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Abstract
This paper addresses the problem of identifying
whether a given pattern of unobservable events
has occurred in a partially observable timed dis-
crete event system. The systems that are con-
sidered here are modelled with safe labeled time
Petri nets. To solve the problem, we propose to
use a model checking approach. Given the model
of the system, the pattern to analyse, and the se-
quence of observations produced by the system,
the method firstly builds automatically a labeled
time Petri net and a pair of queries that represent
the pattern diagnosis problem to solve. The sec-
ond step then consists in using a model-checker
for time Petri net that provides the answer to the
queries. The solution provided by the model-
checker is then analysed to determine whether the
pattern under investigation has definitely occurred
or not.

1 Introduction
Classically, the problem of model-based fault diagnosis in
discrete event systems (DES) is the problem of determining
whether a set of unobservable and faulty events has occurred
in the system based on a complete behavioural model and
a sequence of observations produced by the system. This
initial problem, originally introduced in [1], has been ad-
dressed for decades based on different formalisms such as
automata, Petri nets, process algebra and a survey of these
techniques can be found in [2] and for specifically Petri nets
in [3].

Based on these previous contributions, two independent
extensions have been proposed. The first one is about deal-
ing with time. In the initial definition of the problem, time
is just characterized by events occurring sequentially but
their dates of occurrences are not taken into account. The
date itself, as a numerical piece of information, is an ob-
servation and depending on the date of a given observa-
tion the diagnosis might be different. The extension of
the problem to deal with time has been formally addressed
in [4] where the considered formalism is time automata.
The decidability question as well as some complexity re-
sults can also be found in [5]. A few method based on
time automata have then been proposed in [6] and more re-
cently in [7]. Extensions to deal with time have also been
addressed with formalisms like time Petri nets [8; 9; 10;
11].

The second type of extension is about the nature of what
is diagnosed. In the previous cited pieces of work, the result
of the diagnosis method is about the occurrence of faults
represented as single events. In [12], the notion of supervi-
sion patterns is introduced as automata, also called temporal
specification in [13] or semantic patterns in [14]. A super-
vision pattern is a specific assembling of events and this as-
sembling is considered as faulty or more generally as critical
enough so that knowing whether this pattern of events has
definitely occurred in the system is of importance to assist
any further decision (repair, reconfiguration, maintenance).
A succint representation of such patterns is proposed as Petri
nets in [15] and a method for diagnosing such patterns on la-
beled Petri net is proposed in [16].

The goal of this paper is to extend the method proposed
in [16] to Labeled Time Petri nets (LTPN) so that we can
benefit of the observation of dates to make the pattern di-
agnosis more accurate. We propose to turn the pattern di-
agnosis problem over LTPN as a reachability problem over
LTPN that can be solved by a model-checker. Given a pat-
tern, the model of a system and a sequence of observations,
the proposed method builds a single LTPN that gathers all
the information and designs a set of formal properties over
this LTPN that will produce the diagnosis result. The ef-
fective construction of this LTPN requires specific products
that have been recently introduced in [17].

2 Background
This section recalls the mathematical background that will
be used throughout this paper.

2.1 Timed language
A timed sequence over a set of labels Σ is a sequence
ρ of pairs (s, d) where d is a duration and s is a sym-
bol of Σ ∪ {λ}. Throughout this paper, symbol λ will
represent the occurrence of time and will be always con-
sidered as a silent event (λ may be part of Σ or not).
The set of timed sequences over Σ is denoted T (Σ) and
T (Σ) ⊆ (Σ ∪ {λ} × R+)+. Each timed sequence ρ has
a canonical representation denoted [ρ] with only one λ at
the end. Suppose for instance that Σ = {a, b, c}, then
ρ = (a, 3).(c, 4).(λ, 2).(b, 1).(b, 2).(λ, 4) is a timed se-
quence of T (Σ) also denoted 3a4c2λ1b2b4λ. The canon-
ical representation of ρ is [ρ] = 3a4c3b2b4λ. Through-
out this paper, only canonical representations are consid-
ered. Given two alphabets Σ1,Σ2, the projection PΣ1→Σ2

:
T (Σ1) → T (Σ2) of a canonical timed sequence is defined
as follows.



• PΣ1→Σ2(θλ) = θλ, for any θ ∈ R+;
• if e ∈ Σ2, PΣ1→Σ2(θe.ρ) = θe.PΣ1→Σ2(ρ);

• if e ∈ Σ1 \ Σ2, two cases hold
– PΣ1→Σ2(θeρ) = (θ+θ′)λ, if θ′λ = PΣ1→Σ2(ρ).
– PΣ1→Σ2

(θe.ρ) = (θ + θ′)e′.ρ′,
if θ′e′.ρ′ = PΣ1→Σ2

(ρ).

As an example, let Σ′ = {c} then PΣ→Σ′([ρ]) = 7c9λ.

2.2 Labeled time Petri nets
Definition 1 (LPN). A Labeled Petri Net (LPN for short) is
a 5-uple N = 〈P, T,A,E, `〉 such that:

• P is a finite set of places;
• T is a finite set of transitions (P ∩ T = ∅);
• A ⊆ (P×T )∪(T×P ) is a binary relation that models

the arcs between the places and the transitions;
• E is a finite set of transition labels;
• ` : T → E is the transition labeling function.
The preset pre(t) of a transition t is the set of (input)

places pre(t) = {p ∈ P : (p, t) ∈ A} and the post-
set post(t) of a transition t is the set of (output) places
post(t) = {p ∈ P : (t, p) ∈ A}. A state of a LPN is a
marking that is a function (M : P → N) that assigns to each
place a number of tokens (or marks). All along this paper,
we will consider that any LPN is safe i.e. M : P → {0, 1}.
A transition t is enabled by a given marking M (denoted
t ∈ enabled(M)) if and only if (∀p ∈ pre(t),M(p) = 1).
An LPN is usually associated with an initial marking de-
noted M0. A Labeled Time Petri net [18] is a specific class
of LPN that maps any transition to a static time interval.
Throughout this paper, the static interval Is(t) of a transi-
tion t is either closed ([a, b]) or semi-closed ([a,+∞[).
Definition 2 (LTPN). A Labeled Time Petri Net (LTPN for
short) is a 6-uple N = 〈P, T,A,E, `, Is〉 such that:

• 〈P, T,A,E, `〉 is a LPN;
• Is : T → IQ+ is the static time interval function that

maps any transition to an interval of IQ+ (an interval
of IQ+ is an interval of reals whose bounds are either
positive rationals or +∞).

A state of an LTPN is a couple S = 〈M, I〉 where I is a
partial firing interval application I: T → IR+ that associates
to any enabled transition t a time interval of R+ (IR+ : inter-
vals with bounds in R+) in which transition t can be fired.
The lower bound of I(t), also called the date of earlier fir-
ing, is denoted bI(t)c, and its upper bound, also called the
date of later firing, is denoted dI(t)e. The initial state of a
marked LTPN is given by S0 = 〈M0, I0〉 where I0 is such
that I0(t) = Is(t) for any transition t enabled by M0.

Intuitively, in an LTPN a transition is firable from a mark-
ing M if it is enabled for a sufficient amount of time i.e an
amount of time within its own static time interval. Formally,
a net transition t is firable from a state S = 〈M, I〉 at a rel-
ative date θ if and only if:

1. t ∈ enabled(M),
2. θ ≥ bI(t)c and for any transition t′ enabled by M , θ is

not greater than the later firing date of t′: θ ≤ dI(t′)e
if I(t′) is right-closed.

Firing a firable transition t at the relative date θ from the
state S = 〈M, I〉 leads to a state S′ = 〈M ′, I ′〉 such that:

• M ′ is such that ∀p ∈ pre(t)\post(t),M ′(p) = 0, ∀p ∈
post(t) \ pre(t),M ′(p) = 1, else M ′(p) = M(p);

• For any transition t′ ∈ T (t′ 6= t) enabled by M after
the fire of t and enabled by M ′

– if I(t′) = [a, b], I ′(t′) = [max(0, a− θ), b− θ];
– if I(t′) = [a,+∞[, I ′(t′) = [max(0, a −
θ),+∞[.

• else I ′(t′) = Is(t
′).

In the following, the fire of a transition t at the relative date
θ is denoted: 〈M, I〉 θt−→ 〈M ′, I ′〉. A state S is reachable in
a marked LTPN if it exists a sequence of firable transitions
S0

θ1t1−→ S1
θ2t2−→ . . .

θktk−→ S, also denoted S0
r−→ S where

r is the timed transition sequence r = θ1t1θ2t2 . . . θktk.
The sequence r will be called a run of the net. Any run
r′ = θ1t1 . . . θiti, i ≤ k is a prefix of r. The set of reach-
able states from a state S in a marked LTPN N is denoted
R(N,S). A marking M ′ is reachable from a marking M
(also denoted without ambiguity M ′ ∈ R(N,M)) if there
exists a state S′ = 〈M ′, I ′〉 such that S′ ∈ R(N, 〈M, I〉).

Consider now a run r of an LTPN S0
r−→ S = 〈M, I〉,

we can associate r with a set of canonical timed sequences,
denoted θ_`(r) as follows:

θ_`(r) = {[θ_`a(r).dλ], d ∈ [0, dmax[}, (1)
where θ_`a(r) is the earliest timed sequence of r:
• if r is the empty run (no transition) then θ_`a(r) = 0λ;
• if r = θ1t1θ2t2 . . . θktk, k > 0 then θ_`a(r) =

[θ1`(t1)θ2`(t2) . . . θk`(tk)0λ].
Date dmax is the latest possible duration stay in state

S (i.e. the minimal upper bound of the current firing in-
tervals dmax = mint∈enabled(M)(dI(t)e)). Based on the
sets θ_`(r) we can define a timed language generated by an
LTPN. Let Q be a subset of R(N,M0), a timed sequence
belongs to the language generated by the marked LTPN if
there is a run of the LTPN that generates the sequence and
that leads to a state whose marking is in Q: such a run is
called an admissible run.
Definition 3 (Language of an LTPN over Q). The language
generated by a marked LTPN N over Q is

L(N,Q) =
⋃

r:S0
r−→S=〈M,I〉∧M∈Q

θ_`(r)

2.3 LTPN extensions
We recall here two classical LTPN extensions that will be
also used in this paper: inhibitor arc and transition prior-
ities. An inhibitor arc modifies the enabling conditions of
transition t that were detailed previously for the so-called
regular arcs. With an inhibitor arc (p, t), the input place p
must be empty to enable t. A priority defines a binary rela-
tion between two transitions of an LTPN, denoted t1 � t2
(t1 has priority over t2), that is transitive, not reflexive and
not symmetrical. A firable transition is not allowed to fire if
a transition with a higher priority is firable at the same date.

3 Problem statement
The fault diagnosis problem has been formally defined with
the help of timed automata in [4]. We propose here to extend
this definition to deal with more complex behaviors than sin-
gle faults.



3.1 System model
We consider throughout this paper that the supervised
system is modelled as a safe LTPN denoted Θ =
〈PΘ, TΘ, AΘ,ΣΘ, `Θ, IΘS〉 with an initial marking denoted
M0Θ. ΣΘ represents the set of event types that are effec-
tively generated by the system (λ 6∈ ΣΘ). In this paper,
we assume that according to the instrumentation only a sub-
set of transitions can be observed. These transitions are as-
sociated with a sensor that generates an output turned into
an observable event by a measurement function. We con-
sider also unobservable transitions that represent effective
system’s event but not associated with any kind of sensors.
Transition labels ΣΘ are then partitioned into two subsets:
ΣoΘ is the set of observable events and ΣuΘ the set of unob-
servable ones. Finally, we assume that the model does not
contain any zeno run (a zeno run is an infinite sequence of
transitions that can occur in a finite amount of time which is
unrealistic in real systems).

Figure 1 presents the model of a system Θ. It consists of
two concurrent processes synchronized to perform together
a specific activity. The first process (on the left part of the
figure) is composed of several activities represented by the
places p1

i , i ∈ {1, . . . , 5} while the activities of the sec-
ond process (on the right part of the figure) are modeled by
the places p2

i , i ∈ {1, . . . , 6}. Both processes are synchro-
nized on transition t12

1 whose firing leads to the marking
of a shared place p12 representing the activity that requires
the two processes. The end of this activity is modeled by
the firing of transition t12

2 that leads to the marking of the
places p1

3 and p2
6 so that each process can evolve indepen-

dently to perform its own activities. The initial state of each
process is given by the initial marking (places with black
dots). Transition labels that are in bold represent observable
events while the others are unobservable events. It must be
noticed that Process 1 (resp. Process 2) only generates o1

(resp. o2) events as observations.

3.2 Event pattern model
Event patterns gather a set of specific combinations of un-
timed and unobservable events whose occurrence in the
system leads to a situation of interest (i.e. failure, criti-
cal/dangerous situation, safe/unsafe behavior,....). Patterns
that are studied throughout this paper are the same as in [17]
and are defined as LPNs. As for the system model, transi-
tions labels represent events of the system.

Definition 4 (Pattern). A pattern Ω is an LPN Ω =
〈PΩ, TΩ, AΩ, `Ω,ΣΩ,M0Ω〉 associated with a set of final
markings QΩ ⊂ R(Ω,M0Ω) such that:

1. (unobservable) events of ΣΩ are unobservable (ΣΩ ⊆
ΣuΘ);

2. (initialized) M0Ω 6∈ QΩ;

3. (well-formed) from any reachable marking M , there
exists a run that leads to a marking M ′ ∈ QΩ;

4. (deterministic) from any reachable marking M of
R(Ω,M0Ω) there is no event e ∈ ΣΩ that labels more
than one enabled transition;

5. (stable) from any reachable marking M of R(Ω,M0Ω)
such thatM ∈ QΩ any possible run leads to a marking
M ′ such that M ′ ∈ QΩ.

Patterns are LPN that aim at representing succinct behav-
iors that are unobservable (Condition 1) (L(Ω) ⊂ Σu∗Θ ).

Condition 2 ensures that the pattern does not represent an
empty event sequence. Condition 3 guarantees that any run
of the pattern is always a prefix of a matching run. Condi-
tion 4 avoid ambiguities within the pattern and is required
to ensure the correctness of the combination of a pattern and
a system as detailed later. Finally Condition 5 ensures that
once a pattern has occurred, its effect is definitive (any sys-
tem’s run that has a matching run as a prefix is a matching
run).

Figure 2 illustrates different types of patterns of interest
for the system of Figure 1. Figure 2a presents k occurrences
of a single event b (pattern Ωb1(k)). The marking of the final
place pp1

k indicates the pattern has occurred then the set of
final markings is given by QΩb1(k) = {M : M(pp1

k) = 1}.
This pattern extends the classical single fault event pattern
that is usually studied in the literature. Throughout this pa-
per, we will similarly denote Ωf1 (k) the pattern modeling k
occurrences of the single event f . Figure 2b presents a pat-
tern that characterizes k occurrences of one event among a
predefined set of events, here among {b, f}. The structure of
the pattern depends on the value of k required. If one wants
to consider one occurrence of one event among {b, f}, it is
necessary to consider the marking of the place pp1

1 and then
QΩ2(1) = {M : M(pp2

1) = 1}. The marking of the place
pp2

2 indicates 2 occurrences (2 events b or 2 events f or 1
event b and 1 event f , whatever the ordering) then the set
of final markings is QΩ2(2) = {M : M(pp2

2) = 1}. The
number of layers in the pattern depends on the k value. The
k occurrences are obtained when the place pp2

k is marked
hence QΩ2(k) = {M : M(pp2

k) = 1}. The pattern Ω2(k)
can be a base to extend the classical notion of fault class
with k = 1 and the set of events is the set of n fault class
events: {f1, f2, · · · , fn}. In this case, the pattern has only
one layer with as many transitions as fault class events. Fi-
nally, Figure 2c presents a pattern that models 3 consecutive
occurrences of event b that are not interleaved with any oc-
currence of event f . This pattern can also be extended into
Ω3(k) to model k consecutive occurrences of an event with-
out any occurrence of another type of event. This last pat-
tern is interesting as it represents some fairness issues in the
system that might be of interest to detect, QΩ3(k) = {M :
M(pp3

k) = 1}.

3.3 Pattern diagnosis
This subsection introduces the problem of diagnosing
patterns in timed discrete event systems. For a given
pattern Ω, the diagnosis problem consists in defining an
Ω-diagnoser function that takes as input a timed sequence
of observations and checks for any run of the system
that can generate these observations whether it matches
the pattern Ω or not. It results in the generation of three
possible symbols: Ω−faulty (all the possible runs match
Ω), Ω−safe (none of them match Ω), Ω−ambiguous
(some of them match Ω, some of them do not) [15]. A
run r of the system matches a pattern Ω if one can find
in a word ρ = θ1e1 . . . θnenθn+1λ of θ_`(r) a sub-word(∑j1

i=1 θi

)
ej1

(∑j2
i=j1+1 θi

)
ej2 . . .

(∑jk
i=jk−1+1 θi

)
ejk

such that ρΩ = ej1 . . . ejk is a word of L(Ω): this will
be denoted by ρ c ρΩ and more generally by ρ c Ω and
r c Ω.

Checking whether a run of Θ can generate the given ob-
servations (i.e. the run is consistent with the observations)
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t11 : o1[3, 4]

t14 : a[0, 3]

t12 : o1[1, 2]

t21 : e[1, 3]

t22 : e[2, 3]

t23 : b[1, 2]

t24 : o2[8, 11]

t25 : o2[1, 2]
t12
1 : d [2, 3]

t12
2 : c[1, 2]

t26 : o2[1, 3]

t13 : f [1, 2]

t15 : o1[1, 2]

t16 : e[1, 1] t17 : e[1, 1]

Figure 1: A system Θ composed of two communicating and partially observable timed processes

relies on the timed language projection from the alphabet
ΣΘ to the observable alphabet ΣoΘ (see Section 2.1). The
Ω-diagnoser can then be formally defined as follows.

Definition 5 (Ω-diagnoser). An Ω-diagnoser is a function

∆Ω : T (ΣoΘ)→ {Ω−faulty ,Ω−safe,Ω−ambiguous}with

• ∆Ω(σ) = Ω−faulty if for any ρ ∈ L(Θ) that is con-
sistent with σ (i.e. PΣΘ→ΣoΘ

(ρ) = σ), ρ c Ω;

• ∆Ω(σ) = Ω−safe if for any ρ ∈ L(Θ) that is consis-
tent with σ, ρ 6c Ω;

• ∆Ω(σ) = Ω−ambiguous otherwise.

It must be noticed that, even if Definition 5 uses Petri
nets (Θ and Ω notations), this definition is purely language-
based. The diagnosis problem is defined over the set of
timed sequences ρ in L(Θ), the matching relation is de-
fined over event sequences and consistency is achieved
by sequence projection. It follows that Definition 5 de-
fines a problem independently from the underlying model
structure but with respect to their language expressive-
ness (time Petri nets, timed Event Graphs, timed au-
tomata...). Considering now a set of patterns Ω1, . . . ,Ωn,
the diagnoser function of a system can be defined as ∆:
T (ΣoΘ) →

∏n
i=1{Ωi−faulty ,Ωi−safe,Ωi−ambiguous}

such that ∆(σ) = (∆Ω1(σ), . . . ,∆Ωn(σ)).
Let us now illustrate the diagnosis problem with a few

examples based on the system of Figure 1 and the family of
patterns of Figure 2.

Example 1. Suppose that the timed sequence that is re-
ceived by the diagnoser from the system of Figure 1 is σ1

= 3o12o28o22o11λ (that is the reception of event o1 at
date 3 then the reception of o2 at date 5 and another re-
ception of o2 at date 13 followed by o1 at date 15 and
finally the observed sequence ends at date 16). The pat-
tern Ωb1(1) models the single occurrence of b. Based on
σ1, we know that the first occurrence of o2 is at the ab-
solute date 5 which means that an occurrence of b has def-
initely occurred. So ∆Ωb1(1)(σ1) = Ωb1(1)−faulty . Con-
sidering now pattern Ωb1(2) (i.e. two occurrences of b). If
b has occurred twice, the second occurrence is after the
second occurrence of o2 at date 13. As σ1 lasts at date
16, it is possible that b has occurred twice (the second oc-
currence would be at date in [15, 16]) but not necessary:
∆Ωb1(2)(σ1) = Ωb1(2)−ambiguous .

The pattern Ω2(2) models two occurrences of an event
among {b, f}. Based on σ1, we know that b has definitely
occurred once. As the second occurrence of event o1 occurs
at date 15, it enforces that transition t13 has been fired once
so the event f has certainly occurred and ∆Ω2(2)(σ1) =
Ω2(2)−faulty . Finally, ∆Ω3(3)(σ1) = Ω3(3)−safe (event
f has necessarily occurred once and b at most twice).

4 Proposed method
The proposed method relies on the formal framework pro-
posed in [17] that is used for analyzing pattern diagnos-
ability on the same type of systems. Figure 3 presents an
overview of the proposed method.

The main principle of the method is to synthesize an
LTPN, denoted ΠΘ,Ω

σ , that represents as a whole the set of
runs of Θ that are consistent with σ and for each run of these
runs, the LTPN should also represent the fact that the pattern
Ω is matched or not. Once ΠΘ,Ω

σ is obtained, the remaining
step is to check into ΠΘ,Ω

σ whether the runs match the pat-
tern or not. To do so, we propose first to synthesize a set
of formal queries and secondly to use a model-checker on
ΠΘ,Ω
σ to solve the queries and get the diagnosis (see Sec-

tion 5 for details about this part). This section now presents
how the LTPN ΠΘ,Ω

σ is computed based on the LTPN Θ, the
LPN Ω and the timed sequence σ. The computation is based
on specific compositions of LTPNs that have been formally
introduced in [17] and that are described in the next subsec-
tions.

4.1 About composing LTPNs
Usually, composition of Petri nets relies on the synchro-
nization of some transitions. However, in time Petri nets,
compositionnality is kept only when synchronizations in-
volve transitions with an interval [0,+∞[ [19] and transi-
tions with a time interval [α, β] cannot be synchronized as
is. Indeed, synchronizing two transitions means that it is
necessary to determine a clock enabled only when the tran-
sitions are both enabled and that stops as soon as one of
the local clocks stops. This synchronization is then impos-
sible by simply merging both transitions and assigning a
time interval to it based on their respective time intervals
as the stop of the synchronized clock depends on the en-
abling time of each transition and not on the enabling time
of their synchronization. It is then required to perform a
time decomposition of transition t to ensure that the syn-
chronization is performed only on transitions with [0,+∞[
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Figure 2: A set of patterns.
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FAULT/SAFE

3- Model
checking

Diagnosis

Figure 3: Overview of the method for diagnosing an occur-
rence of Ω in the system Θ based on the observations σ.

time intervals. The time decomposition of transition t with
preset p1, . . . , pn and postset p′1, . . . , p

′
n′ consists in replac-

ing t in the initial LTPN N by the set of transitions/places
defined in Figure 4. This time decomposition ensures that
transition et is firable exactly in the same conditions as the
initial transition t. Indeed, once t is enabled by the marking
of p1, . . . , pn, transition cst (i.e. clock start) is enabled in
the decomposition and is silenty fired (λ event) exactly at
time α > 0 so transition et starts being firable exactly from
time α till time β. At β, either et or the silent transition tot
(i.e. time out) is fired, so et is firable in [α, β] as t and leads
to the same postset. Now, as soon as tot is fired, it means
that the behavior is actually not admissible (transition tmust
have been fired in [α, β] as it is conflict-free), the place Nat
then permanently holds a token and inhibits any further fire
of cst thanks to an inhibitor arc between Nat and cst. The
aim of nat is then to empty the preset of cst in case of a non
admissible behavior.

4.2 Pattern matching product

The first step of the computation of ΠΘ,Ω
σ is to compute an

LTPN that represents how a system Θ is actually match-
ing a pattern Ω: this step is based on the pattern match-
ing product. This product relies on a specific product be-
tween the transitions of Θ and Ω. Consider now t as a tran-

p1 p2 pn

. . .

cst : λ[α, α]

Ti t

et : a[0,+∞[
tot : λ[β − α, β − α]

p′1 p′2 p′n′

. . .

Nat

nat : λ[0, 0]

Figure 4: Time decomposition of a transition t of a LTPN
N with `(t) = a and Is = [α, β], α > 0.

sition of Θ (with `Θ(t) = a, ISΘ(t) = [α, β], α > 0) 1

with pre(tΘ) = {p1, . . . , pn} and post(t) = {p′1, . . . , p′n′}.
Without loss of generality, we assume that t is conflict-free
(no other transition has the same preset).2 Let tΩ be a tran-
sition of Ω labeled with a with pre(tΩ) = {q1, . . . , qm} and
post(tΩ) = {q′1, . . . , q′m′}. To effectively obtain the pattern
matching product between t and tΩ, first a time decomposi-
tion of t is performed in order to replace t with a transition
et as detailed in the previous subsection. As tΩ is part of
an LPN and not an LTPN, it means that the implicit static
time interval of tΩ is [0,+∞[ so no time decomposition is
required for tΩ. The pattern matching product consists then
in replacing et and tΩ by the set of transitions/places defined
in Figure 5.

On the left, transition et, resulting from the time decom-
position of t, is kept as is. On the right, the transition tΩ
is replaced by a synchronized transition et||tΩ whose preset
(resp. postset) is the union of the presets (resp. postsets)
of et and tΩ. Finally, a priority constraint is added between

1Recall that the system has no zeno runs so we suppose that
α > 0.

2Indeed, if t is in conflict with another transition t′, Θ can be
transformed by adding two silent transitions λ[0, 0] enabled by the
preset of t and t′. Each silent transition has a postset with one new
place that replaces the preset of either t or t′. New versions of t and
t′ are then conflict-free while the generated langage L(Θ) remains
the same.



Ti t

et : a[0,+∞[

p′1 p′2 p′n′

. . .

q1 qm

. . .

et||tΩ : a[0,+∞[

q′1 q′m′

. . .

Figure 5: Pattern matching product between a transition t of
Θ and a transition of Ω.

pokσ

o1 [3, 3] o2 [2, 2] o2 [8, 8] o1 [1, 1] tλ : λ[1, 1]

Figure 6: LTPN ξσ for observation sequence
3o12o28o21o11λ.

et||tΩ and et.
Applying this product to Θ and Ω then leads to an LTPN

denoted ΘnΩ. As explained in the previous section, ΘnΩ
contains admissible markings (a markingM is admissible if
for every place Nat resulting from the time decomposition
of a transition t, M(Nat) = 0). Let QmatchΘnΩ be the set of
admissible markings of Θ n Ω such that for every M ∈
QmatchΘnΩ , the restriction of M to the places of Ω belongs to
the accepting markings QΩ of Ω. Then, as proved in [17],
the set of runs in Θ n Ω leading to a marking of QmatchΘnΩ is
exactly the set of runs of Θ that match Ω:

Proposition 1.

L(Θ n Ω, QmatchΘnΩ ) = {ρ ∈ L(Θ)|ρ c Ω}

4.3 Composing with timed observations
To finally get the LTPN ΠΘ,Ω

σ as a single LTPN that repre-
sents the diagnosis problem, the next step is to find a way to
encode whether a run of the system Θ is consistent with
the observations σ or not. If a run is consistent with σ
it means that it produces the sequence of observations at
the correct time. Consider again the observation sequence
3o12o28o21o11λ. The principle is to build out of this se-
quence, an LTPN (noted ξσ) as the one depicted in Figure 6.

It is a single sequence of transitions ending with a spe-
cific silent transition tλ and its postset pokσ . By construction
of ξσ , we have L(ξσ, {pokσ }) = {σ}. To fully encode the di-
agnosis problem in ΠΘ,Ω

σ , we now need to compose ξσ with
the pattern product Θ n Ω in such a way that:

1. we keep only the runs of ΘnΩ that produce the events
of σ in the same order and at the same date;

2. among these runs we keep the ones which have the
same duration than σ.

To implement the first condition, two operations are per-
formed. Firstly, any transition labeled with an observable
event that is not shared with at least one transition of ξσ
must be deactivated. To do so, its postset is simply replaced

with a postset containing a single non-admissible place de-
noted Naobs. Secondly, the idea is to synchronize any tran-
sition of ξσ with every transition of Θ n Ω that share the
same event label. To do so, the first step is to apply the time
decomposition on every transition of ξσ and on every tran-
sition of Θ n Ω that shares an event label o ∈ ΣoΘ with at
least one transition of ξσ . Once the time decomposition is
done, every couple of obtained transitions (et1 , et2), where
t1 belongs to Θ n Ω and t2 belongs to ξσ and such that et1
and et2 share the same observable event label o ∈ ΣoΘ, is re-
placed by the synchronized transition et1 ||et2 labeled with
o as detailed in Section 4.2. To implement the second con-
dition, the principle is to finally add a set of constraints as
priorities and inhibitor arcs that block any continuation of a
run that is fully synchronized with the observations and has
the same duration as σ:

1. a priority t � tλ is added for any transition t from
Θ n Ω or resulting from the time decomposition of a
transition in Θ n Ω;

2. an inhibitor arc is added between the place pokσ and ev-
ery such transition t.

Priorities ensure that any run that ends with the effective
fire of a transition from Θ n Ω at the exact firing date of
tλ has indeed the same duration than σ. Inhibitor arcs then
forbid any further fire of any transitions after the fire of tλ
which ensures that any run with greater duration is ignored.
From this construction of ΠΘ,Ω

σ , it follows that:
Proposition 2. Any run of Θ consistent with σ is an ad-
missible run of ΠΘ,Ω

σ that leads to a marking M such that
M(pokσ ) = 1 and reciprocally.

5 Pattern diagnosis as a model-checking
problem

The previous section details how to build the LTPN ΠΘ,Ω
σ

and shows that, by solving a reachability problem in ΠΘ,Ω
σ ,

it is possible to solve the pattern diagnosis problem. This
section now details how to apply a model-checking tech-
nique to solve the pattern diagnosis problem based on ΠΘ,Ω

σ .

5.1 Model-checking problem
Generally speaking, model-checking is a paradigm that
gathers the set of techniques that aim at formally checking
whether a property ϕ holds in a finite-state modelM:

M |= ϕ. (2)

A model-checker then returns a binary answer:
• either ϕ holds in M and the model-checker returns

true;
• or ϕ does not hold inM and the model-checker returns

false and a counter-example which proves the claim (a
counter-example e is such that e |=M∧¬ϕ).

We propose to solve the pattern diagnosis problem by us-
ing the LTPN model checker TINA [20; 21]. Consider a
LTPN N and a property ϕ written as a SE-LTL formula
(State/Event Linear Temporal Logic), TINA then solves the
problem N |= ϕ.3 SE-LTL is a temporal logic that is able

3Note that the problem N |= ϕ is generally undecidable how-
ever TINA is able to determine sufficient conditions for decidable
subclasses. In our specific case, the problem we solve are decid-
able by construction of ΠΘ,Ω

σ (safe LTPNs).



to express properties about runs of a LTPN. A formula ψ is
a SE-LTL formula if it is a universally quantified formula
ψ ::= ∀ϕ where ϕ ::= cst | r | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©
ϕ | �ϕ | ♦ϕ | ϕUϕ. The constant cst can be ⊥ (false), >
(true), dead (deadlock), div (temporal divergence), sub
(partially known state). r defines constraints e

a
e witha

∈ {=, <,>,≤,≥} between arithmetical expressions e
involving place and transition symbols from the underlying
LTPN. The operators© (next), � (always), ♦ (eventually)
and U (until) have their usual LTL semantics.

Based on SE-LTL, it is in particular possible to implic-
itly characterize sets of markings in a given LTPN. For in-
stance, suppose an LTPN N composed of n ≥ 2 places
p1, p2, . . . , pn. The set Q of markings M ∈ Q of N such
that M(p1) = 1 and M(p2) = 1 can be characterized by
the SE-LTL property denoted MARKINGS(N,Q):

MARKINGS(N,Q) ≡ (p1 = 1 ∧ p2 = 1)

and the problem of checking whether inN , from its initial
marking M0, it is always true (�) that a run eventually (♦)
leads to a marking M such that M(p1) = 1 and M(p2) = 1
can be formulated as follows:

N |= �♦MARKINGS(N,Q)

5.2 Design of the diagnosis properties
To solve the diagnosis problem, two SE-LTL properties
must be checked. The first one, denoted FAULTY(Θ,Ω, σ),
will formally express the property that every run of Θ that
is consistent with the observation σ matches the pattern Ω.
If the model-checker returns true to the problem ΠΘ,Ω

σ |=
FAULTY(Θ,Ω, σ) then it means that the Ω-diagnoser must
return:

∆Ω(σ) = Ω− faulty . (3)
If the model-checker returns false, then it also returns as a
counter-example a run consistent with σ that does not match
Ω. Then two cases hold:

1. either every run that is consistent with σ, does not
match Ω and the diagnosis is Ω-safe

2. or there is another run consistent with σ that matches Ω
which means then that the diagnosis is Ω-ambiguous.

To determine whether it is Case 1 or Case 2, a second model-
checking problem needs to be solved. The second SE-LTL
property to check is denoted SAFE(Θ,Ω, σ) and expresses
that every run of Θ that is consistent with the observation
σ does not match pattern Ω. If finally the model-checker
returns true then it is Case 1, otherwise it is Case 2. Note
that, in case of an ambiguity, the method provides two runs,
one is matching the pattern Ω and the other is not.

Both formulas FAULTY(Θ,Ω, σ) and SAFE(Θ,Ω, σ) ex-
press a property on runs of Θ that are represented as runs
leading to admissible markings in ΠΘ,Ω

σ . A marking M

from ΠΘ,Ω
θ is not admissible as soon as for one place of

type NaΘ (see Section 4.2), we have M(NaΘ) 6= 0 or if
M(Naobs) 6= 0. Let first define the set of admissible mark-
ings of ΠΘ,Ω

σ in SE-LTL:

ADM(ΠΘ,Ω
σ ) ≡

∧
NaΘ∈ΠΘ,Ω

σ

NaΘ = 0 ∧Naobs = 0.

The second property is the matching property. By con-
struction of ΠΘ,Ω

σ (see Proposition 1), a run matches Ω if

it is admissible and leads to a marking which includes an
accepting marking of QΩ. MATCH(ΠΘ,Ω

σ ) is the formula
representing such markings:

MATCH(ΠΘ,Ω
σ ) ≡ ADM(ΠΘ,Ω

σ ) ∧MARKINGS(Ω, QΩ).

Similarly, the property NOMATCH(ΠΘ,Ω
σ ) asserts the ad-

missible markingM of ΠΘ,Ω
σ is not a matching property, i.e.

its restriction M|Ω does not belong to the final markings of
Ω.

NOMATCH(ΠΘ,Ω
σ ) ≡ ADM(ΠΘ,Ω

σ )∧¬MARKINGS(Ω, QΩ).

From Proposition 2, a run of Θ that is consistent with σ
is characterized by an admissible run of ΠΘ,Ω

σ that leads to
a marking that includes the marking of pokσ .

CONSISTENT(ΠΘ,Ω
σ ) ≡

ADM(ΠΘ,Ω
σ ) ∧MARKINGS(Ω, {pokσ }).

Finally, FAULTY(Θ,Ω, σ) is defined as follows: it is al-
ways (�) true that if the run is consistent then it matches the
pattern.

FAULTY(Θ,Ω, σ) ≡
�(CONSISTENT(ΠΘ,Ω

σ )⇒ MATCH(ΠΘ,Ω
σ ))

SAFE(Θ,Ω, σ) is defined as follows: it is always (�) true
that if the run is consistent then it does not matche the pat-
tern.

SAFE(Θ,Ω, σ) ≡
�(CONSISTENT(ΠΘ,Ω

σ )⇒ NOMATCH(ΠΘ,Ω
σ ))

5.3 First experimental results
Table 1 presents the implementation results for the scenar-
ios that are presented in Example 1. Each line presents some
details about the LTPN ΠΘ,Ω

σ that is generated (number of
places, transitions, arcs, priorities). To check the properties
FAULTY and SAFE, the model-checker TINA first precom-
putes a Strong State Class Graph (SSG) that is then used as
a Kripke structure. Table records the details (states, transi-
itons) for the precomputed SSGs. The result for each query
is also presented and shows that there are consistent with the
expected result detailed in Example 1.

6 Conclusion
This paper proposes a method to solve the pattern diagnosis
problem in timed discrete event systems. This method turns
the problem to a couple of model-checking problems over
a safe LTPN. The method only takes into account untimed
patterns. One perspective would be to extend the method
to also deal with timed patterns. Such an extension is not
straightforward due to the specificities of the system-pattern
product. We will firstly aim at better understanding the pat-
tern matching product for timed patterns by characterizing
it as a set of temporal constraints.
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