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Abstract. This paper provides a new definition of diagnosability, that allows one to
check the diagnosability of any set of system states, and by extension of properties
that depend on the system state. The existing definitions and approaches for check-
ing diagnosability apply to faults or sets of faults, and comparison shows that the
new definition generalizes the existing ones. This new definition is applied to repair
preconditions, and an example shows how this brings complementary information
compared to classical fault diagnosability.
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Introduction

Complex and critical systems require close supervision when running, and the model-
based community has produced a lot of work in this area. In particular, model-based
diagnosis is an increasingly active research domain, and the problem of diagnosability
analysis has been addressed many times [7U3/1]. In a diagnosable system, although it
is impossible to know the exact state of the system, the supervisor is aware of which
anticipated faults have happened and which have not. However, the information needed
by a supervisor in such systems is not limited to fault presence, and fault diagnosability
in a system does not guarantee that this system is easy to supervise. A system designer
hence needs to verify the diagnosability of more than just the faults.

This paper presents a definition for diagnosability that can be applied to any set of
states in a system. The model used in this paper is state-based, and most properties can
be mapped to a set of system states. This provides the possibility to check the diagnos-
ability of state dependent properties. When a property is diagnosable, the system super-
visor is always able to assess whether the current system state verifies this property. Fault
presence or absence are examples of such state dependent properties. The definition can
also be used to perform diagnosability analysis for faults, in the same way as existing
approaches do. But its extension to any set of states also allows to check the diagnosabil-
ity of many other properties, like for example repair preconditions, which is illustrated
in this paper.

The existing diagnosability approaches are presented in first place, before the new
definition is introduced. This new definition is compared to existing definitions. Finally,
an example illustrates the application of the new definition to repair preconditions.



1. Related work

Diagnosis is an active research topic in Al for many years and numerous approaches have
been proposed to cope with on-line as well as post mortem diagnosis [6]. More recently
a significant trend has moved the activities of the diagnosis community towards the anal-
ysis of the properties related to diagnosis. Several pieces of work deal with defining and
checking diagnosability [2/7I11J8112/9l1] and a unified characterization bridging state
based and event based modeled systems has been proposed [3l]. Diagnosability guar-
antees that all the anticipated faulty situations of a system are discriminable one from
the other, although the state of the system is partially observed. This property is quite
important because it indicates that the instrumentation providing the observations about
the system is well designed and sufficient to provide an explanation of what is going
on. However, nowadays systems are required to run more and more autonomously and
they are expected to cope with unanticipated situations by themselves, in particular when
faults occur. Hence, diagnosability has been more recently addressed together with the
requirements for repairability in order to provide a formal definition for self-healability

[4].

2. Existing diagnosability approaches

This section presents diagnosability approaches existing in the literature, in order to com-
pare them to the new approach defined in section [3] All approaches rely on a formal
description of the system behaviour, in the absence and in the presence of faults.

In existing approaches, diagnosability is defined as the ability of a system to exhibit
different observations for a predefined set of faults. It is based on the notion of signature,
which associates faults to observations.

2.1. System representation

The system is assumed to be described by a proposition sd which can be expressed in
propositional logic. The set of models of this proposition is denoted SD, it contains all
variable tuples satisfying sd and describes the set of all the system states, faulty or non
faulty. The set of variables is denoted V. Some of the variables characterize the presence
or absence of faults, these are called mode variables. O denotes the set of observable
variables. Generally, mode variables are not observable. The set OBS contains all the
possible system observations. In other words, it contains the models of the restriction of
sd to the variables in O.

2.2. Faults and fault modes

Various faults may occur in the system, modifying its behaviour and possibly making it
unable to fulfill its function. Several faults may be present at the same time.

A fault mode characterizes the behaviour of the system under a given combination
of faults. It is associated to the presence of some faults as well as the absence of the other
faults. The normal mode is one of the many fault modes, associated to the absence of all
faults. The occurrence of a permanent fault changes the fault mode of the system.



A fault is characterized by one mode variable, whose value indicates whether the
fault is present or not. A fault mode is identified by a value for the tuple of all mode
variables. SD is the description of the fault mode f, i.e. the set of states in which the
fault mode is verified. As any state belongs to exactly one fault mode, the set of all SD
is a partition of SD, as illustrated in Figure

2.3. Projection on observable variables

An operation called projection on observable variables and noted P is used. It takes as
input a system state expressed as a variable value tuple, and outputs the tuple of observ-
able variable values obtained in this state. For example, if V contains 5 variables, and if
the first and third are observable, then:

Poss : SD — OBS
(v1, 02, 03, 4, 05) = (01, 03)

23'D

The inverse projection PO_BIS is defined from OBS to as follows:

P&?{S(U) = {S € SD, POBS(S) = 0'}

The projection Ppgs associates a system state to the observation that is received under
this state. The inverse projection associates an observation to the set of all states that may
have originated this observation. When applied to fault modes, this projection is the base
of the classical diagnosability analysis approaches.

2.4. Fault mode diagnosability

The classical definition for fault signature and diagnosability is provided now. The def-
inition of diagnosability states that the system cannot produce a common observation
under two different fault modes [3l].

Definition 1 (Fault mode Signature and Diagnosability) The signature of a fault mode
f is the set of all possible observations when the system state belongs to the mode f.

Sig(f) = {Poss(s),s € SDy}

A system is diagnosable if and only if, f1 and f> being fault modes:

Vi, 2 i # o= Sig(fi)NSig(f) =90

When diagnosability according to definition[T|holds, the observations emitted by the
system always allow one to decide which faults have happened, and which faults have
not. But when the signatures of two fault modes intersect, this means that there exists at
least one observation that can be emitted by the system under two different fault modes.
There are two possible explanations for this observation, and a diagnosis process would
output two diagnostic candidates.



......

......

Fo={fo}, Fi={f1. 2}, F={ff3}

Figure 1. The fault modes fy, f1, f2, f3 are not diagnosable. The set of macrofaults { Fp, F1, F»} is diagnos-
able.

2.5. Macrofault diagnosability

Another definition of diagnosability is given in [4] as an extension of definition |1} It is
based on the notion of macrofault, which is a set of fault modes. It is based on the idea
that not all pairs of fault modes need to be discriminable: fault modes that do not need
to be discriminated one from another are gathered into a macrofault. The set of states in
which the macrofault F; is present is noted SDg; = fek; SDy.

This raises a significant difference compared to the previous approach. Whereas fault
modes are disjoint, macrofaults may overlap. In the macrofault approach, it is considered
that when the system state belongs to several macrofaults, it belongs to an overlapping
fault mode, and identifying only one of the macrofaults with certainty is enough for the
system to be diagnosable.

In this approach, only covering sets of macrofaults are considered, i.e. sets of macro-
faults such that every fault mode belongs to a macrofault. Consequently, there is always
at least one present macrofault, whatever the system state is.

Definition 2 (Macrofault, Characteristic signature) A macrofault F; is a set of fault
modes. F; is present if and only if the system is in one of the fault modes f; € Fj.

A characteristic signature ¢Sig(F;) is a set of observations that allow one to assess
with certainty that the macrofault F; is present.

esig(F) € (U (Sig()\ U (Sig())
fiek; S éFi

Note that there are several possible characteristic signatures for each macrofault. If
O is a characteristic signature for a macrofault F;, then any O’ C O is also a character-
istic signature for Fj.

Definition 3 (Macrofault Diagnosability) A covering set of macrofaults {F;}, i.e. a set
of macrofaults that cover all the fault modes, is diagnosable if and only if there exists a
set of characteristic signatures for these macrofaults that form a partition of OBS.



Figure 2. The set of states S is not diagnosable. S, is diagnosable.

When such a partition is established as illustrated in Figure [T] it is always possible to
find out at least one present macrofault. As a state may belong to several macrofaults, an
observation can also correspond to several macrofaults. However, it is only needed, for
each observation, to assess with certainty that one macrofault is present.

This definition is a generalization of definition [I] since fault modes are particular
macrofaults. Because macrofaults may overlap when they contain the same fault mode,
this definition applies to a greater range of sets of states than the fault mode definition.

This definition is also less constrained than fault mode diagnosability (definition T,
in the sense that in a system verifying fault mode diagnosability, any set of macrofaults
is diagnosable.

3. Diagnosability revisited

This section presents a new definition of diagnosability, which applies to any state de-
pendent property. It is based upon the analysis of the set of states in which a property
holds. It is a generalization of existing diagnosability definitions which only apply to sets
of states characterized by the presence or absence of some faults. Comparisons show that
this new definition is consistent with the existing ones.

3.1. Diagnosability of a property

Definition 4 (Diagnosable block) Let =35 be the equivalence relation defined on SD
by:

Vsi, 82 € 8D, 81 =ops 52 & POBS(S]) = POBS(SZ)

Each equivalence class of =ops is called a diagnosable block of the system. The set of
diagnosable blocks of the system is the quotient set of SD by =ps.

Definition 5 (Diagnosability) A property or its associated set of states S C SD is diag-
nosable if and only if S is exactly a union of diagnosable blocks.

Figure 2] depicts a system with 7 states and 4 possible observations. The diagnosable
blocks are represented by white sets with dashed lines. Observation o5 is received in two
different states, one inside S; and one outside. Thus, when observing 0;, a supervisor



is unable to decide whether the system is in S7 or not. On the other hand, it is always
possible to decide from the observations whether the system state belongs to S or not.

3.2. Comparison with fault mode diagnosability

Since definition [5] applies to any set of states, it applies in particular to fault modes. It is
shown now that when applied to fault modes, this definition is equivalent to definition|[I]

Proposition 1 A system is diagnosable according to definition|l|if and only if for every
Sfault mode f, SDy is diagnosable according to deﬁnition

Proof

The signatures of two fault modes f; and f; intersect if and only if there exists a state
s; € 8Dy; and another state s; € SDy; leading to the same observation. These two
states obviously belong to the same diagnosable block, say d, and, since SD y; and SD s,
are disjoint, none is a superset of d. Moreover, since diagnosable blocks form a partition
of 8D, s; (resp. s ;) does not belong to any other diagnosable block than d. Hence, SD ¢;
(resp. SDy;) is not a union of diagnosable blocks. |

3.3. Signature and preemptability

Definition [5] expresses the diagnosability of a single property. This definition is now
extended to a set of properties. For this, the classical notion of signature is extended and
the notion of preemptability is introduced. The new definition of the signature applies to
sets of states as opposed to definition [T that applies to fault modes.

Definition 6 (Signature of a set of states) The signature of a set of states S, or of the
property p mapped to S, is the set of observations that can be obtained when the system
is under one of these states :

Sig(8) = {Poss(s), s € S}

This definition applies equally to the complement set S. As sets of states generally over-
lap, comparing their signatures with one another does not bring much information. It is
worthy to compare their signatures with the signatures of their respective complements.
Indeed, if a set of states corresponds to a given property of the system, its complement
corresponds to the negation of the property.

Definition 7 (Diagnosable space, Undiagnosable space) The diagnosable space D(S)
(resp. undiagnosable space UD(S)) of a set of states S mapped to a property p is the
subset of S in which it is possible (resp. impossible) to assert whether the property p
holds.

UD(S) = S NPyys(Sig(S) N Sig(S))
D(S) = S\ UD(S)

UD(S) contains states in both S and S, as illustrated in Figure D(S) can also be defined
as the union of the diagnosable blocks included in S, while UD(S) can be defined as the



UD(S)) = UD(S,) = 0

Figure 4. The set of states Sy is preemptable.

union of the diagnosable blocks which intersect S but are not included in it. Hence, when
a set of states is diagnosable, its undiagnosable space is empty.

When a property p is undiagnosable, it can be preemptable if its undiagnosable
space is included in the diagnosable space of other properties. In this case these other
properties may preempt p in the sense that when the validity of p is uncertain, one of
these other properties is valid, which makes p unnecessary.

Definition 8 (Preemptability) A property or its associated set of states S is preemptable
if and only if:

un(s) ¢ |J (p(s")
S'#S

Figure []illustrates a set Sy whose undiagnosable space is included into two diagnosable
sets S; and S>.

3.4. Diagnosability of a set of properties

This section presents a definition of diagnosability for a set of properties that accounts
for the mutual influence that properties may have with one another by the means of
preemptability.

Definition 9 (Diagnosability of a set of properties) A set of properties is diagnosable
if and only if each property is either diagnosable or preemptable.



Considering a diagnosable set of properties, the union of all the associated sets of
states is diagnosable.

Let S; be the set of states associated to the i-th property of a diagnosable set of
properties. For each i, UD(S;) is either empty or included in the diagnosable sets of other
sets of states. Hence, Ui S; = Ul- D(S;) is diagnosable since each D(S;) is a union of
diagnosable blocks.

3.5. Comparison with macrofault diagnosability

Now it is shown that definition[9]is equivalent to definition[3|when applied to macrofaults.

Proposition 2 A covering set of macrofaults is diagnosable according to definition |3| if
and only if it is diagnosable according to definition[9)

Proof

First, given a macrofault F;, let us consider Sig(D(F;)). This set contains no observation
from a state in which F; is absent, and is hence a characteristic signature for F;. Let us
associate to each macrofault F; the set X; = Sig(D(F;)) \ Uj<i Sig(D(F;)). Z;jisa
characteristic signature for F; since it is a subset of Sig(D(F;)).

Second, let 0 € Sig(D(F;)). If o ¢ X;, then necessarily 0 € X; with j < i, and if
o € X; then necessarily o ¢ X with k # i. Hence, the set of all Z; forms a partition of
the set |J; Sig(D(F})).

The previous statements are now used to establish the equivalence. The cover-
ing set of macrofaults {Fp ... F,} is diagnosable according to definition [9] if and only
if the set of all D(F;) covers SD(see section [3.4), which is equivalent to the set
\U; Sig(D(F;)) covering OBS. Consequently, from the statements above, it follows that
the set Il = {Zg... Z,} partitions OBS, and the set of macrofaults is diagnosable ac-
cording to definition 3] [ |

4. Application to repair preconditions

The definition of diagnosability is now applied to sets of states that map to repair precon-
ditions. When a repair precondition is diagnosable, it is possible to decide when to apply
the repair and when not. It is a complementary approach to fault diagnosis, since know-
ing which fault happened and knowing what to do to repair it is not the same information,
and both answers are important for monitoring a system. Knowing which fault happened
but being unable to decide which repair is suited is odd. On the other hand, knowing how
to repair a faulty system without knowing the details of the faults is a problem for low
cost maintenance or feedback to the system designers. Hence, diagnosability analysis of
repair preconditions is a complement to fault diagnosability analysis.

A repair is an action or a process that puts a system back to a normal state from a
faulty abnormal state. Repairs can be plans driven by goals [J5]], reconfigurations [10]], or
other actions. In most approaches, repairs have preconditions, which generally define a
set of states.

A repair may not be executed in every state of the system for various reasons. First,
it is not useful to repair a non-faulty system. In consequence, a given repair is not useful



in all the system states. Moreover, among all the states in which the repair is useful, there
are some states from which it brings back the system to normal, but there can be other
states (corresponding to multiple faults, for example) from which it brings to another
faulty state.

Moreover, when one or several faults are present, a repair may also depend on the
operational state of the system: changing a leaking pipe is not possible if the pipe is
still full of fluid under pressure. In addition, repairs may require some faults not to have
happened. For example, a repair consisting in closing a valve if open and then changing
the leaking pipe can only be applied if the valve is not stuck open.

Definition 10 (Repair precondition) A repair precondition is a set of states, in which
the repair can be applied, and in which the application of the repair brings the system to
a normal state.

This definition implies that if two repair preconditions are verified at the same time,
only one repair needs to be applied.

No assumption is made in this paper about the relation between fault modes and
repair preconditions. A repair may be applicable in only some of the states of a fault
mode, while each fault mode may be repaired differently according to the current system
state.

Each repair precondition is described by a logic proposition rp;. The proposition rp;
generally constrains mode variables as well as variables defining the operational state of
the system. The set RP; C SD contains all the system states fulfilling rp;. The set RP;
is the complement of RP; in SD, it is the set of system states for which the i-th repair
is not suited.

5. Example

The concepts and definitions described in the previous sections are illustrated by a simple
example. It is shown that definitions[5|and[9]allow us to analyse diagnosability at different
levels (faults, macrofaults, or repair preconditions) and that the returned information may
be different and complementary.

System The system consists in a fluid pipe with variable input flow, which is supposed to
provide a constant output flow. A tank is used to compensate flow variations. This
tank is filled when the input flow is higher that the expected output, and provides
water when the input flow is too low.

Faults Two faults are considered. First, the pipe may be clogged, which reduces greatly
the flow capacity of the pipe. Second, the tank is supposed to be always able to
deliver water, however in exceptional conditions, the tank may occur to be empty.
When this occurs, the input flow is directed in priority to the tank. If the input flow
is sufficiently high, it can supply both the empty tank and the output.

Sensors A pressure sensor is placed in the pipe, in order to detect abnormally high pres-
sures. This happens when the pipe is clogged, and there is input flow.

Model The model of this system contains five variables :

e if describes the input flow and has 3 values : none, low, and high.



of is boolean and equals 1 when there is an output flow.

hp is boolean and equals 1 when the pressure inside the pipe is abnormally high.
pc is boolean and equals 1 when the pipe is clogged.

te is boolean and equals 1 when the tank is empty.

The behaviour of the system is described by the following constraints:

of:1<:>(te:OV(if=high/\pc=O))
hp = 1 < (if # none A pc = 0)

Observables The variables if , of and hp are observable.

Repairs The following repairs are available:

1.

It is possible to unclog the pipe thanks to a chemical action (rp1). This repair
can be applied when the pipe is clogged. For safety reasons, it must not be
applied when the pipe is not clogged. If the tank is empty, this repair is not
sufficient to bring back the system in a normal state.

rp1: (pc=1Ate=0)

. Itis also possible to unclog the pipe mechanically (rp2). The action consists in

sending someone on site and clean the pipe. This repair cannot be applied when
there is water in the pipe but it may be applied in the normal mode (in this case
the cleaner does nothing). If the tank is empty, this repair is not sufficient to
take back the system in a normal state.

rp, @ (te = 0 A if = none)

. Finally, if the tank is empty, it is possible to redirect the whole flow through the

tank (rp3). This permits to mechanically unclog the pipe if needed. However,
the manipulations involved in this repair require that there is no flow in the pipe.

rp3:(te=1/\(if=noneVpc= 1))

The system has 12 different states, represented in Figure[5]as well as the diagnosable
blocks and their associated observations.

te: 0 States Observation

pei 1 |0 0|1 if | hp|of

e | S0, 51 none | 0 1

if : low (\@ Q' ‘\@ @) s2,83 || none | O | O
8 N N 5 54 low 1 1

medium \@: «'@ (@ \@, S5 low | 0 | 1
W V| 'V W 56 ow T 010

. . N, YN low 1 0

high \| (@) aD 57

& © 0 DD /s ss | high | 1 | 1
59,510 || none | O 1

RPI RPZ RP3 511 hlgh 1 0

Figure 5. States, diagnosable blocks and repair plans of the system.




5.1. Fault mode diagnosability analysis

The system has 4 fault modes, named normal, pipe clogged, tank empty and pipe & tank
that define 4 sets of states whose diagnosability is analyzed. The analysis details are
described in the following table{]}

| Faultmode | States [ Intersecting diagnosable blocks |  UD |
SDyormal {51, 55, 59} {50, 51} and {s9, s10} {51, 59}
SDpipe clogged | {50:54, 58} {s0, 51} {s0}
Diank empty | 152: 56, 510} {59, 510} and {s2, 53} {52, 510}
SDpipe & tank | 15357, 511} {52, 53} {s3}

According to definition [5] none of these fault modes is diagnosable. Moreover, fault
modes are by definition disjoint sets, and the notion of preemptability is not relevant
when dealing with disjoint sets of states, since disjoint sets cannot preempt one another.
Consequently, none fault mode is diagnosable according to definition [9|neither.

5.2. Macrofault diagnosability analysis

Let us consider for example the set of macrofaults defined by {Fi, F», F3} with F| =
{normal, tank empty} and F, = {pipe clogged} and F3 = {tank empty, pipe & tank}.

| Macrofault | States | Intersecting diagnosable blocks [ UD |
Fi {s1, 52, 55, 56, 59, 510} {50, s1} and {s2, 53} {s1, 52}
F {s0, 54, 58} {50, 51} {s0}
F3 {s2, 53, 56, 57, 510, 511} {s9, 510} {s10}

None of these macrofaults is diagnosable with respect to definition [5| Moreover, only
F3 is preemptable, with UD(F3) C D(Fp), which is not enough to make the set of
macrofaults {F1, F», F3} diagnosable according to deﬁnition@}

5.3. Repair precondition diagnosability analysis

The sets of states associated to the repair preconditions are represented in figure[5] Diag-
nosability analysis provides the following results:

’ Repair precondition \ States \ Intersecting diagnosable blocks \ UD ‘
RPi {s0, 54, 58} {s0, 51} {s0}
RP,> {s0, s1} none /]
RP3 {52, 83, 57, 511} none [}

The undiagnosable spaces of repair preconditions RP, and RP3 are empty, which
means these sets of states are unions of diagnosable blocks. They are diagnosable, ac-
cording to deﬁnition@ Moreover, RP is not diagnosable, but UD(RP1) C D(RP>), it
is preemptable. The set of repair preconditions {RP1, RP2, RP3} is diagnosable with
respect to definition 9]

UIn the tables, the column “Diagnosable blocks” lists the diagnosable blocks that intersect but are not subset
of the corresponding set of states.



6. Conclusion

This paper provides a new, general definition of diagnosability, that applies to any set of
states and by extension to any state dependent property. Given a property that depends
on the system state, it is possible to assess whether the observations are sufficient to
deduce that the property holds or not. Such properties can be the presence or absence of
faults, which falls back into existing diagnosability approaches. They can also be repair
preconditions, which we expect to fall back into existing self-healability approaches [4].
Analysing repair preconditions diagnosability is showed to bring different information
from analysing fault modes or macrofaults diagnosability.

This work covers many other kinds of properties, like for example the ability of the
system to provide its function, or a given part of its function, or to respect a given quality
of service. Any property that can be mapped to a set of states can be checked with this
approach.
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