
Diagnosis of supervision patterns on bounded labeled Petri nets by Model
Checking

Yannick Pencolé and Audine Subias
LAAS-CNRS, Université de Toulouse, CNRS,INSA, Toulouse, France.

e-mail: (ypencole@laas.fr, subias@laas.fr)

Abstract

This paper investigates the problem of pattern di-
agnosis of systems modeled as bounded labeled
Petri nets that extends the diagnosis problem on
single fault events to more complex behaviours.
An effective method to solve the diagnosis prob-
lem is proposed. It relies on a matching relation
between the system and the pattern that turns the
pattern diagnosis problem into a model-checking
problem.

1 Introduction
Fault diagnosis of Discrete Event Systems (DES) is a
generic problem that has been widely studied [1]. The orig-
inal definition has been introduced in [2] in the automaton
formalism. The fault diagnosis problem was based on a sys-
tem model and on an explicit set of fault events. From this
early approach several contributions were proposed explor-
ing different modeling formalisms among them, communi-
cating automata ([3], [4], [5]) or Petri nets ([6], [7], [8], [9],
[10]) leading to various diagnosis methods. This original
problem has also been extended to consider more complex
faulty behaviours than simple fault events. In [11] the au-
thors consider as faulty, behaviours that violate a given for-
mal specification such as reaching a dead locking state, and
propose to use linear-time temporal logic (LTL) to express
these complex behaviours. In [12] supervision patterns are
introduced by means of labelled transition systems to define
complex behaviours one may be interested in to diagnose.
Supervision patterns as occurrence of one fault, occurrence
of multiple faults, ordered occurrence of events faults but
also multiple occurrence of a fault are considered by the
authors. In [13], such patterns are called diagnosis condi-
tions and are formally represented with LTL properties with
past operators. The advantage of such approaches is their
generalizing power to tackle a large spectrum of diagnosis
problems. Moreover, the use of patterns emphasizes on the
separation between the behavioral model of the system and
the objectives of the diagnosis tasks defined as patterns [14].
Another advantage is the possibility of pattern reusability to
address others diagnosis problems on others systems.

In this article we revisit the diagnosis of patterns in the
framework of Petri nets. We propose a concise way to
model patterns that stresses pattern advantages. The diag-
nosis problem is posed as a pattern matching problem, so
that the proposed approach does not derive a diagnoser-like

machine like in [12] but a machine that captures the match-
ing between the system and a pattern. The construction of
this machine is based on a specific product of Petri nets
called the system-pattern product. The diagnosis problem
of a supervision pattern for a given sequence of observa-
tions is then solved by determining the intersection between
the system’s evolutions that produce the input sequence and
those that match the pattern. What we want to emphasize
in this paper is how this task can be totally and efficiently
entrusted to a model checker fed by Petri nets. An interest-
ing point is that the proposed approach can be fully coupled
with a pattern diagnosability analysis of systems [15].

The Petri net formalism used in the approach and the sys-
tem and patterns modeling are presented in Section 2. Sec-
tion 3 states the diagnosis problem into a pattern matching
problem. Section 4 focuses on the construction of the Petri
machine that capture the matching. The implementation of
the diagnosis problem as a model checking problem is given
Section 5. We present experimental results in Section 6.
Finally, conclusions and some perspectives are given Sec-
tion 7.

2 Modeling framework
Patterns aim at modeling complex faulty behaviours or any
normal behaviour of interest. This section presents the mod-
eling framework of patterns and systems.

To have a complete characterization of the diagnosis
problem, we use Labeled Petri nets with transition prior-
ities ([16]). This formalism extends the classical Labeled
Petri net. The use of priorities is a convenient way to man-
age transition conflicts in a model and then to enhance the
expressiveness of the model. In particular, transition priori-
ties will be used here to overcome the problem of modeling
the interactions between the system and a pattern. This sec-
tion first presents the formalism, called L-type Labeled Pri-
oritized Petri Nets, that is used throughout this paper. Then
the modeling of the system and the pattern are presented.

2.1 L-type Labeled Prioritized Petri Nets
Definition 1 (LLPPN). An L-type Labeled Prioritized Petri
Net (LLPPN for short) is a 7-upleN = 〈P, T,A,�, `,Σ, Q〉
where:
• P is a finite set of nodes called places;
• T is a finite set of nodes called transitions and P ∩T =

∅;
• A ⊆ (P ×T)∪ (T ×P) is a binary relation transitive,

not reflexive and not symetrical [17].

• Σ is a finite set of transition labels (events);
• ` : T → Σ is the transition labeling function;
• Q is the set of final markings.
The state of an LLPPN is defined as a marking. A mark-

ing M is a function M : P → N which maps any place of
the net to a number of tokens contained in this place.

A marked LLPPN is a couple 〈N,M0〉 also denoted as
the 8-tuple 〈P, T,A,�, `,Σ, Q,M0〉. The preset pre(n) of
a node n is the set of nodes pre(n) = {n′ ∈ P ∪ T :
(n′, n) ∈ A} and the postset post(n) of a node n is the set
of nodes post(n) = {n′ ∈ P ∪ T : (n, n′) ∈ A}. By con-
struction the preset and postset of a transition (respectively
a place) are two sets of places (respectively two sets of tran-
sitions). An LLPPN is a classical Petri Net formalism with
some additional constraints or pieces of information.

Static priorities between transitions are introduced (rela-
tion �) to manage transition conflicts. Priorities add ex-
pressiveness to the Petri net and modify the model’s se-
mantics. Indeed a transition cannot be fired if a transition
with higher priority is firable at the same time: a net tran-
sition t is firable from a given marking M if and only if
(∀p ∈ pre(t),M(p) > 0) ∧ (∀t′ ∈ T, t′ � t =⇒ ∃p′ ∈
pre(t′),M(p′) = 0). This firing rule ensures that any firable
transition t is firable in the usual sense (when �= ∅) but it
avoids the choice of firing transitions with a lower priority
that are also firable in the usual sense.

Firing a transition t consumes a token from any place
in the preset and adds a token in any place of the postset.
From a markingM , the fire of a transition t leads to the new
marking M ′ such that M ′ = M \ pre(t) ∪ post(t), which
is denoted M t−→ M ′. A marking M is reachable in a
marked LLPPN if it exists a sequence of firable transitions
M0

t1−→ M1
t2−→ . . .

tk−→ M , also denoted M0
r−→ M

where r is the sequence t1t2 . . . tk, the sequence r is called
a run of the net. For a given LLPPN N and a given mark-
ing M , the set of reachable markings from M is denoted:
R(N,M).

An LLPPN also contains a transition labeling function `
that maps any transition to a label of a set Σ, this is the way
to associate physical events with transitions. Last but not
least, an LLPPN has a set of final markings Q. The set Q
is the way to define the language that is associated with an
LLPPN (L-type language of [18]).

Let r = t1 . . . tk ∈ T ∗ and let `(r) denote the sequence
`(t1) . . . `(tk) ∈ Σ∗, the language generated by a given
LLPPN is defined as follows:
Definition 2 (Language of an LLPPN). The language gen-
erated by an LLPPN N = 〈P, T,A,�, `,Σ, Q,M0〉 is:

L(N) = {`(r) : r ∈ T ∗ ∧M0
r−→M ∧M ∈ Q}.

2.2 System model
We propose in this paper to model a system over the set
of events Σ as an LLPPN Θ = 〈P, T,A,�, `,Σ, Q,M0〉.
As introduced in [2], systems generate prefix-closed regu-
lar languages: for any run r of the system, any of its prefix
r′ : r = r′r′′ is indeed a run. It follows that such a system
can be represented by a bounded LLPPN (regular language)
and with a set of final markings corresponding to the set
of reachable markings Q = R(Θ,M0) (prefix-closed lan-
guage). The set of events Σ generated by the system is par-
titioned into two subsets: Σo is the set of observable events
and Σu the set of unobservable ones.

Definition 3 (System model). The model of a system is an
LLPPN Θ = 〈P, T,A,�, `,Σo ∪ Σu, Q,M0〉 such that:
• Q is the set of reachable markings R(Θ,M0);
• the Petri net is bounded (∃n ∈ N+ : ∀M ∈
R(Θ,M0),∀p ∈ P,M(p) ≤ n).

p0

p1

p2

p3

p4

p5

p8

p6

p7

a
b

e e

d

d

c
d

f

d

Figure 1: System example Θ1 with Σo = {c, d}.

Figure 1 presents an example of such a model Θ1. Bold
events c and d are the observable events of the system
whereas the events {a, b, e, f} = Σu are the unobservable
events. The dashed line represents the priority between the
transitions of event b and a. It ensures that the transition la-
beled with b is always fired before the one labeled with a in
a marking M such that M(p0) ≥ 1 ∧M(p1) ≥ 1 (as the
initial marking of the system).

2.3 Pattern model
The notion of pattern requires the definition of a general
and flexible framework allowing to design a large spectrum
of diagnosis problems including simple faulty event, mul-
tiple faults, fault repetitions....and more generally any be-
haviour of interest (faulty or not). The use of fault pattern
helps to clearly separate the system and the diagnosis objec-
tives (see [14]). The reusability is then reinforced to tackle
new problems. For complex patterns this separation princi-
ple improves the applicability. Indeed, a modification of the
system model in order to merge with the pattern is a tricky
task that might even be impracticable in real cases. This
would suppose to search in the system model for all the
traces where the pattern has occurred and to modify them
accordingly to the pattern model. Moreover, the system
model would have to be modified each time a new pattern
has to be analyzed.
Definition 4 (Pattern). A pattern Ω is an LLPPN

Ω = 〈P, T,A,�, `,Σ, Q,M0〉
such that

1. M0 6∈ Q i.e. the language of the pattern does not con-
tain ε;

2. from any reachable marking M of R(Ω,M0) there
exists a sequence of transitions r ∈ T ∗ such that
M

r−→M ′ and M ′ ∈ Q;
3. from any reachable marking M of R(Ω,M0) there is

no event e ∈ Σ that labels more than one firable tran-
sition;

pp1

pp2

pp3

a

e

pp′1

pp′2

pp′3

a

b

Figure 2: Two sequence patterns Ωa→e and Ωa→b with
QΩa→e = {M : M(pp3) = 1} and QΩa→b

= {M :
M(pp′3) = 1}.

4. ∀M ∈ Q,∀M ′ : (∃t ∈ T,M t−→M ′)⇒M ′ ∈ Q;

5. �= ∅, (no priority).

Firstly, Figure 2 presents two similar patterns that will
be used as running examples. The set of final markings of
Ωa→e only contains one reachable marking, the one with
pp3 = 1. The language associated to Ωa→e is L(Ωa→e) =
{ae} that is the sequence of event a followed by e.

p1 t1

e

p2

k•

Figure 3: Pattern (Ω1) about k occurrences of an event e
with the final markings QΩ1 = {M : M(p2) = k}.

Figure 3 shows a pattern Ω1 representing k occurrences of
the event e (k ∈ N+). Figure 4 presents the LLPPN model
of a pattern Ω2 representing the occurrence of n events
{e1, e2, . . . , en} in no fixed order. The languageL(Ω1) gen-
erated by pattern Ω1 isL(Ω1) = {ek} that is the sequence of
exactly k events e. The language L(Ω2) gathers any possi-
ble interleavings of the events {e1, . . . , en}, the cardinality
of the language is |L(Ω2)| = n!.

p11 p12 · · · p1n

t1 e1 t2 e2 · · · tn en

p21 p22 · · · p2n

Figure 4: Pattern (Ω2) about the occurrence of n events
in no fixed order with the final markings QΩ2

=
{{p21, p22, . . . , p2n}}.

In this way, a pattern can easily be modeled directly dis-
regarding any notion of system language contrarily to [12]
or to ([19]). This concise way to model pattern reinforces
the separation between the system and the diagnosis objec-
tives. The way to handle the complex interactions between a
system and a pattern is then not part of the modeling phase.
It is managed by a specific product operator that is defined
in Section 6.

3 Diagnosis problem
Intuitively speaking, pattern diagnosis is the problem of de-
termining the set of patterns that have effectively occurred
and that could explain a sequence of observations. The for-
mal definition of the diagnosis problem then depends on the
notion of pattern occurrence that is defined below.

A pattern Ω has occurred in a run r of the system if it
is possible to extract from the event sequence ρ = `(r) ∈
L(Θ) an ordered set of events that is a word of the language
L(Ω) generated by the pattern, in this case we say that the
sequence ρ matches the pattern Ω and is denoted ρ c Ω (we
also say for convenience that the run r matches the pattern
Ω if `(r) c Ω).

Definition 5 (Matching of a pattern). A sequence ρ ∈ Σ∗

matches a pattern Ω (ρ c Ω) if there exists at least a se-
quence σ of L(Ω) that is matched by ρ (ρ c σ).

Definition 5 relies on the definition of sequence matching.

Definition 6 (Sequence matching). A sequence ρ ∈ Σ∗

matches another sequence σ ∈ Σ∗, denoted ρ c σ, if:

• σ is empty (σ = ε); or

• σ = s.σ1, s ∈ Σ, σ1 ∈ Σ∗ and there exist two se-
quences ρ0, ρ1 ∈ Σ∗ such that:

1. ρ = ρ0sρ1;
2. ρ1 c σ1.

A sequence ρ matches a sequence σ if ρ contains any
event of the sequence σ and these events occur in the same
order as in σ. Obviously ρ can contain several collections of
events that gather the events of σ in the same order; in this
case σ occurs several times in ρ. The pattern ρ matches σ if
σ occurs at least once. Figure 5 illustrates how the sequence
ρ = bcaabcac matches the sequence σ = acc. Definition 6
is recursively applied three times till σ3 = ε. In this exam-
ple, σ occurs twice in ρ. Back to the example of Figure 1,
the system Θ1 matches both the patterns Ωa→e and Ωa→b

of Figure 2. The sequence bade is a possible run of Θ1

and bade c ae. Θ1 also matches Ωa→b as the sequence
badeebd is a possible run of Θ1 and badeebd c ab.

Based on the notion of pattern, the classical fault diagno-
sis problem on DESs can be generalized as proposed in [12].
Let PΣ1→Σ2 : Σ∗1 → Σ∗2 denote the projection function of
any sequence of Σ∗1 to a sequence of Σ∗2 defined by:

PΣ1→Σ2
(ε) = ε,

PΣ1→Σ2
(ρ.s) = PΣ1→Σ2

(ρ) if ρ ∈ Σ∗1, s 6∈ Σ2,

PΣ1→Σ2(ρ.s) = PΣ1→Σ2(ρ).s if ρ ∈ Σ∗1, s ∈ Σ2.

For a given pattern Ω, the diagnosis problem consists
in defining an Ω-diagnoser function that takes as input a
sequence of observable events and that produces one of
the three symbols {Ω−certain,Ω−safe,Ω−ambiguous}
([20]).

Definition 7 (Ω-diagnoser). Let Θ be the model of a system
based on the set of events Σ = Σu ∪ Σo, an Ω-diagnoser is
a function

∆Ω : Σ∗o → {Ω−certain,Ω−safe,Ω−ambiguous}

such that:

• ∆Ω(σ) = Ω−certain if for any run ρ ∈ L(Θ) that is
consistent with σ (i.e. PΣ→Σo

(ρ) = σ), ρ c Ω;

ρ
b c a a b c a c

σ
a c c

ρ0 s0 ρ1

s0 σ1

ρ
b c a a b c a c

σ
a c c

ρ10 s1 ρ2

s1 σ2

ρ
b c a a b c a c

σ
a c c

ρ20 s2

s2 σ3 = ε

Figure 5: How ρ = bcaabcac matches σ = acc: ρ c σ.

• ∆Ω(σ) = Ω−safe if for any run ρ ∈ L(Θ) that is
consistent with σ, ρ 6c Ω;

• ∆Ω(σ) = Ω−ambiguous otherwise.

Considering now a set of patterns Ω1, . . . ,Ωn, the diag-
noser function of a system can be defined as ∆ : Σ∗o →∏n

i=1{Ωi−certain,Ωi−safe,Ωi−ambiguous} such that
∆(σ) = (∆Ω1

(σ), . . . ,∆Ωn
(σ)).

As an example, consider first the following observable
sequence σ1 = dd from the system Θ1 (Figure 1) then
∆Ωa→e

(σ1) = Ωa→e−ambiguous and ∆Ωa→b
(σ1) =

Ωa→b−ambiguous . In both cases, it is possible to find in
Θ1 two runs which are consistent with σ1 (their observable
projection on Σo is exactly σ1), one run matches the pat-
tern but not the other one. For instance consider the run
badeebd of Θ1 that matches both the pattern Ωa→e and
the pattern Ωa→b and the run badfd that does not match
any of the two patterns. Consider now the observable se-
quence σ2 = cddc, then ∆Ωa→e(σ2) = Ωa→e−safe and
∆Ωa→b

(σ2) = Ωa→b−certain . There is no run in Θ1 con-
sistent with σ2 that contains an event e so none of them can
match Ωa→e. On the other hand, any run consistent with σ2

starts with ba and must contain one more b so any of them
matches Ωa→b.

4 Matching determination
We introduce a specific product operator to combine the sys-
tem Θ and the pattern Ω in order to retain in the system
any run that effectively matches the pattern: this product is

called the system-pattern product and is denoted: ΘnΩ. In-
formally speaking, ΘnΩ consists of the union of the places
of Θ and Ω. The set of transitions is composed of the set
of transitions of Θ and a set of synchronized and prioritized
transitions replacing the transitions from Ω.
Definition 8 (system-pattern product). Let
Θ = 〈PΘ, TΘ, AΘ,�Θ, `Θ,ΣΘ, QΘ,MΘ0〉, Ω =
〈PΩ, TΩ, AΩ,∅, `Ω,ΣΩ, QΩ,MΩ0〉 be respectively a
system and a pattern such that PΘ∩PΩ = ∅, TΘ∩TΩ = ∅
and ΣΩ ⊆ ΣΘ, the system-pattern product Θ n Ω is the
LLPPN 〈P, T,A,�, `,Σ, Q,M0〉 defined as follows.
• P = PΘ ∪ PΩ.
• T = TΘ ∪ Ts such that

– Ts =
⋃

l∈ΣΩ
{tΘ‖tΩ : ∃tΘ ∈ TΘ ∧ ∃tΩ ∈ TΩ ∧

`Θ(tΘ) = `Ω(tΩ) = l} is the set of synchronized
transitions, the transition denoted tΘ‖tΩ resulting
from the synchronization of tΘ ∈ TΘ and tΩ ∈
TΩ.

• A = AΘ ∪As such that
As = {(p, t) : p ∈ PΘ, t = tΘ‖tΩ, (p, tΘ) ∈ AΘ}
∪ {(p, t) : p ∈ PΩ, t = tΘ‖tΩ, (p, tΩ) ∈ AΩ}
∪ {(t, p) : p ∈ PΘ, t = tΘ‖tΩ, (tΘ, p) ∈ AΘ}
∪ {(t, p) : p ∈ PΩ, t = tΘ‖tΩ, (tΩ, p) ∈ AΩ}.

• � = �Θ ∪ �s, with:
�s = {(ts, tΘ) : ts = tΘ‖tΩ ∈ Ts}∪⋃

ts∈Ts

({(ts, t) : (tΘ, t) ∈�Θ} ∪ {(t, ts) : (t, tΘ) ∈�Θ})

∪ {(t1Θ ‖ t1Ω, t2Θ ‖ t2Ω) : t1Θ ‖ t1Ω ∈ Ts,
t2Θ ‖ t2Ω ∈ Ts, (t1Θ, t2Θ) ∈�Θ}.

• ∀t = tΘ||tΩ ∈ Ts, `(t) = `Θ(tΘ),∀t ∈ T ∩ TΘ,
`(t) = `Θ(t).

• Σ = ΣΘ.
• Q = {MΘ ∪MΩ : MΘ ∈ QΘ ∧MΩ ∈ QΩ}.
• M0 = MΘ0 ∪MΩ0.
Intuitively, the pattern Ω is applied as a filter on the sys-

tem Θ by using the product ΘnΩ. Any transition of label e
in the system is synchronized with a transition of the pattern
Ω labeled with the same event e. The product is asymmet-
ric in the sense that Θ n Ω contains all the transitions of Θ
whereas the transitions of Ω with such an event e have been
replaced by a set of synchronized transitions with Θ. Given
the current marking of Θ n Ω and the occurrence of a new
event e, two cases can happen. If the current marking of
Θ n Ω enables a synchronized transition labeled with e, as
it is prioritized, it will be triggered (the event e is therefore
part of the pattern), otherwise only a transition from the sys-
tem Θ can be triggered in Θ n Ω (the system keeps running
by producing the event e but e is not part of the pattern).

With the help of this product, it is possible to identify in
the system Θ the set of runs where the pattern Ω has oc-
curred. The following results assert this intuition.

Let ΘΩ = ΘnΩ andMΘΩ0 be the initial marking of ΘΩ.
LetMΘ0 (resp. MΩ0) be the initial marking of Θ (resp. Ω).
Theorem 1. Let Θ be the LLPPN of a system over the al-
phabet Σ and Ω be the LLPPN of a pattern:

L(Θ n Ω) = {ρ ∈ L(Θ) : ρ c Ω}.

Theorem 1 is the fundamental property of the operator
n. The set of runs that are characterized by the language
L(Θ n Ω) are exactly the set of runs that match the pattern
Ω [15].

5 Implementation by Model-Checking
Through the Petri model of the system-pattern product (Θn
Ω), we have a model that determines for each possible run of
the system if this evolution matches or not the pattern. This
model can then be exploited to solve the diagnosis problem.

For an observable input sequence generated by the sys-
tem (σ), the pattern diagnosis problem can be solved by de-
termining the intersection between the system’s evolutions
that generate this input sequence and those that match the
pattern. This intersection can be characterized through the
synchronized product between the Petri net model of the
system-pattern product and the Petri net model O of the ob-
served input sequence (σ) produced by the system : ΘΩ||O
[21].

Considering σ = e1, e2, . . . ek, the Petri net model
O is an LLPPN defined by: O = 〈PO, TO, AO,�O

, `,ΣO, QO,MO0〉 with:

• PO =

k+1⋃
i=1

{pi} and TO =

k⋃
i=1

{ti};

• AO =

k⋃
i=1

{(pi, ti), (ti, pi+1)}

• �O = ∅
• `(ti) = ei,∀ti ∈ T and i ∈ 1..k;

• ΣO = {ei . . . ek};
• QO = {{pk+1}}
• MO0 = {p1}
Once the synchronized product ΘΩ||O built, it is then

possible to use model checking techniques to determine
the results produced by the Ω-diagnoser. Here we give
a complete description of the implementation by Model-
Checking.

5.1 Model checking problem
We propose here to implement the Ω-diagnoser function by
using the TINA toolkit of [22] and [17] that provides all the
necessary tools to directly generate the Kripke structure on
which the model-checking problem is defined [23]. TINA
actually generates enriched labeled Kripke structures from
the analyzed Petri nets to check properties written in SE-
LTL (State/Event Linear Temporal Logic) which extends
LTL in the way presented here above.

A formula ψ is a SE-LTL formula if it is a universally
quantified formula

ψ ::= ∀ϕ
such that

ϕ ::= r | ¬ϕ | ϕ ∨ ϕ || ϕ ∧ ϕ | © ϕ | �ϕ | ♦ϕ | ϕUϕ
r ::= e | e4 e

e ::= p | a | c | e5 e

with p a place symbol, a a transition symbol, c ∈ N,
4 ∈ {=, <,>,≤,≥} and5 ∈ {+,−, ∗, /}. The operators
© (next), � (always), ♦ (eventually) and U (until) have
their usual LTL semantics.

The Ω-diagnoser is based on two questions written in SE-
LTL concerning the Petri net model ΘΩ||O :

1. Question ϕCERTAIN : Are we sure that the pattern is
recognized in each system’s behaviour that produces
the observations ? If the result is false the following
question is asked to the model checker:

2. Question ϕSAFE : Are we sure that the pattern is never
recognized in each system’s behaviour that produces
the observations ?

More formally, each question corresponds to a SE-LTL
formula. Given M a marking of O ‖ ΘΩ, M|Ω denotes the
restriction ofM to Ω i.e. the marking of the pattern’s places.
In a similar way M|O denotes the restriction of M to O.

1. ϕCERTAIN ≡ �((M|O ∈ QO) ⇒ (M|Ω ∈ QΩ)), in
others words, is it always true (�) that if the system
generates (M|O ∈ QO) then (⇒) it matches the pattern
(M|Ω ∈ QΩ).

2. ϕSAFE ≡ �((M|O ∈ QO)⇒ (M|Ω 6∈ QΩ)), n others
words, is it always true (�) that if the system generates
(M|O ∈ QO) then (⇒) it does not match the pattern
(M|Ω 6∈ QΩ).

The complete and automated implementation of the
method to solve the pattern diagnosis problem on a system
Θ is:

1. Compute ΘΩ = Θ n Ω.
2. Compute O the LLPPN that represents the sequence of

observations σ.
3. Compute the synchronisation of ΘΩ and O: ΘΩ||O
4. Compute ϕCERTAIN from ΘΩ||O and check
ϕCERTAIN on the Kripke structure of ΘΩ||O.

5. If the result is false, then compute ϕSAFE from ΘΩ||O
and check ϕSAFE on the Kripke structure of ΘΩ||O.

6. ∆Ω(σ) returns Ω−certain if ϕCERTAIN is true, else
it returns Ω−safe if ϕSAFE , otherwise it returns
Ω−ambiguous .

6 Case study
6.1 Description of the system
The case study that we propose in this paper is a product
transportation system. It is a two-level system composed of
two product sites (namely sites 1 and 2) at level 2 where a
set of products is stored and two assembly stations at level 1
that request products from level 2. A lift is used between the
two levels. Each site has a conveyor belt to move a product
from the site to the lift and each station also has a conveyor
belt to get the products from the lift. Figure 6 presents the
system model. Once a product is detected on the site 1, a
Product1 signal (noted Pr1) is emitted. The product is then
put in a box and becomes available. The box is then pushed
and sent into the lift (action Push1 that starts with event P1

and ends with event EP1). Site 2 behaves in a similar man-
ner. A product from site 1 has a priority access to the lift.
In the Petri net model of Figure 6, this priority relation is
indicated by a dashed edge between the transitions labeled

Obs. nS(Γ1) nT(Γ1) ϕ1
CERTAIN? ϕ1

SAFE?
Pr1 4 3 F T
Pr2 7 8 F T
D 12 13 F F
U 18 19 F F
D 23 25 F F

ELReq2 26 30 F F
ERReq2 31 37 F F
ELReq1 32 38 T F
ERReq1 33 39 T F

U 34 40 T F

Table 1: Diagnosis results on the pattern Ω1.

by P1 and P2. After a product has been pushed into the
lift, the lift goes down (action Down) to reach level 1 (sig-
nal D detects the end of the Down action). At this level
the box is directed to the station that makes the request (ei-
ther request Req1 or request Req2). If it is request Req1,
then the box is pushed on the conveyor belt of station 1 (ac-
tion PushReq1 that starts with event Req1 and ends with
event EPReq1). Then the conveyor belt performs a move-
left action (LeftReq1, ELReq1) to deliver the box with the
product and a move-right action to go back to initial position
(RightReq1, ERReq1). The behaviour of station 2 is similar
except that its conveyor belt moves right first (RightReq2,
ERReq2) and then moves left (LeftReq2, ELReq2). Once
the box has been pushed on a conveyor belt, the lift goes up
(action Up ending with the emission of signal U) to level 2.

6.2 Monitoring of a single event class
We first present some experiments with a single event pat-
tern Ω1 as defined in Figure 3 with k = 1 and e = Req1.
The aim of this first example is to show how the proposed
framework is able to diagnose the occurrence of single
events as the classical diagnosis methods do. The pattern
Ω1 represents the occurrence of the event Req1 in the sys-
tem. Table 1 shows the obtained results for the following
scenario:

σ = Pr1 .Pr2 .D .U .D .ELReq2 .ERReq2 .ELReq1

.ERReq1 .U

In order to show the evolution of the diagnosis, any line
of Table 1 represents one step of the scenario σ (i.e line 1 is
Pr1 , line 2 is Pr1 .Pr2 , etc). The second column shows the
number of states in the corresponding Kripke structure and
the third column shows the number of transitions. The first
two lines show a Ω1−safe diagnosis. Diagnoses between
lines 3 and 7 are Ω1−ambiguous . Finally lines 8-10 show
an Ω1−certain diagnosis. These results can be intuitively
explained as follows: Req1 cannot occur before the lift goes
down (lines 1-2) and as long as ELReq1 is not observed
there is an ambiguity about the occurrence of Req1 .

In classical diagnosis methods, events are sometimes par-
titioned into a set of fault classes. Here, also it is possible
to represent this type of event class. With a pattern Ω2 as
represented in Figure 4, it is possible to represent one oc-
currence of event e1 = Req1 or one occurrence of event
e2 = Req2 (two transitions t1 and t2 only), i.e. an event of
class {Req1 ,Req2}. In this example, the set of accepting
markings is composed of the markings {M1,M2} where

Obs. ϕ2
CERT.? ϕ2

SAFE? ϕ3
CERT.? ϕ3

SAFE?
Pr1 F T F T
Pr2 F T F T
D F F F T
U T F F F
D T F F F

ELReq2 T F F F
ERReq2 T F F F
ELReq1 T F T F
ERReq1 T F T F

U T F T F

Table 2: Diagnosis results on the pattern Ω2 and Ω3.

M1(p21) = 1 and for any other place p M1(p) = 0 and
M2(p22) = 1 and for any other place p M2(p) = 0. In
this example, the ϕCERTAIN question can have the follow-
ing form: let pobs denote the last place of the sequence of
observations.

ϕ2
CERTAIN = �((pobs = 1)⇒ (p21 = 1 ∨ p22 = 1)).

Table 2 shows the diagnosis results (left columns) on the
same scenario as above for Ω2. When the firstD is observed
one of the Req may silently happen afterwards but not nec-
essary hence the ambiguity. But as soon as we observe U ,
Ω2 has certainly occurred.

6.3 Monitoring of the occurrence of multiple
events

Another interesting pattern has the same structure as the one
of Figure 4, it is the occurrence of both events Req1 and
Req2 where, as explained in Figure 4, the only accepting
marking is M(p21) = 1 and M(p22) = 1 and M(p) =
0 for the other two places p. In this case the ϕCERTAIN

question becomes:

ϕ3
CERTAIN = �((pobs = 1)⇒ (p21 = 1 ∧ p22 = 1)).

This type of pattern is interesting if we want to super-
vise that a set of n specific types of event have occurred.
Table 2 shows the diagnosis results (right columns) on the
same scenario as above for this pattern. The diagnosis be-
comes certain (line 8) as soon as we both observe ELReq2
and ELReq1 .

6.4 Monitoring of a complex behaviour
The previous pattern examples show that the presented
framework can model classical diagnosis problems where
we look for the occurrence of a set of single events. How-
ever the purpose of this framework is to allow for the diag-
nosis of more complex behaviours. Back to our example,
the global function of the system is to transfer items from
conveyors at Level 2 to conveyors at Level 1. Figure 6 actu-
ally models the behaviour of the system but no single faulty
event is present (any event that can happen is normal).

Figure 7 presents a complex behaviour that one might
want to diagnose within the system of Figure 6. This pat-
tern Ω3(m,n) models the consecutive occurrence of m = 3
events of type Req1 that are not interleaved with occurrence
of Req2 events (the left conveyor keeps having its requests
fulfilled while the right conveyor get stuck) and this pattern
should occur n = 2 times (the pattern has a counter). This
pattern is made up of normal events but defines a behaviour

Prod1

Prod1Avail1

Push1

Pr1

P1

EP1

Prod2

Prod2Avail2

Push2

Pr2

P2

EP2

WaitUp

Up

Down

WaitDown

U

DWait1

PushReq1

LeftReq1

RightReq1

Req1

EPReq1

ELReq1

ERReq1

Wait2

PushReq2

RightReq2

LeftReq2

Req2

EPReq2

ERReq2

ELReq2

Figure 6: Case study: the product transportation system

Scenario Size nb(Req1) counter nS(Γ) nT (Γ) Time (ms) Result
S1 20 5 1 92 107 11 safe
S2 200 5 1 1028 1223 11 safe
S3 2000 5 1 10388 12383 235 safe
S4 5000 5 1 25988 30983 1105 safe
S5 2000 2 10 107534 128379 1993 ambiguous
S6 2000 5 10 10388 12383 228 safe
S7 2000 10 10 10388 12383 239 safe
S8 2000 2 10 7201 8400 156 certain
S9 3500 10 10 17009 20266 577 certain
S10 1000 5 2 907987 2155290 15745 certain
S11 1000 5 10 1201381 2877901 21018 certain
S12 2000 10 8 2737559 6482932 65066 certain
S13 2000 20 8 5999626 14245740 244379 certain
S14 1750 20 8 4812356 11444801 148629 safe

Table 3: Diagnosis results on the pattern Ω3.

p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

Figure 7: Pattern Ω3(3, 2): two occurrences of three con-
secutive requests Req1: accepting marking M , M(p4) = 2.

that could be unexpected (both conveyors at Level 1 should
get items regularly).

Table 3 presents some experimental results for a set of
scenarios S1 . . . S14 where the occurrence of the pattern
Ω3(m,n) is diagnosed. For each scenario, Table 3 shows
the size of the observable sequence (column 2), the num-
ber m of Req1 events in the pattern Ω3(m,n) (column 3)
behaviouras well as the number n of occurrences (counter).
The size of the involved Kripke structure as a number of
states (nS(Γ)) and transitions (nT (Γ)) for a given scenario
is also given. The time here represents the computation time
of all the diagnosis process (the computation of the Kripke
structure and the verification of the questions). Scenarios
S1 . . . S4 diagnose the occurrence of Ω3(5, 1) based on a
certain amount of σ cycles (see Section 6.2). The sequence
σ being composed of 10 events, S1 diagnoses 2 cycles of
σ, S2 diagnoses 10 of them, etc. Based on σ, 5 consecutive
occurrences of Req1 can never happen that is why the result
is always safe.

Scenarios S5 . . . S7 diagnoses the occurrence of
Ω3(m, 10),m = 2, 5, 10 so here we attempt to diagnose
that m consecutive occurrences of Req1 happen 10 times.
For m = 5, 10, the result is safe for the same reason as
above. For n = 2, there is an ambiguity. Indeed, consider
two consecutive cycles of σ, once ELReq1 is observed in
the first cycle, it is possible that one Req1 has occurred just
before ELReq1. Within the second cycle, before observing
ELReq2, one second occurrence of Req1 may have
happened (followed by one occurrence of Req2), so it is
possible (but not certain) that two consecutive occurrences
of Req1 have occurred and, as there are 200 cycles, this
can happen 10 times, hence the ambiguous result. Scenario
S8 is similar as S5 but the observable sequence is a set of
cycles σ′ where any ELReq2, ERReq2 in σ have been
replaced by ELReq1, ERReq1, the diagnosis is therefore
certain. Scenario S9 presents a scenario composed of 100
cycles of σ followed by 75 cycles of σ′ followed by 100
cycles of σ followed by 75 cycles of σ′ (i.e. 350 cycles):
10 consecutive occurrences of Req1 happen more than
10 times in S9. The last five scenarios S10 . . . S14 rely
on the fact that the initial state of the system is unknown
(unknown states of the conveyors and the lift). These
scenarios illustrate the fact that the method can be applied
on an observation window [24] that does not contain the
first observations of the system.

7 Conclusion
This paper adresses the problem of patterns diagnosis by a
generic framework for pattern modeling and model check-
ing technics. The diagnosis method is designed in the
framework of Petri nets (L-type Labeled Prioritized Petri
Nets) and it can be viewed as a pattern matching based
method. The construction of a Petri net machine capturing
the matching of a pattern by the system is done by means
of a specific Petri net product. Then a translation of the di-
agnosis problem into a model-checking problem allows an
efficient resolution that is entrusted to the Petri net analyser
TINA. The paper reports the results of experimenting this
pattern diagnosis approach on an illustrative example. Fu-
ture work could consolidate some aspects of the method.
In particular, the expressivity of patterns that currently gen-
erate regular language may be extended to context-free-
language. Another research direction is to extend the work
to time systems. We currently investigate the use of Time
Petri Nets to diagnose more interesting behaviours.

References
[1] Janan Zaytoon and Stéphane Lafortune. Overview of

fault diagnosis methods for discrete event systems. An-
nual Reviews in Control, 37:308–320, 2013.

[2] Meera Sampath, Raja Sengupta, Stéphane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. Transactions
on Automatic Control, 40(9):1555–1575, 9 1995.

[3] Laurence Rozé and Marie-Odile Cordier. Diagnos-
ing discrete-event systems : extending the diagnoser
approach to deal with telecommunication networks.
Journal on Discrete-Event Dynamic Systems : Theory
and Applications (JDEDS), 12(1):43–81, 2002.

[4] Yannick Pencolé and Marie-Odile Cordier. A for-
mal framework for the decentralised diagnosis of large
scale discrete event systems and its application to
telecommunication networks. Artificial Intelligence,
164(2):121–170, 5 2005.

[5] Gianfranco Lamperti and Marina Zanella. Flexi-
ble diagnosis of discrete-event systems by similarity-
based reasoning techniques. Artificial Intelligence,
170(3):232–297, 2006.

[6] Albert Benveniste, Éric Fabre, Stefan Haar, and
Claude Jard. Diagnosis of asynchronous discrete-event
systems: a net unfolding approach. Transactions on
Automatic Control, 48(5):714–727, 5 2003.

[7] Sahika Genc and Stéphane Lafortune. Distributed di-
agnosis of place-bordered Petri nets. IEEE Trans-
actions on Automation Science and Engineering,
4(2):206–219, 2007.

[8] Dimitry Lefebvre and Catherine Delherm. Diagno-
sis of DES with Petri net models. IEEE Transaction
Automation Science and Engineering, 4(1):114–118,
2007.

[9] Francesco Basile, Pasquale Chiacchio, and Gianmaria
De Tommasi. On K-diagnosability of Petri nets via
integer linear programming. Automatica, 48(9):2047–
2058, 9 2012.

[10] Maria Paola Cabasino, Alessandro Giua, and Carla
Seatzu. Diagnosability of discrete-event systems using

labeled Petri nets. Automation Science and Engineer-
ing, IEEE Transactions on, 11(1):144–153, 2014.

[11] Shengbing Jiang and Ratnesh Kumar. Failure diagno-
sis of discrete-event systems with linear-time temporal
logic specifications. Transactions on Automatic Con-
trol, 49(6):934–945, 6 2004.

[12] Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and
Marie-Odile Cordier. Supervision patterns in discrete
event systems diagnosis. In 8th International Work-
shop on Discrete Event Systems, pages 262–268, Ann
Arbor, MI, United States, 6 2006.

[13] Marco Bozzano, Alessandro Cimatti, Marco Gario,
and Stefano Tonetta. Formal design of asynchronous
fault detection and identification components using
temporal epistemic logic. Logical Methods in Com-
puter Science, Volume 11, Issue 4, November 2015.

[14] Marina Zanella and Gianfranco Lamperti. Diagnosis
of discrete-event systems by separation of concerns,
knowledge compilation, and reuse. In Proceedings
of the 16th European Conference on Artificial Intel-
ligence (ECAI04), pages 838–842, 2004.

[15] Houssam-Eddine Gougam, Yannick Pencolé, and Au-
dine Subias. Diagnosability analysis of patterns on
bounded labeled prioritized Petri nets. Discrete Event
Dynamic Systems, 27(1):143–180, 2017.

[16] Bernard Berthomieu, Florent Peres, and François Ver-
nadat. Bridging the gap between timed automata and
bounded time Petri nets. In 4th International Confer-
ence Formal Modeling and Analysis of Timed Systems,
pages 82–97, Paris, France, 9 2006.

[17] Bernard Berthomieu, Florent Peres, and François Ver-
nadat. Model-checking bounded prioriterized time
Petri nets. In Automated Technology for Verification
and Analysis, volume 4762 of LNCS, pages 523–532.
Springer Verlag, 2007.

[18] James L Peterson. Petri nets. ACM Computing Sur-
veys, 9(3):223–252, 1977.

[19] Houssam-Eddine Gougam, Audine Subias, and Yan-
nick Pencolé. Supervision patterns: Formal diagnos-
ability checking by Petri net unfolding. In 4th IFAC
Workshop on Dependable Control of Discrete Systems,
pages 73–78, York, United Kingdom, 9 2013.

[20] Yannick Pencolé, Anika Schumann, and Dmitry
Kamenetsky. Towards low-cost fault diagnosis in large
component-based systems. In 6th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical
Processes, pages 1473–1478, Beijing, China, 8 2006.

[21] Michel Hack. Petri net languages. Technical Re-
port 124, M.I.T. Project MAC, Computation Structures
Group, Massachusetts Institute of Technology, 1975.

[22] Bernard Berthomieu, P.-O Ribet, and François Verna-
dat. The tool tina – construction of abstract state spaces
for Petri nets and time Petri nets. International Journal
of Production Research, 42(14):2741–2756, 2004.

[23] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. MIT press, 1999.

[24] Xingyu Su and Alban Grastien. Diagnosis of des by
independent windows. In 24th International Workshop

on Principles of Diagnosis (DX 2013), pages 148–153,
2013.

