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Abstract
In this article we introduce the problem of timed pattern diagnosis in timed system and propose a method
to solve a sub-class of theses problems: the problem of timed pattern diagnosis of workflows. It consists
in searching for all the possible evolutions of the workflow that are consistent with a timed sequence
of observations and determining whether these evolutions match a pattern of timed events instead of a
single fault event. The formal characterization of the diagnosis problem is based on the notion of pattern
matching. Defined as a reachability problem, the diagnosis problem is then solved by model checking.
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1. INTRODUCTION

The problem of fault diagnosis in DESs was introduced in
Sampath et al. (1995). Later, extensions of the problem han-
dling time have been proposed using timed automata (Tripakis
(2002)) and more recently Petri nets with several interpretations
of time and methods, for instance: Chatain and Jard (2005),
Jiroveanu and Boel (2006), Basile et al. (2007), Bonhomme
(2015), Boel and Jiroveanu (2013), Basile et al. (2015), Liu
(2014), Wang et al. (2015). These contributions describe some
methods for the same problem that is the diagnosis of single
faults in a timed system. In this article we propose to extend
the diagnosis problem to more complex behaviors than single
events called timed patterns and to apply it to timed workflows.
Timed patterns extend with time the classical notion of pat-
tern (Jéron et al. (2006); Gougam et al. (2017)). Beyond faulty
behaviors, classical patterns can represent any untimed normal
behavior of interest or any behavior associated with a system
specification as in Jiang and Kumar (2004). In Bozzano et al.
(2015), such patterns are called diagnosis conditions and are
represented with LTL (Linear Time Logic) properties with past
operators.

As classical patterns, the proposed timed pattern models
more complex behaviors than a single event (sequences, con-
current events,...) but it also add the possibility to model
a time interval between the occurrence of two events in
the patterns. Timed pattern can then naturally model unex-
pected/unacceptable/faulty time delays between two unobserv-
able events. In this article we firstly propose to formally define
the general problem of timed pattern diagnosis in timed system.
We then propose a method based on model-checking techniques
that solves a subclass of this new problem that is the timed
pattern diagnosis in timed workflows. Given the observable part
of the run of a workflow, the diagnosis problem consists in
determining whether the considered timed pattern has occurred
or not during the run of the workflow. The proposed method
first converts the problem into a reachability problem and then
use model checking tool to solve it. Section 2 formally defines
the general problem. The proposed method is presented in

Section 3. An illustrative example about a service workflow is
described in Section 4.

2. GENERAL PROBLEM STATEMENT

The objective of the approach is to diagnose the occurrence
of a timed behavior (i.e a timed pattern) in a timed system.
It supposes the implementation of a diagnosis function that
takes as input a sequence of observations and returns one of
the following three results:

(1) The pattern’s behavior has certainly occurred.
(2) The pattern’s behavior is certainly absent.
(3) The pattern’s behavior may have occurred, ambiguity.

This section defines the different parts of the problem that is:
how to model timed systems/timed patterns, how to formally
define the occurrence of a timed pattern, what is finally the
diagnoser function.

2.1 Preliminaries

This paper deals with timed sequences. Let Σ be an al-
phabet that is a finite set of symbols, each symbol repre-
sents an event. A timed sequence over Σ is an element of
T (Σ) = (N+ × (Σ ∪ λ))+. Suppose for instance that Σ =
{a, b, c}, ρ = (a, 3), (λ, 1), (c, 1), (c, 1), (b, 2), (λ, 5) also de-
noted 3a1λ1c1c2b5λ is a timed sequence, ρ′ = 1b1b40λ is
another one. Symbol λ defines a timepoint (basically 1λ2λ is
the same as 3λ). The empty sequence of T (Σ) is given by 0λ.

For any timed sequence it is possible to define a canonical
form δ1e1..δnenδn+1λ, ei ∈ Σ that is obtained by remov-
ing useless time points. For instance the canonical form of
ρ = 3a1λ1c1c2b5λ is 3a2c1c2b5λ. In this article and without
loss of generality only canonical forms are considered. The
projection of a timed sequence ρ over a sub-set Σp of Σ (de-
noted P t

Σp
(ρ) ) is the timed sequence obtained by removing

any symbols that does not belong to Σp and by summing the
durations between two symbols that are still present after the
removal. Let us consider the canonical form of ρ, it corresponds



to an event a that occurs at date 3 after the origin of time,
an event c that occurs 2 units of time after a (so c occurs at
date 5), followed by an event b, 1 unit of time later (so at date
6), and so on. Given Σp = {a, b} then P t

Σp
(ρ) = 3a5b5λ.

Any sub-set (canonical sub-set) of T (Σ) is a timed language
over Σ. Let time(ρ) denote the sum of all durations in ρ, then
time(3a4c2λ1b2b4λ) = 3 + 4 + 2 + 1 + 2 + 4 = 14. ρ′ is a
prefix of ρ if time(ρ′) ≤ time(ρ) and there exists ρ′′ such that
ρ′ρ′′ and ρ have the same canonical form.

2.2 Matching

Like untimed discrete event system, a timed discrete event
system generates a finite set of events Σ. The difference is
that in the timed case, the possible time durations between the
occurrence of two successive events are defined, whereas in the
untimed case, the events are only connected by a precedence
relationship. Of course in both cases (timed and untimed), two
events may not be related i.e even the order of their occurrence
is not known. An evolution of a timed discrete event system is
a timed sequence on its alphabet. The set of possible evolutions
of a timed system is thus a set of timed sequences, that is, a
timed language.
Definition 2.1. (Timed system). A timed discrete event system
whose set of events is Σ, is a timed language L ⊆ T (Σ) such
that if ρ ∈ L then any of its prefixes is in L.

The set of events Σ generated by the system is partitioned into
two subsets: observable events Σo and unobservable events Σu.
Two timed sequences can be linked by the notion of matching
that states whether a sequence is present inside another.
Definition 2.2. (sequence matching). A sequence ρ ∈ T (Σ)
matches a sequence σ ∈ T (Σ), denoted ρ c σ, if:

• σ = δλ and time(ρ) ≥ δ, with: δ ∈ N; or
• σ = δ0e0σ1, such that: δ0 ∈ N, e0 ∈ Σ, σ1 ∈ T (Σ)

and there exist two timed sequences ρ0, ρ1 ∈ T (Σ) and a
duration δ ∈ N such that:
(1) ρ = ρ0δe0ρ1;
(2) δ0 = time(ρ0) + δ;
(3) ρ1 c σ1.

In other words, ρ matches σ if σ is a sub-word of ρ. Figure 1
illustrates how the sequence ρ = 2b3c2a5a1c1c3λ matches the
sequence σ = 7a7c0λ. The first event of σ is a and occurs
at date 7. In ρ, there is also an event a that occurs at date
7 = 2 + 3 + 2. The second event of σ is c that occurs 7 time
units later than a. This event is matched with the third event c
of ρ that occurs 5+1+1 = 7 time units after a. Finally, σ ends
instantaneously after event c while ρ lasts 3 time units more so
ρ matches σ.

We define a timed pattern as a setR of timed sequences which
define a behavior of interest. For example, it may be the occur-
rence of a single event in a given time period, the occurrence
of several events that occur in any order, but whose occurrence
dates have constraints or the occurrence of several events that
occur in a fixed order with specific time constraints. As in the
original diagnosis problem that considers unobservable fault
event, we consider that the behavior of the pattern is not ob-
servable i.e no event of the pattern is observable in the system.
Definition 2.3. (Timed pattern). A timed pattern over a set of
events ΣR ⊆ Σu, is a timed languageR ⊆ T (ΣR) such that if

Figure 1. How ρ = 2b3c2a5a1c1c3λmatches σ = 7a7c0λ:
ρ c σ.

ρ ∈ R then only the continuations of ρ of the form ρδλ, δ ∈ N
are inR.

Note that the timed language of a pattern gives only the re-
quired behavior and does not take all the possible events of
the system into account. For instance, the pattern an event
a occurs after an event b is defined by the timed language
{δ0bδ1aδ2λ, δ0, δ1, δ2 ∈ N}. In this way, the pattern representa-
tion is rather in intention than in extension as the representation
proposed by Jéron et al. (2006) in the case of untimed patterns
that depends on a given set of events. In addition to provide
a more concise way to model the pattern, this representation
reinforces the separation between the system and the diagnosis
objectives. Moreover such a representation is well suited to
check if a sequence ρ includes the behavior of interest. Indeed,
it suffices to check if it is possible to extract from the event
sequence ρ ∈ T (Σ) an ordered set of events that is a word of
the language R generated by the pattern. In this case we say
that the sequence ρ isR-matching.
Definition 2.4. (R-matching). Let R be a timed pattern, a se-
quence ρ ∈ T (Σ) isR-matching if there exists a sequence ω ∈
R such that ρ c ω (i.e ρ matches ω).

2.3 Timed pattern diagnosis

Finally, we propose here to extend the original fault diagno-
sis problem to consider more complex behaviors than sim-
ple faults: behaviors described by timed patterns. For a given
behavior pattern R, the diagnosis problem is to define a R-
diagnoser function that takes as input a sequence of observa-
tions and returns one of the three symbols:
{R−certain,R−absent ,R−ambiguous}
Definition 2.5. (R-diagnoser). Given L the timed language of
the system over the event set Σ = Σu ∪ Σo, an R-diagnoser is
a function
∆R : T (Σo)→ {R−certain,R−absent ,R−ambiguous}

such that:

• ∆R(σ) = R−certain if for any sequence ρ ∈ L such
that P t

Σo
(ρ) = σ, ρ isR-matching;



• ∆R(σ) = R−absent if for any sequence ρ ∈ L such that
P t

Σo
(ρ) = σ, ρ is notR-matching;

• ∆R(σ) = R−ambiguous otherwise.

Considering a set of patterns R1, . . . ,Rn the diagnoser func-
tion is defined by:

∆ : T (Σo)→
∏n

i=1
{Ri−certain,Ri−absent ,Ri−ambiguous}

such that ∆(σ) = (∆R1(σ), . . . ,∆Rn(σ)).

3. DIAGNOSIS BY MODEL CHECKING

The proposed method defines the problem of timed pattern
diagnosis as a problem of reachability and uses model checking
technics to solve it. This resolution relies on the TINA toolbox
(TIme Petri Net Analyzer) (Berthomieu et al. (2004)). Given a
system and a pattern, the method proceeds as follows.

(1) The timed languages of the system and of the pattern are
modeled by L-type Labeled Time Petri nets respectively
denoted Θ and Ω.

(2) From the two previous nets, a new net is built (ΘΩ) that
captures the matching relation between the system and the
pattern.

(3) The input observation sequence is transformed into an L-
type Labeled Time Petri net (denoted Obs).

(4) The result (ΘΩ) is then synchronised with the Petri net
model of the observation sequence (Obs) to obtain the net
(ΘΩ||Obs).

(5) The model checker of TINA is used to verify the matching
property between the system and the pattern according to
the input observation sequence on the net (ΘΩ||Obs).

(6) The diagnosis result is thus given according to the answer
of the model checker.

All the steps are detailed hereafter.

3.1 Timed languages modeling

The approach relies on the following class of Time Petri Nets
(see Berthomieu et al. (2006) and Peterson (1977)).
Definition 3.1. (LLTPNPr). An L-type Labeled Time Petri Net
with Priorities (LLTPNPr for short) is a tuple
N = 〈P, T,A,�, `, L,Σ, Is, Q,M0〉 with:

• P : a finite set of nodes called places;
• T : a finite set of nodes called transitions and P ∩ T = ∅;
• A ⊆ (P × T )∪ (T ×P ) is the set of arcs between nodes.
• �⊂ T × T : the priority relation, not reflexive, not symet-

rical, and not transitive; (t1 � t2) means that if t1 and t2
are both enabled then only t1 is firable.
• ` : P ∪ T → L ∪ Σ ∪ {λ}: the deterministic labelling

function where L (resp. Σ) is the set of place labels
(resp.transition labels); For r = δ1t1δ2t2 · · · ∈ (N× T )?,
`(r) = δ1`(t1)δ2`(t2) . . .;
• Is : T → I+: the static time interval function, where I+

is the non empty set of time intervals with non negative
rational bounds.
• Q: the set of final markings and M0 the initial marking.

A markingM is a function from P to N which maps each place
with a number of tokens. For an LLTPNPr N , the functions
pre(t) = {p ∈ P : (p, t) ∈ A} and post(t) = {p ∈ P :
(t, p) ∈ A} are defined. A state of N is a couple 〈M, I〉, with:
M a marking and I the firing interval of the transition .

Priorities (�) aim at managing transition conflicts and modify
the classical transition firing rules. Transition t is firable from
state 〈M, I〉 after a duration δ, denoted 〈M, I〉 → [δt], if:

(1) M > pre(t);
(2) δ ∈ I(t);
(3) ∀t′ 6= t : M > pre(t′) =⇒ δ ≤ sup(I(t′));
(4) ∀t′ ∈ T � t : M > pre(t′) ∨ δ /∈ I(t′).

Intuitively, t is firable after δ time units from state 〈M, I〉, if
(1) t is enabled, (2) δ belongs to the time interval associated
with t and is not greater than the upper bound of any other
enabled transition t′, (3) at time δ, t has the highest priority
among the transitions that could be fired without the defined
priorities. R(N ,M0, I0) is the set of reachable states from
〈M0, I0〉, with M0 the initial marking and I0 the restriction
of the static time interval function to the enabled transitions
at M0. As a L-type net (see Peterson (1977)), an LLTPNPr
N generates the timed language L(N ) that is the set of timed
sequences issued from the transition sequences generated by
the net and leading to a final marking M ∈ Q∩R(N ,M0, I0).
Definition 3.2. (Timed system model). A timed system of timed
languageL is an LLTPNPr Θ = 〈PΘ, TΘ, AΘ,�Θ, `Θ, LΘ,ΣΘ,
IsΘ, QΘ,M0Θ〉 such that QΘ is the set of reachable markings
and L = L(Θ).

Figure 5 presents an LLTPNPr model of a system used in the
application section (see section 4).
Definition 3.3. (Pattern model). A pattern of timed languageR
is an LLTPNPr Ω = 〈PΩ, TΩ, AΩ,�Ω, `Ω, LΩ,ΣΩ, IsΩ, QΩ,
M0Ω〉 such that any final marking of the set QΩ is a dead
marking andR = L(Ω) (see definition 2.3).

Definition 3.3 extends the pattern model of Gougam et al.
(2017) with time. Several class of patterns and systems can be
considered (see Figure 2 for some examples).

3.2 Timed pattern diagnosis of timed workflows

The general problem of timed pattern diagnosis in timed system
as defined above may lead to decidability issues (Popova-
Zeugmann (2013)). To remain computable, we now restrict
the problem to a subclass of timed systems that are timed
workflows.
Definition 3.4. (Timed workflow). A timed workflow Θ is a
timed system where any event e ∈ ΣΘ occurs at most once
in a run of the workflow.

Such a timed system can be represented by an acyclic and safe
Time Petri net. Also, to remain computable, a pattern Ω is
considered safe and conflict-free and must describe a behavior
that is not reduced to the elapsed time (i.e the sequence 0λ is
not part of L(Ω) which means M0Ω 6∈ QΩ). Finally, to keep
the causality relation described by the underlying untimed Petri
net, any transition not enabled by the initial marking has a static
time interval with a strictly positive bound.

3.3 A model to capture the matching relation

The diagnosis function defined in Section 2.3 is based on
the matching relation between the evolutions of the system
that are consistent with the input observation sequence and
the pattern. To capture this relation, Θ and Ω models are
composed to obtain a new Petri net model denoted ΘΩ. This
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This type of single event pattern can be used when b is considered for instance as a
fault event and the diagnosability of this temporal fault is investigated. The pattern in
the middle is composed of three events and then caracterises a set of possible time
behavious. The set of accepting markings Q is only composed of one accepting mark-
ing {pW 2

5 }. This pattern occurs in a system if two events a and b effectively occur in
the system within the time intervals [a1,b1] and [a2,b2] respectively following by an
event c that should occur in [a3,b3] after both events a and b have occurred. Finally,
last pattern W3 has the particularity to have a transition associated with an unbounded
time interval [a1,+•[. The accepting marking is {pW 3

4 , pW 3
5 }. This last pattern intu-

itively means that after time a1, as soon as d occurs, it is followed by the occurrence
of a in the interval [a2,b2] and b in the interval [a3,b3].

pW 1
1

pW 1
2

b[a1,b1]

pW 2
1 pW 2

2

pW 2
3 pW 2

4

pW 2
5

a[a1,b1] b[a2,b2]

c[a3,b3]

pW 3
1

pW 3
2 pW 3

3

pW 3
4 pW 3

5

d[a1,+•[

a[a2,b2] b[a3,b3]

Fig. 2 Single event time pattern W1(a1,b1) and behavioural patterns W2(a1,b1,a2,b2,a3,b3) and
W3(a1,a2,b2,a3,b3).

5 Time Pattern diagnosability: a model checking problem

5.1 Pattern matching

Intuitively speaking, pattern diagnosis is the problem of determining the set of pat-
terns that have effectively occurred and that could explain a sequence of observations.
Associated with this problem is the diagnosability problem. Checking whether a pat-
tern is diagnosable over a system consists in checking whether it is always possible
for a diagnostic function to assert with certainty that a run of a pattern effectively oc-
curred during one run of the system based on the produced observations. The formal
definition of the diagnosis and the diagnosability problem then depend on the notion
of pattern occurrence that is defined below.

A pattern W has occurred in a run r of the system if it is possible to extract from
the timed event sequence r = `(r) 2 L (Q) a timed sequence that is a word of the
language L (W) generated by the pattern, in this case we say that the sequence r
matches the pattern W and is denoted r c W (we also say for convenience that the
run r matches the pattern W if `(r) c W ).

Figure 2. Three patterns Ω1, Ω2 and Ω3 with QΩ1 = {{pΩ1
2
}},

QΩ2 = {{pΩ2
5
}} and QΩ3 = {{pΩ3

4
, pΩ3

5
}}.

model represents the synchronized evolutions of the system and
the pattern but also the evolutions of the system alone as a
pattern evolution corresponds potentially (in case of matching)
to a sub-word of the system. The combination of both nets is
obtained by performing the union of the system places and
the pattern places. The transitions of the system that do not
share any event with the pattern are kept with their initial
time intervals. The other ones must be synchronized with the
pattern’s transitions. As in Time Petri nets compositionnality
is kept only when synchronizations involve transitions with an
interval [0,+∞[ (Berthomieu et al. (2006)), we need to proceed
to a time decomposition of the transitions to synchronize (see
Figure 3). Transition t1 (on the left) is labeled by a with a finite
time interval [α, β]. t1 is replaced by a sub-net (on the right)
composed by a silent transition (labeled by λ not indicated
on the figure) of interval [α,α] whose firing enables both a
transition labeled by a (t3) with the interval [0,+∞[ and a
silent transition (t2) of interval [β − α + 1,β − α + 1]. At
β + 1 (i.e β times unit + one time unit) as this transition
has no priority, the silent transition (t2) is fired leading to an
unacceptable behavior represented by the marking of a specific
place unAcc. This transformation applies to transitions of the
system as well as transitions of the pattern. Therefore in the
system the specific place is named sys_unAcc whereas in the
pattern it is pat_unAcc.

p1

a[α, β]t1

p2

p1

t1 [α, α]

p2

t2 [β − α+ 1, β − α+ 1]

p3 : unAcc

t3 a[0,+∞[

p4

Figure 3. Transformation of a transition labeled by a with a
finite interval [α, β]: on the left the transition on the right
the sub-net of replacement.

Given a system Θ and a pattern Ω, each reachable marking
M in ΘΩ is then the union of two markings, one is reach-
able in Θ, and the other one is reachable in Ω. ∀〈M, I〉 ∈
R(ΘΩ, 〈M0ΘΩ

, I0ΘΩ
〉) : ∃〈M1, I1〉 ∈ R(Θ, 〈M0Θ, I0Θ〉),

∃〈M2, I2〉 ∈ R(Ω, 〈M0 Ω, I0 Ω〉) : M = M1 ∪M2. Moreover
L(ΘΩ) = {ρ ∈ L(Θ) : ∃ω ∈ L(Ω) : ρ c ω}.
Finally Figure 4 illustrates the complete combination in ΘΩ of
a system transition labeled by b and assigned with an interval
[1, 4] with a pattern transition labeled by b with an interval

System...

λ[1, 1]

bλ[5, 5]

sys_unAcc ...

Pattern ...

λ[3, 3]

λ[4, 4]

patt_unAcc...

b

Figure 4. Part of ΘΩ: combination of a Θ-system transi-
tion (b[1, 4]) with a Ω-pattern transition (b[3, 6]).

[3, 6]. Two transitions labeled by b appear: the one of the
right results from the synchronization of the system and the
pattern transitions and the left one represents the standalone
evolution of the system. Priorities (dashed lines) ensure that the
synchronized transition is triggered just in case of matching.
For each possible run of the system, the net ΘΩ represents
whether this run matches the pattern or not. 1 Finally, to solve
the diagnosis problem, this model must now be confronted with
a sequence of observations.

3.4 Integration of the observation sequence

The observation sequence is first modeled by an L-Type La-
beled Time Petri net denoted Obs. For instance for an obser-
vation sequence 1o13o2, Obs has one transition t1 labeled o1

assigned with a static time interval [1, 1]. The output place
of this transition enables a second transition t2 labeled by
o2 with an interval [3, 3]. The output place of t2 is denoted
pObs. Afterwards, the combination system-pattern (i.e the net
ΘΩ) is synchronised (Hack (1975)) with the Petri model of
the observation sequence (Obs) to obtain the net (ΘΩ||Obs).
To perform the synchronization the transitions of the observa-
tion sequence net (Obs) and the transitions of the combination
(ΘΩ) are transformed so that the synchronizations involve only
transitions with [0,+∞[ intervals as explained in Section 3.3.
The verification of the matching property between the system
and the pattern according to the input observation sequence on
ΘΩ||Obs is then performed by the model checker. Then the di-
agnosis function (R-diagnoser) generates its results according
to the answers of the model checker as presented now.

3.5 Implementation of the R-diagnoser function by Model
checking

Back to the description of the method in Section 3, the overall
computational complexity of the method lies in step 5 and we
propose to use an off-the-shelf model checking tool to solve
this part: the TINA toolkit (Berthomieu et al. (2004)). TINA
generates enriched labeled Kripke structures from which it is
possible to check properties written in SE-LTL (State/Event
Linear Temporal Logic) which extends LTL in the way pre-
sented hereafter. A formula ψ is a SE-LTL formula if it is a
universally quantified formula : ψ ::= ∀ϕ such that:

1 This property is true because the systems that are considered here are
workflows (see Definition 3.4).



ϕ ::= cst | r | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | �ϕ | ♦ϕ | ϕUϕ
r ::= e | e4 e
e ::= p | a | c | e5 e

with p a place symbol, a a transition symbol, c ∈ N, 4 ∈ {=
, <,>,≤,≥} and 5 ∈ {+,−, ∗, /}. The operators © (next),
� (always), ♦ (eventually) and U (until) have their usual LTL
semantics.

The R-diagnoser is based on two questions written in SE-LTL
concerning the Petri net model ΘΩ||Obs :

(1) Question ϕCERTAIN : Are we sure that the pattern is
recognized in each system’s behavior that produces the
observations ? If the result is false the following question
is asked to the model checker:

(2) Question ϕABSENT : Are we sure that the pattern is never
recognized in each system’s behavior that produces the
observations ?

More formally, each question corresponds to a SE-LTL for-
mula. Given M a marking of Obs ‖ ΘΩ, M|Ω denotes the
restriction of M to Ω i.e. the marking of the pattern’s places.

(1) ϕCERTAIN ≡ �((sys_unAcc = 0 ∧ pObs = 1) ⇒
M|Ω ∈ QΩ), in others words, is it always true (�) that
if the system generates Obs (sys_unAcc = 0∧ pObs = 1)
then (⇒) it matches the pattern (M|Ω ∈ QΩ).

(2) ϕABSENT ≡ �((sys_unAcc = 0 ∧ pObs = 1)⇒M|Ω 6∈
QΩ), in others words, is it always true (�) that if the
system generates Obs (sys_unAcc = 0 ∧ pObs = 1) then
(⇒) it does not match the pattern (M|Ω 6∈ QΩ).

4. APPLICATION TO THE DIAGNOSIS OF A TIMED
WORKFLOW OF A FOODSHOP.

The proposed method is illustrated on an example denoted as
the foodshop example. This example is inspired from the Web
services’ systems that were studied in the European project
WSDIAMOND Di Nitto et al. (2009). Figure 5 presents the
workflow of a foodshop service. In this type of application, fault
patterns usually represent misbehaviors not compatible with the
service specification instead of physical faults on hardware. In
this workflow, a foodshop first receives the order of a client
(sh_recvg). Within the next 3 hours, the shop must start two
activities (sh_st[1,2]) in parallel. The first activity dispatches
the order into two categories: the storable products (not per-
ishable) and the non-storable products (perishable ones). This
dispatch activity ends with the event sh_end_spl. The second
activity selects a warehouse. For storable products, the shop
queries the warehouse to check the availability of the prod-
ucts (sh_req_whcheck). The warehouse then checks (wh_check)
and provides a feedback (available wh_send_av, unavailable
wh_send_unav). For non-storable products, the shop sends di-
rectly a request to a supplier (sh_req_suppcheck) that also pro-
vide feedbacks (sp_send_av, sp_send_unav). The shop requires
that the feedbacks are given within the next 4 hours. After the
reception of the feedbacks, the shop decides to implement or
not the order based on the availabilities (sh_decide). If one
product is missing the shop cancels the order (sh_cancel), if not
the shop requests the preparation for delivery to the warehouse
and the supplier (sh_req_deliv). When preparations are finished
(wh_end_prep_deliv and sp_end_prep_deliv), it is finally deliv-
ered. In Figure 5 (on the left), observable events are in bold.
They are events from the shop that manages the whole delivery
process. To illustrate the method, we consider two patterns.

4.1 Occurrence of sp_send_unav

This pattern is the occurrence of sp_send_unav. This pattern
models the fact that the supplier sends as feedback that the
goods are not available. This simple pattern aims at illustrating
that our method extends the classical problem where fault
are modeled by single events. This pattern is composed of
two places pp0, pp1 and one transition. Initial marking is
M0(pp0) = 1 and M0(pp1) = 0 and the only accepting
marking M ∈ QΩ is such that M(pp0) = 0 and M(pp1) = 1.
Consider one run of the timed workflow and suppose that it
produces the observable sequence σ1 whose conversion to Petri
net is shown in Figure 5 (on the right). To solve the problem, we
first build the product between the system and the pattern that
is then synchronized with the Petri net of σ1. On the resulting
Petri net, we first query to check whether any run of the system
that can produce σ1 matches the pattern with the following
query ϕCERTAIN :

[] ((sys_unAcc = 0 /\ p9=1) => (pp1=1))

TINA’s response is negative: there exists at least one run of the
system that produces σ1 and for which sp_send_unav has not
happened. Then we check whether these runs do not match (i.e.
contain) sp_send_unav with the formula ϕABSENT :

[] ((sys_unAcc = 0 /\ p9=1) => -(pp1=1))

This is a positive answer. So, the diagnosis of σ1 is that
sp_send_unav did not happen. Let us consider now the ob-
servable sequence σ2 composed of the first five events of σ1

followed by 8sh_decide 2sh_cancel. In this case ϕCERTAIN is
true: any run generating σ2 contains sp_send_unav. Querying
TINA with ϕABSENT is useless: the diagnosis is certain.

4.2 Occurrence of a sequence pattern

Consider wh_send_av[0,+∞[→ wh_end_prep_deliv[70, 200].
This second pattern illustrates a misbehaviour: if the warehouse
sends as a feedback that the goods are available then the prepa-
ration ends within 70 and 200 time units which is considered as
an unacceptable duration (quality of services is impacted). Let
us consider the following observed sequence: σ3 = 50sh_recvg
1sh_st 1sh_end_spl 1sh_req_whcheck 1sh_req_suppcheck 3sh_
decide 2sh_req_deliv 50deliv. TINA concludes that the pattern
has not happened. This is due to the fact that the delivery date
is time 50 after the order request. Now if we modify σ3 by
increasing the date 50 to 80, the diagnosis becomes certain.
Only the observation of time is discriminating here.

5. CONCLUSIONS ET PERSPECTIVES

This work extends the original problem of the diagnosis of
simple faults to the diagnosis of timed patterns in timed sys-
tems. The diagnoser function is based on the notion of match-
ing between the system evolutions that are consistent with an
input sequence of observations and the pattern. A resolution
of the problem based model checking techniques is proposed
to solve the problem on timed workflows. This work must be
completed by a diagnosability analysis inspired from Gougam
et al. (2017). We are also planning to investigate other sub-
classes of Time Petri nets where the problem is decidable.
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