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Abstract

This paper provides a new definition of diagnos-
ability, that allows one to check the diagnosabil-
ity of any set of system states, and by extension of
properties that depend on the system state. The ex-
isting definitions and approaches for checking diag-
nosability apply to faults or sets of faults, and com-
parison shows that the new definition generalizes
the existing ones. This new definition is applied
to repair preconditions, and an example shows how
this brings complementary information compared
to classical fault diagnosability.

1 Introduction
Complex and critical systems require close supervision when
running, and the model-based community has produced a lot
of work in this area. In particular, model-based diagnosis is
an increasingly active research domain, and the problem of
diagnosability analysis has been addressed many times [Sam-
path et al., 1995; Cordier et al., 2006; Bayoudh et al., 2006].
In a diagnosable system, although it is impossible to know the
exact state of the system, the supervisor is aware of which an-
ticipated faults have happened and which have not. However,
the information needed by a supervisor in such systems is not
limited to fault presence, and fault diagnosability in a system
does not guarantee that this system is easy to supervise. A
system designer hence needs to verify the diagnosability of
more than just the faults.

This paper presents a definition for diagnosability that can
be applied to any set of states in a system. The model used in
this paper is state-based, and most properties can be mapped
to a set of system states. This provides the possibility to
check the diagnosability of state dependent properties. When
a property is diagnosable, the system supervisor is always
able to assess whether the current system state verifies this
property. Fault presence or absence are examples of such
state dependent properties. The definition can also be used
to perform diagnosability analysis for faults, in the same way
as existing approaches do. But its extension to any set of
states also allows to check the diagnosability of many other
properties, like for example repair preconditions, which is il-
lustrated in this paper.

The existing diagnosability approaches are presented in
first place, before the new definition is introduced. This new
definition is compared to existing definitions. Finally, an ex-
ample illustrates the application of the new definition to repair
preconditions.

2 Related work
Diagnosis has been an active research topic in AI for many
years and numerous approaches have been proposed to cope
with on-line as well as post mortem diagnosis [Hamscher et
al., 1992]. More recently a significant trend has moved the
activities of the diagnosis community towards the analysis of
the properties related to diagnosis. Several pieces of work
deal with defining and checking diagnosability [Console et
al., 2000; Travé-Massuyès et al., 2001; Travé-Massuyès et
al., 2006; Struss and Dressler, 2003; Bayoudh et al., 2006]
and a unified characterization bridging state based and event
based modeled systems has been proposed [Cordier et al.,
2006]. Diagnosability guarantees that all the anticipated
faulty situations of a system are discriminable one from the
other, although the state of the system is partially observed.
This property is quite important because it indicates that the
instrumentation providing the observations about the system
is well designed and sufficient to provide an explanation of
what is going on. However, nowadays systems are required
to run more and more autonomously and they are expected
to cope with unanticipated situations by themselves, in par-
ticular when faults occur. Hence, diagnosability has been
more recently addressed together with the requirements for
repairability in order to provide a formal definition for self-
healability [Cordier et al., 2007].

3 Existing diagnosability approaches
This section presents diagnosability approaches existing in
the literature, in order to compare them to the new approach
defined in section 4. All approaches rely on a formal descrip-
tion of the system behaviour, in the absence and in the pres-
ence of faults.

In existing approaches, diagnosability is defined as the
ability of a system to exhibit different observations for a pre-
defined set of faults. It is based on the notion of signature,
which maps faults to sets of observations.
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3.1 System representation
The system is assumed to be described by a proposition sd
which can be expressed in propositional logic. The set of
models of this proposition is denoted SD, it contains all vari-
able tuples satisfying sd and describes the set of all the system
states, faulty or non faulty. The set of variables is denoted V.
Some of the variables characterize the presence or absence
of faults, these are called mode variables. O denotes the set
of observable variables. Generally, mode variables are not
observable. The set OBS contains all the possible system ob-
servations. In other words, it contains the models of the re-
striction of sd to the variables in O.

3.2 Faults and fault modes
Various faults may occur in the system, modifying its be-
haviour and possibly making it unable to fulfill its function.
Several faults may be present at the same time.

A fault mode characterizes the behaviour of the system un-
der a given combination of faults. It assesses the presence of
some faults as well as the absence of the other faults. The
normal mode is one of the many fault modes, it assesses the
absence of all faults. The occurrence of a permanent fault
changes the fault mode of the system.

A fault is characterized by one mode variable, whose value
indicates whether the fault is present or not. A fault mode is
identified by a value for the tuple of all mode variables. SDf

is the description of the fault mode f , i.e. the set of states
in which the fault mode is verified. As any state belongs to
exactly one fault mode, the set of all SDf is a partition of
SD, as illustrated in Figure 1.

3.3 Projection on observable variables
An operation called projection on observable variables and
noted POBS is used. It takes as input a system state expressed
as a variable value tuple, and outputs the tuple of observable
variable values obtained in this state. For example, if V con-
tains 5 variables, and if the first and third are observable, then:

POBS : SD → OBS
(v1, v2, v3, v4, v5)→ (v1, v3)

The inverse projection P−1
OBS is defined from OBS to 2SD as

follows:

P−1
OBS(σ) = {s ∈ SD,POBS(s) = σ}

The projection POBS associates a system state to the observa-
tion that is received under this state. The inverse projection
associates an observation to the set of all states that may have
originated this observation. When applied to fault modes, this
projection is the base of the classical diagnosability analysis
approaches.

3.4 Fault mode diagnosability
The classical definition for fault signature and diagnosability
is provided now. The definition of diagnosability states that
the system cannot produce a common observation under two
different fault modes [Cordier et al., 2006].

Definition 1 (Fault mode Signature and Diagnosability)
The signature of a fault mode f is the set of all possible
observations when the system state belongs to the mode f .

Sig(f) = {POBS(s), s ∈ SDf}
A system is diagnosable if and only if, f1 and f2 being fault
modes:

∀f1, f2 f1 6= f2 ⇒ Sig(f1) ∩ Sig(f2) = ∅
When diagnosability according to definition 1 holds, the

observations emitted by the system always allow one to de-
cide which faults have happened, and which faults have not.
But when the signatures of two fault modes intersect, this
means that there exists at least one observation that can be
emitted by the system under two different fault modes. There
are two possible explanations for this observation, and a di-
agnosis process would output two diagnostic candidates.

3.5 Macrofault diagnosability
Another definition of diagnosability is given in [Cordier et
al., 2007] as an extension of definition 1. It is based on the
notion of macrofault, which is a set of fault modes. It is
based on the idea that not all pairs of fault modes need to
be discriminable: fault modes that do not need to be discrim-
inated one from another are gathered into a macrofault. The
set of states in which the macrofault Fi is present is noted
SDFi =

⋃
f∈Fi

SDf .
This raises a significant difference compared to the previ-

ous approach. Whereas fault modes are disjoint, macrofaults
may overlap. In the macrofault approach, it is considered that
when the system state belongs to several macrofaults, it be-
longs to an overlapping fault mode, and identifying only one
of the macrofaults with certainty is enough for the system to
be diagnosable.

In this approach, only covering sets of macrofaults are con-
sidered, i.e. sets of macrofaults such that every fault mode be-
longs to a macrofault. Consequently, there is always at least
one present macrofault, whatever the system state is.

Definition 2 (Macrofault, Characteristic signature) A
macrofault Fi is a set of fault modes. Fi is present if and only
if the system is in one of the fault modes fj ∈ Fi.

A characteristic signature cSig(Fi) is a set of observations
that allow one to assess with certainty that the macrofault Fi

is present.

cSig(Fi) ⊆
( ⋃

fj∈Fi

(
Sig(fi)

)
\
⋃

fk /∈Fi

(
Sig(fk)

))

Note that there are several possible characteristic signa-
tures for each macrofault. If O is a characteristic signature
for a macrofault Fi, then any O′ ⊆ O is also a characteristic
signature for Fi.

Definition 3 (Macrofault Diagnosability) A covering set of
macrofaults {Fi}, i.e. a set of macrofaults that cover all the
fault modes, is diagnosable if and only if there exists a set
of characteristic signatures for these macrofaults that form a
partition of OBS.
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SDf0

SDf1

SDf2

SDf3

POBS OBS

Sig(f0)

Sig(f1)

Sig(f2)

Sig(f3)

cSig(F0)

cSig(F1)

cSig(F2)

F0 = {f0}, F1 = {f1, f2}, F2 = {f2, f3}

Figure 1: The fault modes f0, f1, f2, f3 are not diagnosable.
The set of macrofaults {F0, F1, F2} is diagnosable.

When such a partition is established as illustrated in Figure 1,
it is always possible to find out at least one present macro-
fault. As a state may belong to several macrofaults, an obser-
vation can also correspond to several macrofaults. However,
it is only needed, for each observation, to assess with cer-
tainty that one macrofault is present.

This definition is a generalization of definition 1, since
fault modes are particular macrofaults. Because macrofaults
may overlap when they contain the same fault mode, this def-
inition applies to a greater range of sets of states than the fault
mode definition.

This definition is also less constrained than fault mode di-
agnosability (definition 1), in the sense that in a system veri-
fying fault mode diagnosability, any set of macrofaults is di-
agnosable.

4 Diagnosability revisited
This section presents a new definition of diagnosability,
which applies to any state dependent property. It is based
upon the analysis of the set of states in which a property
holds. It is a generalization of existing diagnosability defi-
nitions which only apply to sets of states characterized by the
presence or absence of some faults. Comparisons show that
this new definition is consistent with the existing ones.

4.1 Diagnosability of a property
Definition 4 (Diagnosable block) Let =OBS be the equiva-
lence relation defined on SD by:

∀s1, s2 ∈ SD, s1 =OBS s2 ⇔ POBS(s1) = POBS(s2)

Each equivalence class of =OBS is called a diagnosable block
of the system. The set of diagnosable blocks of the system is
the quotient set of SD by =OBS.

Definition 5 (Diagnosability) A property or its corespond-
ing set of states S ⊆ SD is diagnosable if and only if S is
exactly a union of diagnosable blocks.

Figure 2 depicts a system with 7 states and 4 possible ob-
servations. The diagnosable blocks are represented by white

SD OBSPOBS

S1

o1

o2

S2

o4

o3

Figure 2: The set of states S1 is not diagnosable. S2 is diag-
nosable.

sets with dashed lines. Observation o2 is received in two dif-
ferent states, one inside S1 and one outside. Thus, when ob-
serving o2, a supervisor is unable to decide whether the sys-
tem is in S1 or not. On the other hand, it is always possible
to decide from the observations whether the system state be-
longs to S2 or not.

4.2 Comparison with fault mode diagnosability
Since definition 5 applies to any set of states, it applies in
particular to fault modes. It is shown now that when applied
to fault modes, this definition is equivalent to definition 1.
Proposition 1 A system is diagnosable according to defini-
tion 1 if and only if for every fault mode f , SDf is diagnos-
able according to definition 5.

Proof
The signatures of two fault modes fi and fj intersect if and
only if there exists a state si ∈ SDfi and another state
sj ∈ SDfj leading to the same observation. These two states
obviously belong to the same diagnosable block, say d, and,
since SDfi and SDfj are disjoint, none is a superset of d.
Since diagnosable blocks form a partition of SD, si (resp. sj)
does not belong to any other diagnosable block than d. Hence,
SDfi (resp. SDfj) is not a union of diagnosable blocks.

If one fault mode fi is not a union of diagnosable blocks,
then since fault modes form a partition of SD, there exists a
diagnosable block d contaning a state si of fi and at least one
state sj belonging to another fault mode fj . These two states
lead to the same observation o, which necessarily belongs to
both Sig(fi) and Sig(fj). Consequently the signatures of all
fault modes are not disjoint. �

4.3 Signature and preemptability
Definition 5 expresses the diagnosability of a single property.
This definition is now extended to a set of properties. For this,
the classical notion of signature is extended and the notion
of preemptability is introduced. The new definition of the
signature applies to sets of states as opposed to definition 1
that applies to fault modes.
Definition 6 (Signature of a set of states) The signature of
a set of states S, or of the property p mapped to S, is the
set of observations that can be obtained when the system is
under one of these states :

Sig(S) = {POBS(s), s ∈ S}
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SD

D(S)

UD(S)

UD(S)

D(S)

S

OBS

Sig(S)

Sig(S)

POBS

P−1
OBS

Figure 3: Signature Sig(S), diagnosable space D(S) and un-
diagnosable space UD(S) of a set of states S.

This definition applies equally to the complement set S. As
sets of states generally overlap, comparing their signatures
with one another does not bring much information. It is wor-
thy to compare their signatures with the signatures of their re-
spective complements. Indeed, if a set of states corresponds
to a given property of the system, its complement corresponds
to the negation of the property.
Definition 7 (Diagnosable space, Undiagnosable space)
The diagnosable space D(S) (resp. undiagnosable space
UD(S)) of a set of states S mapped to a property p is the
subset of S in which it is possible (resp. impossible) to assert
whether the property p holds.

UD(S) = S ∩ P−1
OBS

(
Sig(S) ∩ Sig(S)

)
D(S) = S \ UD(S)

As illustrated in Figure 3, D(S) can also be defined as the
union of the diagnosable blocks included in S. The diag-
nosable blocks that intersect but are not included in S form
UD(S) ∪ UD(S). The intersection of this set with S gives
UD(S). Hence, when a set of states is diagnosable, its undi-
agnosable space is empty.

When a property p is undiagnosable, it can be preempt-
able if its undiagnosable space is included in the diagnosable
space of other properties. In this case these other properties
may preempt p in the sense that when the validity of p is un-
certain, one of these other properties is valid, which makes p
unnecessary.
Definition 8 (Preemptability) A property or its correspond-
ing set of states S is preemptable if and only if:

UD(S) ⊆
⋃

S′ 6=S

(
D(S′)

)

Figure 4 illustrates a set S0 whose undiagnosable space is
included into two diagnosable sets S1 and S2.

4.4 Diagnosability of a set of properties
This section presents a definition of diagnosability for a set of
properties that accounts for the mutual influence that proper-
ties may have with one another by the means of preemptabil-
ity.

S0

UD(S0)

UD(S1) = UD(S2) = ∅

S1

S2

Figure 4: The set of states S0 is preemptable.

Definition 9 (Diagnosability of a set of properties) A set of
properties is diagnosable if and only if each property is either
diagnosable or preemptable.

Considering a diagnosable set of properties, the union of
all the corresponding sets of states is diagnosable.

Let Si be the set of states corresponding to the i-th prop-
erty of a diagnosable set of properties. For each i, UD(Si) is
either empty or included in the diagnosable sets of other sets
of states. Hence,

⋃
i Si =

⋃
i D(Si) is diagnosable since each

D(Si) is a union of diagnosable blocks.

4.5 Comparison with macrofault diagnosability
Now it is shown that definition 9 is equivalent to definition 3
when applied to macrofaults.

Proposition 2 A covering set of macrofaults is diagnosable
according to definition 3 if and only if it is diagnosable ac-
cording to definition 9.

Proof
First, given a macrofault Fi, let us consider Sig(D(Fi)).
This set contains no observation from a state in which Fi is
absent, and is hence a characteristic signature for Fi. Let
us map each macrofault Fi to the set Σi = Sig(D(Fi)) \⋃

j<i Sig(D(Fj)). Σi is a characteristic signature for Fi

since it is a subset of Sig(D(Fi)).
Second, let o ∈ Sig(D(Fi)). We have either o /∈ Σi, or

o ∈ Σj with j < i, and if o ∈ Σi then necessarily o /∈ Σk

with k 6= i. Hence, the set of all Σi forms a partition of the
set
⋃

i Sig(D(Fi)).
The previous statements are now used to establish the

equivalence. The covering set of macrofaults {F0 . . . Fn} is
diagnosable according to definition 9 if and only if the set of
all D(Fi) covers SD (see section 4.4), which is equivalent
to the set

⋃
i Sig(D(Fi)) covering OBS. Consequently, from

the statements above, it follows that the set Π = {Σ0 . . .Σn}
partitions OBS, and the set of macrofaults is diagnosable ac-
cording to definition 3. �

5 Application to repair preconditions
The definition of diagnosability is now applied to sets of
states that map to repair preconditions. When a repair pre-
condition is diagnosable, it is possible to decide when to ap-
ply the repair and when not. It is a complementary approach
to fault diagnosis, since knowing which fault happened and
knowing what to do to repair it is not the same informa-
tion, and both answers are important for monitoring a system.
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Knowing which fault happened but being unable to decide
which repair is suited is odd. On the other hand, knowing
how to repair a faulty system without knowing the details of
the faults is a problem for low cost maintenance or feedback
to the system designers. Hence, diagnosability analysis of
repair preconditions is a complement to fault diagnosability
analysis.

A repair is an action or a process that puts a system back to
a normal state from a faulty abnormal state. Repairs can be
plans driven by goals [Friedrich et al., 2005], reconfigurations
[ten Teije et al., 2004], or other actions. In most approaches,
repairs have preconditions, which generally define a set of
states. In the case of repair plans, the plan may contain ac-
tions that bring additional information about the system state,
thus refining the diagnosis. Plans may also contain condi-
tional branchings, especially in order to react to additional
diangosis information.

A repair may not be executed in every state of the system
for various reasons. An action or plan that repairs a system
from a given state may damage it even more in some other
states. For example changing a wheel is not possible if the
vehicle is not at full stop. Also, it is considered in this paper
that repairs being the system back in a normal state, partial
repairs are not considered. For example, changing one wheel
repairs a vehicle with one flat tire, but it does not repair a
vehicle with two flat tires.

In most cases, non faulty states do not belong to repair pre-
conditions, since it is not useful to repair a normal system.
However, when there is an ambiguity about the presence fo
a fault, some supervision policies consider that it is better to
repair a normal system is better than let the system run with
its fault. Consequently, normal states may belong to fault pre-
conditions.

Definition 10 (Repair precondition) A repair precondition
is a set of states, in which the repair can be applied, and
in which the application of the repair brings the system to a
normal state.

This definition implies that if two repair preconditions are
verified at the same time, only one repair needs to be applied.

No assumption is made in this paper about the relation be-
tween fault modes and repair preconditions. A repair may be
applicable in only some of the states of a fault mode, while
each fault mode may be repaired differently according to the
current system state.

Each repair precondition is described by a logic proposi-
tion rpi. The proposition rpi generally constrains mode vari-
ables as well as variables defining the operational state of the
system. The set RPi ⊆ SD contains all the system states
fulfilling rpi. The setRPi is the complement ofRPi in SD,
it is the set of system states for which the i-th repair is not
suited.

6 Example
The concepts and definitions described in the previous sec-
tions are illustrated by a simple example. It is shown that
definitions 5 and 9 allow us to analyse diagnosability at dif-
ferent levels (faults, macrofaults, or repair preconditions) and

Tank

Clog

hp

te

if

of

Figure 5: A pipe and a tank

that the returned information may be different and comple-
mentary.

System The system consists in a fluid pipe with variable in-
put flow, which is supposed to provide a constant output
flow. A tank is used to compensate flow variations. This
tank is filled when the input flow is higher that the ex-
pected output, and provides water when the input flow is
too low.

Faults Two faults are considered. First, the pipe may be
clogged, which reduces greatly the flow capacity of the
pipe. Second, the tank is supposed to be always able
to deliver water, however in exceptional conditions, the
tank may occur to be empty. When this occurs, the input
flow is directed in priority to the tank. If the input flow is
sufficiently high, it can supply both the empty tank and
the output.

Sensors A pressure sensor is placed in the pipe, in order to
detect abnormally high pressures. This happens when
the pipe is clogged, and there is input flow.

Model The model of this system contains five variables :
• if describes the input flow and has 3 values : none,

low, and high.
• of is Boolean and equals 1 when there is an output

flow.
• hp is Boolean and equals 1 when the pressure inside

the pipe is abnormally high.
• pc is Boolean and equals 1 when the pipe is

clogged.
• te is Boolean and equals 1 when the tank is empty.

The behaviour of the system is described by the follow-
ing constraints:

of = 1⇔
(
te = 0 ∨ (if = high ∧ pc = 0)

)
hp = 1⇔ (if 6= none ∧ pc = 1)

Observables The variables if , of and hp are observable.
Repairs The following repairs are available:

1. It is possible to unclog the pipe thanks to a chemical
action (rp1). This repair can be applied when the
pipe is clogged. For safety reasons, it must not be
applied when the pipe is not clogged. If the tank is
empty, this repair is not sufficient to bring back the
system in a normal state.

rp1 : (pc = 1 ∧ te = 0)
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Alban Grastien, Wolfgang Mayer, and Markus Stumptner, Editors.
Proceedings of the 19th International Workshop on Principles of Diagnosis (DX-08),
September 22–24, 2008, Blue Mountains, NSW, Australia.



2. It is also possible to unclog the pipe mechanically
(rp2). The action consists in sending someone on
site and clean the pipe. This repair can only be ap-
plied when the pipe is empty (no input flow), but is
not sufficient if the tank is empty, since it will not
bring the system to a normal state. This repair can
if necessary be applied in the normal mode : once
the cleaner is on site, if the pipe is not clogged, then
the cleaner will do nothing.

rp2 : (te = 0 ∧ if = none)

3. Finally, if the tank is empty, it is possible to redi-
rect the whole flow through the tank (rp3). This
permits to mechanically unclog the pipe if needed.
However, the manipulations involved in this repair
require that there is no flow in the pipe.

rp3 :
(
te = 1 ∧ (if = none ∨ pc = 1)

)

The system has 12 different states, represented in Figure 6
as well as the diagnosable blocks and their corresponding ob-
servations. The application of definitions 5 and 9 to the fault
modes, macrofaults and repair preconditions are now illus-
trated on this system.

6.1 Fault mode diagnosability analysis
The system has 4 fault modes, named normal, pipe clogged,
tank empty and pipe & tank that define 4 sets of states whose
diagnosability is analyzed. The analysis details are described
in Table 1.

According to definition 5, none of these fault modes is di-
agnosable. Moreover, fault modes are by definition disjoint
sets, and the notion of preemptability is not relevant when
dealing with disjoint sets of states, since disjoint sets cannot
preempt one another. Consequently, no fault mode is diag-
nosable according to definition 9 either.

6.2 Macrofault diagnosability analysis
Let us consider for example the set of macrofaults defined
by {F1, F2, F3} with F1 = {normal, tank empty} and F2 =
{pipe clogged} and F3 = {tank empty, pipe & tank}. The
diagnosability analysis is given in Table 2.

None of these macrofaults is diagnosable with respect
to definition 5. Moreover, only F3 is preemptable, with
UD(F3) ⊂ D(F1), which is not enough to make the set of
macrofaults {F1, F2, F3} diagnosable according to definition
9.

6.3 Repair precondition diagnosability analysis
The sets of states corresponding to the repair preconditions
are represented in figure 6. Diagnosability analysis provides
the results indicated in Table 3.

The undiagnosable spaces of repair preconditions RP2

and RP3 are empty, which means these sets of states are
unions of diagnosable blocks. They are diagnosable, accord-
ing to definition 5. Moreover, RP1 is not diagnosable, but
UD(RP1) ⊂ D(RP2), it is preemptable. The set of re-
pair preconditions {RP1,RP2,RP3} is diagnosable with
respect to definition 9.

7 Conclusion
This paper provides a new, general definition of diagnos-
ability, that applies to any set of states and by extension
to any state dependent property. Given a property that de-
pends on the system state, it is possible to assess whether
the observations are sufficient to deduce that the property
holds or not. Such properties can be the presence or ab-
sence of faults, which falls back into existing diagnosability
approaches. They can also be repair preconditions, which we
expect to fall back into existing self-healability approaches
[Cordier et al., 2007]. Analysing repair preconditions di-
agnosability is showed to bring different information from
analysing fault modes or macrofaults diagnosability.

This work covers many other kinds of properties, like for
example the ability of the system to provide its function, or
a given part of its function, or to respect a given quality of
service. Any property that can be mapped to a set of states
can be checked with this approach.
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te : 0 1
pc : 1 0 0 1

if : none

low

high SD

RP1 RP2 RP3

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

States Observation
if hp of

s0, s1 none 0 1
s2, s3 none 0 0
s4 low 1 1
s5 low 0 1
s6 low 0 0
s7 low 1 0
s8 high 1 1

s9, s10 none 0 1
s11 high 1 0

Figure 6: States, diagnosable blocks and repair plans of the system.

Fault mode States Intersected diagnosable blocks UD
SDnormal {s1, s5, s9} {s0, s1} and {s9, s10} {s1, s9}

SDpipe clogged {s0, s4, s8} {s0, s1} {s0}
SDtank empty {s2, s6, s10} {s9, s10} and {s2, s3} {s2, s10}
SDpipe & tank {s3, s7, s11} {s2, s3} {s3}

Table 1: Fault modes diagnosability results.

Macrofault States Intersected diagnosable blocks UD
F1 {s1, s2, s5, s6, s9, s10} {s0, s1} and {s2, s3} {s1, s2}
F2 {s0, s4, s8} {s0, s1} {s0}
F3 {s2, s3, s6, s7, s10, s11} {s9, s10} {s10}

Table 2: Macrofaults diagnosability results.

Repair precondition States Intersected diagnosable blocks UD
RP1 {s0, s4, s8} {s0, s1} {s0}
RP2 {s0, s1} none ∅
RP3 {s2, s3, s7, s11} none ∅

Table 3: Repair preconditions diagnosability results.

In each table, the column “Intersected diagnosable blocks” lists the diagnosable blocks that
intersect but are not subset of the corresponding set of states.
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Alban Grastien, Wolfgang Mayer, and Markus Stumptner, Editors.
Proceedings of the 19th International Workshop on Principles of Diagnosis (DX-08),
September 22–24, 2008, Blue Mountains, NSW, Australia.



design. In E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins,
editors, Proceedings of the 14th International Conference,
(EKAW-2004), number 3257 in Lecture Notes in Artificial
Intelligence, pages 321–336, Whittleburry Hall, UK, Oc-
tober 2004. Springer Verlag. ISBN 3-540-23340-7.

[Travé-Massuyès et al., 2001] L. Travé-Massuyès, T. Esco-
bet, and R. Milne. Model-based diagnosability and sen-
sor placement application to a frame 6 gas turbine subsys-
tem. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI’01, volume 1,
pages 551–556, 2001.

[Travé-Massuyès et al., 2006] L. Travé-Massuyès, T. Esco-
bet, and X. Olive. Diagnosability analysis based on com-
ponent supported analytical redundancy relations. IEEE
Transactions on Systems, Man and Cybernetics, Part A :
Systems and Humans, 36(6), 2006.

338 Another Point of View on Diagnosability

Alban Grastien, Wolfgang Mayer, and Markus Stumptner, Editors.
Proceedings of the 19th International Workshop on Principles of Diagnosis (DX-08),
September 22–24, 2008, Blue Mountains, NSW, Australia.


