipe is clogged, and there is input �ow.

Model The model of this system contains �ve variables :
• if describes the input �ow and has 3 values : none,
low, and high.
• of is Boolean and equals 1 when there is an output
�ow.
• hp is Boolean and equals 1 when the pressure inside
the pipe is abnormally high.
• pc is Boolean and equals 1 when the pipe is clogged.
• te is Boolean and equals 1 when the tank is empty.

The behaviour of the system is described by the follow-
ing constraints:

of = 1⇔
(
te = 0 ∨ (if = high ∧ pc = 0)

)
hp = 1⇔ (if 6= none ∧ pc = 1)

Observables The variables if , of and hp are observable.
Repairs The following repairs are available:
(1) It is possible to unclog the pipe thanks to a chemical

action (rp1). This repair can be applied when the
pipe is clogged. For safety reasons, it must not be
applied when the pipe is not clogged. If the tank is
empty, this repair is not su�cient to bring back the
system in a normal state.

rp1 : (pc = 1 ∧ te = 0)
(2) It is also possible to unclog the pipe mechanically

(rp2). The action consists in sending someone on
site and clean the pipe. This repair can only be
applied when the pipe is empty (no input �ow), but
is not su�cient if the tank is empty, since it will not
bring the system to a normal state. This repair can
if necessary be applied in the normal mode : once
the cleaner is on site, if the pipe is not clogged, then
the cleaner will do nothing.

rp2 : (te = 0 ∧ if = none)
(3) Finally, if the tank is empty, it is possible to redirect

the whole �ow through the tank (rp3). This permits
to mechanically unclog the pipe if needed. However,
the manipulations involved in this repair require
that there is no �ow in the pipe.

rp3 :
(
te = 1 ∧ (if = none ∨ pc = 1)

)
The system has 12 di�erent states, represented in Fig. 6
as well as the diagnosable blocks and their corresponding
observations. The application of de�nitions 5 and 9 to the
fault modes, macrofaults and repair preconditions are now
illustrated on this system.

6.1 Fault mode diagnosability analysis

The system has 4 fault modes, named normal, pipe clogged,
tank empty and pipe clogged & tank empty noted pipe &
tank. They de�ne 4 sets of states whose diagnosability is
analyzed. The analysis details are described in Fig. 7.

According to de�nition 5, none of these fault modes
is diagnosable. Moreover, fault modes are by de�nition
disjoint sets, and the notion of preemptability is not
relevant when dealing with disjoint sets of states, since
disjoint sets cannot preempt one another. Consequently,
no fault mode is diagnosable according to de�nition 9
either.



States Observation
if hp of

s0, s1 none 0 1

s2, s3 none 0 0

s4 low 1 1

s5 low 0 1

s6 low 0 0

s7 low 1 0

s8 high 1 1

s9, s10 none 0 1

s11 high 1 0

Fig. 6. States, diagnosable blocks and re-
pair plans of the system.

Fault mode States Intersected blocks UD

SDnormal {s1, s5, s9} {s0, s1} and {s9, s10} {s1, s9}
SDpipe clogged {s0, s4, s8} {s0, s1} {s0}
SDtank empty {s2, s6, s10} {s9, s10} and {s2, s3} {s2, s10}
SDpipe & tank {s3, s7, s11} {s2, s3} {s3}
Macrofault States Intersected blocks UD

F1 {s1, s2, s5, s6, s9, s10} {s0, s1} and {s2, s3} {s1, s2}
F2 {s0, s4, s8} {s0, s1} {s0}
F3 {s2, s3, s6, s7, s10, s11} {s9, s10} {s10}

Repair precondition States Intersected blocks UD

RP1 {s0, s4, s8} {s0, s1} {s0}
RP2 {s0, s1} none ∅
RP3 {s2, s3, s7, s11} none ∅

Fig. 7. Diagnosability results for fault modes, macrofaults and repair
preconditions.

In each table, the column �Intersected blocks� lists the diagnosable blocks that intersect
but are not subset of the corresponding set of states.

6.2 Macrofault diagnosability analysis

Macrofaults have been introduced in Cordier et al. [2007]
under the hypothesis that a repair repairs sets of fault
modes, i.e. a repair precondition is a union of fault modes.
This is obviously not the case here, which makes macro-
fault diagnosability analysis not relevant.

For the sake of illustration, let us consider the following
set of macrofaults {F1, F2, F3} with F1 = {normal, tank
empty} and F2 = {pipe clogged} and F3 = {tank empty,
pipe & tank}. Fig. 7 shows that none of these macrofaults
is diagnosable with respect to de�nition 5. Only F3 is
preemptable by F1, hence {F1, F2, F3} is not diagnosable
according to de�nition 9 either.

6.3 Repair precondition diagnosability analysis

The sets of states corresponding to the repair precondi-
tions are represented in �gure 6. Diagnosability analysis
provides the results indicated in Table 7.

The undiagnosable spaces of repair preconditionsRP2 and
RP3 are empty, which means these sets of states are unions
of diagnosable blocks. They are diagnosable, according
to de�nition 5. Moreover, RP1 is not diagnosable, but
UD(RP1) ⊂ D(RP2), it is preemptable. The set of re-
pair preconditions {RP1,RP2,RP3} is diagnosable with
respect to de�nition 9.

7. CONCLUSION

This paper provides a new, general de�nition of diag-
nosability, that applies to any set of states and by ex-
tension to any state dependent property. Given a prop-
erty that depends on the system state, it is possible to
assess whether the observations are su�cient to deduce
that the property holds or not. Such properties can be
the presence or absence of faults, which falls back into

existing diagnosability approaches. They can also be repair
preconditions, which we expect to fall back into existing
self-healability approaches Cordier et al. [2007]. Analysing
repair preconditions diagnosability is shown to bring di�er-
ent information from analysing fault modes or macrofaults
diagnosability.

This work covers other kinds of properties, for example
the ability of the system to provide its function, or a
subfunction, or to ful�ll a given quality of service. Any
property that can be mapped to a set of states can be
checked with this approach.
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