
Definition of Model-based diagnosis problems with Altarica

Yannick Pencolé1 and Elodie Chanthery1 and Thierry Peynot2
1LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

e-mail: {ypencole,echanthe}@laas.fr
2Queensland University of Technology (QUT) Brisbane QLD 4001, Australia

e-mail: t.peynot@qut.edu.au

Abstract
This paper presents a framework for modeling
diagnosis problems based on a formal language
called Altarica. The initial purpose of the lan-
guage Altarica was to define a modeling language
for safety analysis. This language has been devel-
oped as a collaboration between academics and
industrial partners and is used in some industrial
companies. The paper shows that the expres-
sivity of this language, mixing event-based and
state-based models, is sufficient to model classical
model-based diagnosis problems (logic-based and
event-based) and problems that combine state-
based and event-based behaviors. This modeling
framework, whose semantics is fully specified, is
a promising framework to design richer diagno-
sis problems. As example, we introduce a robotic
diagnosis problem that benefits from the full ex-
pressivity of the language.

1 Introduction
The research community of Model-Based Diagnosis (MBD)
gathers a set of researchers that aim at solving diagnosis
problems on many types of systems. Due to the large spec-
trum of investigated types of systems and applications, the
diagnosis problems that are usually defined and solved rely
on modeling languages that are more or less specific to the
investigated problem. It follows that the solution proposed
by the researchers cannot be compared or at least classified
in a hierarchy of model-based diagnosis problems. Some
researchers do not use any kind of human-friendly language
and start developing their framework from fully specified
mathematical tools, like first order logics (for static diag-
nosis problems), automata/Petri nets (for discrete-event sys-
tems) to name a few. The direct consequence is then the
difficulty to actually promote diagnostic methodologies into
industry as there is a gap the theoretical modeling frame-
work and the way to model systems in practice.

In this paper, we adopt a new point of view.Our objective
is to start from a modeling language that is actually used
in industries and to investigate the type of model-based di-
agnosis problems that can be described with the help of this
language. Our choice was to investigate the use of the Altar-
ica language. This language has been specifically designed
for modeling and analyzing safety problems especially in
embedded systems. It has been designed by a consortium
gathering academics and industrial partners and is used in

industry (Dassault Aviation, Thales, Safran...). Our choice
for the Altarica language also comes from the fact that some
of our previous contributions focused on logic-based prob-
lems [Pencolé, 2014] and event-based problems [Pencolé
and Cordier, 2005][Chanthery et al., 2010] that can be all
modeled in Altarica, as we will explain in this paper. We
indeed show here that the Altarica language is expressive
enough to model a set of diagnosis problems that are usually
considered as different problems as they are not solved with
the same diagnostic tools. We also propose the modeling of
a specific problem from the robotics field that captures all
the expressivity of an Altarica specification.

The paper is organized as follows. Firstly, the Altarica
language is described and especially its semantics as a con-
straint automaton. Section 3 then proposes a way to model
faults and observations with Altarica. Section 4 illustrates
classical model-based diagnosis problems and the way they
all can be modeled with Altarica. Section 5 introduces an
original diagnosis problem from the robotics field and shows
how the full expressivity of Altarica can be used to model it.
The paper finally ends with a discussion and perspectives.

2 Altarica language
Altarica is a language used to describe safety critical sys-
tems that has become a European industrial standard for
Model-Based Safety Assessment. It was initially designed
within a consortium of academics and industrial partners
two decades ago and results in the development of tools that
are either academical tools (http://altarica.labri.fr/) or indus-
trial tools like Cecilia OCAS from Dassault Aviation. This
language aims at describing a system as a set of interacting
components in a hierarchical way as a set of nodes and sub-
nodes. We summarize here the description of the language
and its semantics. Further details can be found in [Point,
2000; Point and Rauzy, 1999].

The following notations will be used in this paper. Let
v denote a variable, the domain of the variable, denoted by
Dom(v), is the set of values that can be assigned to the
variable v. A valuation of a variable v is the association
of the variable v with one of its value val ∈ Dom(v) and is
denoted (v = val). Let V denote a set of variablesDom(V)
will denote the product:

Dom(V) = Dom(v1)× · · · ×Dom(vn)

where {v1, . . . , vn}, n ≥ 1 denotes the enumeration of the
set V in a fixed order (like for instance the lexical order on
the variable names). Any element e ofDom(V) is an n-uple
of values (val1, . . . , valn) that also obviously represents the

set of valuations {v1 = val1, . . . , vn = valn} or, in a logi-
cal form, the conjunction

∧n
i=1 vi = vali. In the following,

for the sake of notation simplicity, ewill denote any of these
three representations depending on the context.

2.1 Component in Altarica
A component is defined as a set of variables. There are two
types of variables:

1. State variable: it is a variable that models the state of
the component (keyword state).

2. Flow variable: it is a variable that represents a flow
between the component and its environment (keyword
flow).

The set of state variables is denoted VS and the set of flow
variables is denoted VF .

Definition 1 (State). A state s of a component is a valuation
of all its state variables,

s ∈ Dom(VS).

The state of a component is internal in the sense that the
definition of a state does not take into account the valuation
of the flow variables. Flow variables are seen as the interface
of the component to its environment. In a given state of the
component, it may be possible that one flow variable may
have several valuations. At a given time, by definition, the
flow and state variables have only one valuation, this set of
valuations is called a configuration.

Definition 2 (Configuration). A configuration c is a valua-
tion of all its state and flow variables,

c ∈ Dom(VS ∪ VF).

In the following, we might denote a configuration c as a
couple (s, f) where s ∈ Dom(VS) and f ∈ Dom(VF).
The relationship between flow and state variables is stated
with the help of a set of assertions (keyword assert). An
assertion is a logical condition between state and flow vari-
ables that must be true in any configuration of the compo-
nent (in other words, any set of valuations of the state and
flow variables that is inconsistent with at least one of the
assertions is not an admissible configuration). The set of
assertions is also called the invariant of the system. In a
given state of the component, the environment may change
and affect some flow variables of the component, so its con-
figuration is changing, however this configuration change is
constrained by the component’s assertions that always must
hold. Typically, the flow variables represent the inputs and
outputs of a component to its environment. If a flow vari-
able changes (interpreted here as an input variable), as a re-
sponse, the component may also change other flow variables
(interpreted here as output variables) to ensure the assertions
are still true.

A component is an abstracted machine whose current
configuration is modified by different phenomena:

1. change of the configuration due to an environmental
change (change of a flow variable).

2. change of the internal state (and therefore the configu-
ration) due to the occurrence of an internal event.

The notion of event is part of the Altarica language and
has a meaning that is similar to the one in discrete event
systems.

Definition 3 (event). An event is an instantaneous phe-
nomenon that changes the state of a component.

Events are explicitly defined below the keyword event
in a node description and they are useful for the descrip-
tion of transitions (keyword trans). A transition is de-
fined by a guard (or a precondition) that is a logical con-
dition characterizing a subset of configurations. The transi-
tion is triggered only if the current configuration satisfies the
precondition of the transition and if the event associated to
the transition can occur. The consequence of the transitions
is the immediate modification of a subset of state variables
and possibly the immediate modification of the correspond-
ing configuration to ensure the invariant of the component
is satisfied.

Before recalling the semantics of an Altarica component,
the abstracted syntax is presented.

Definition 4 (Altarica component). An Altarica compo-
nent1 is a 5-uple C = 〈VS , VF , E, I,M〉 where

• VS , VF are two disjoint sets of variables, respectively
called the set of state variables and the set of flow vari-
ables;

• E = E+ ∪ {ε} is the set of events where ε 6∈ E+;

• I is a first-order logic formula such that the free vari-
ables of I are in VS ∪ VF ;

• M is the set of macro-transitions (g, e, a) such that:

– g is a first-order logic formula, called the guard,
whose free variables are in VS ∪ VF ;

– e is an event of E;
– a is an application which maps any state variable
s ∈ VS to a first-order logic term whose free vari-
ables are in VS ∪ VF ;

– M contains the implicit transition (>, ε, aε)
where ∀v ∈ VS , aε(v) = v.

The following example illustrates the definition.
node a_component

flow
pressure: {low,medium,high};
switch: {on,off};

state
working: {yes, no};

event
start,stop;

trans
(working = no and pressure = low) |- start -> working:=yes;
(working = yes) |- stop -> working:=no;

assert
if(working= no) then (pressure=low);
if(working= yes and switch = on) then (pressure=high);
if(working= yes and switch = off) then (pressure=medium);

edon

The flow variables are VF = {pressure, switch}
and the state variable is VS = {working}. The pres-
sure variable represents here a physical interaction on the
environment whereas the switch is a control of the compo-
nent by the environment. There are two states in this com-
ponent (working/not working). The state change is repre-
sented by two macro-transitions. The first macro-transition
(represented as a 3-uple (g, e, a) in the previous definition)
states that in every configuration where the component is

1Altarica can model events with priority and other subtleties.
In this paper, we just omit these parts to avoid mathematical over-
load that does not have any impact on the topic discussed in this
paper: priorities can indeed be included and then enrich the ex-
pressivity of the language, they have no other consequence on the
matter discussed here.

working and the pressure is low (this is the guard g), the
occurrence of a start event (this is the event e) will make
the component to work (the application a returns the term
yes when applied to variable state working). The second
transition states that whatever the configuration is, the oc-
currence of a stop event on the working component makes
it stop. Finally, the assertions model the behavior of the
component regarding the flow variables. For instance, the
first assertion states that when the component is not work-
ing (working=no), whatever the value of the switch is, the
pressure is always low (pressure=low). With a compo-
nent working and controlled by a switch on signal, the pres-
sure is always high and if the switch is off, the pressure is
medium. The formal semantics of a component behavior
is described hereafter and relies on constrained automaton
[Brleck and Rauzy, 1994].
Definition 5 (Constraint automaton). A constraint automa-
ton is a 5-tuple A = 〈E,F, S, π, T 〉 where:
• E = E+ ∪ {ε} is a finite set of events where ε is a

special event that does not belong to E+.
• F is the set of flow values.
• S is the set of automaton states.
• π : S → 2F is a mapping that associates to any state of
S the set of possible flow values in this state. Moreover,
it is supposed that π(s) 6= ∅.
• T ⊆ S ×F ×E ×S is the set of transitions such that:

– (s, f, e, s′) ∈ T ⇒ f ∈ π(s);
– ∀s ∈ S, (s, f, ε, s) ∈ T .

In a constraint automaton, a state is associated to a set of
possible flow values and the association between one state
s and one of this flow value f ∈ π(s) constitutes a config-
uration (s, f). The transition relation associates to one of
this configuration, the occurrence of an event e and a target
state s′. Finally, in this definition, it is also required that the
event ε (which means “the non-occurrence of an event”) can
be triggered in any configuration (s, f) to stay in state s.
Definition 6 (Semantics). The semantics of an Altarica
component C = 〈VS , VF , E, I,M〉 is the constraint au-
tomaton JCK = 〈E,F, S, π, T 〉 defined hereafter.
• F = Dom(VF).
• S ⊆ Dom(VS) is the set of states s that are admissible,

that is: there exists f in F such that the configuration
c = (s, f) is such that the invariant I holds in c:

c |= I.

• The mapping π : S → 2F is, for any s ∈ S,

π(s) = {f ∈ F |(s, f) |= I};
• T ⊆ S×F×E×S is the set of transitions {J(g, e, a)K}

where (g, e, a) ∈ M is a macro-transition and where
J(g, e, a)K is the set of 4-uples (s, f, e, s′) such that:

– s ∈ S;
– f ∈ F ;
– s, f |= I;
– s′ = {v1 = val′1, . . . , vn = val′n} where val′i is

the term a(vi) closed by the valuation s, f for all
i ∈ {1, . . . , n}.

Figure 1 presents the constraint automaton of the previ-
ous example. As the previous example does not contain any
initialization, any state of Figure 1 is an initial state.

working = yes
switch=on

pressure=high

working = no
switch=on

pressure=low

working = yes
switch=off

pressure=medium

working = no
switch=off

pressure=low

stopstart stopstart

ε

ε

ε

ε
ε

ε

ε

ε

Figure 1: Constraint automaton describing the semantics of
the example.

2.2 Compositional Modeling with Altarica
The basic piece of model in the Altarica language is a node.
A node can model a component as presented in the previous
section or a set of sub-nodes with the way they can interact
with each other. Two sub-nodes can interact in two manners
that are:
• event based: this type of interaction results from the

synchronization of events that are defined in different
sub-nodes. The syntax is:
sync

<subnode1.e1,subnodes2.e2,...>;

This type of interaction is the classical way to synchro-
nize components in discrete event systems. The event
e1 from the sub-node subnode1 can only occur at
the same time that the event e2 from the sub-node
subnode2.
• signal based: the signal based interaction is imple-

mented as an equality constraint between two flow
variables of two different sub-nodes, the syntax is:
assert

subnode1.v1 = subnode1.v2;

This constraint ensures that at any time both vari-
ables v1 from subnode1 and v2 from subnode2
have the same value which means that if the sub-node
subnode1 assigns a new value to v1, due its in-
ternal behavior, it instantaneously sends a signal to
subnode2 to assign the same value to v2. Chang-
ing the value of v2 may also have some internal and
instantaneous effect in subnode2. Note that the in-
teraction might be bidirectional (subnode2 might af-
fect subnode1 the same manner subnode1 affects
subnode2).

It follows from this that the semantics of any node N
can actually be represented as a constrained automaton. The
definition of this automaton is done by induction. IfN does
not contain any sub-node, its semantics is the constrained
automaton presented in the previous section. Now suppose
that N contains a non-empty set of sub-nodes N1, . . . ,Nn,
we can associate to the node Ni, i ∈ {1, . . . , n} its seman-
tics JCiK = 〈Ei, Fi, Si, πi, Ti〉. The node N might also
have some state variables VS (state variables that are de-
clared within the node N). It might also have some flow
variables VF (flow variables declared within the node N),
events E = E+ ∪ {ε}, invariant I (a logical formula assert-
ing a property between the state variables of VS , the flow
variables of VF and the flow variables V i

F declared in any

sub-node Ni, i ∈ {1, . . . , n}), and finally macro-transitions
M as any Altarica component. This part of the node can be
described as any component 〈VS , VF ∪

⋃n
i=1 V

i
F , E, I,M〉

and is called the controller of the nodeN : it has its own se-
mantics JC0K = 〈E0, F0, S0, π0, T0〉, as any Altarica com-
ponent. Regarding the set of events of the node N , they
might be involved in synchronizations or not. A global
event of node N is a n + 1 vector of events 〈e0, . . . , en〉
where ei are in Ei that matches the synchronization rules
defined by the sync keyword. The empty event of node N
is 〈ε, . . . , ε〉 that is also denoted as ε by convention. If an
event ei ∈ Ei is not synchronized with any other events, its
corresponding global event is 〈ε, . . . , ei, . . . , ε〉. The set of
global events of node N is denoted E.

Definition 7 (Semantics of a node). Let N =
〈VS , VF , E, I,M,N1, . . . ,Nn〉 a node, its semantics
is the constrained automaton JCK = 〈E,F, S, π, T 〉 such
that:

• F = Dom(VF);

• S = {s ∈ S0 × S1 × · · · × Sn|π(s) 6= ∅}.
• π(〈s0, . . . , sn〉) = {f ∈ F |∃〈f, f1, . . . , fn〉 ∈
π0(s0),∀i ∈ {1, . . . , n}, fi ∈ πi(si)}.
• T ⊆ S × F × E × S such that:
〈(s0, . . . , sn), f, 〈e0, . . . , en〉, (s′0, . . . , s′n)〉 if there
exists f0 = (f, f1, . . . , fn) ∈ π0(s0) and for any
i = {0, . . . , n}, fi ∈ πi(si) and (si, fi, ei, s

′
i) ∈ Ti.

With the semantics of a node, the language Altarica pro-
vides a formal characterization of a dynamical system as a
constraint automaton JCK = 〈E,F, S, π, T 〉. The model is
designed as a hierarchy of nodes that provides a clear dis-
tinction between the structural part of the system (how the
nodes interact with each others), its functional part (how a
node reacts to a given set of inputs) and its behavioral parts
(how a node behaves when events occur in the system). In
this sense, Altarica provides a way to model a system as
defined in [Chittaro et al., 1993].

3 Modeling of observations and faults
3.1 Observed system
The first task required by any diagnostic engine is to ob-
serve the system. To do so, the model first need to express
what is observable and what is not observable. The notion
of observations in the sense that is commonly used in the di-
agnosis communities is not included in the language. How-
ever, Altarica provides the possibility to add tags in the dec-
laration of events and variables. Two types of observation
can then be considered.

1. Observable variables: a variable might be a flow vari-
able or a state variable. If a flow variable is observ-
able, it represents that a signal (either an input signal
or an output signal), a synchronous interaction between
nodes is observable. A state variable usually represents
a property of the internal state of a node. This property
can be also observable. Syntactically speaking, we pro-
pose that an observable variable v is described in Al-
tarica by adding a tag observable to its declaration
(whatever it is a state or a flow variable):

v: observable;

2. Observable events: as stated in [Point, 2000] and re-
called in Definition 3, an event is considered as a in-
stantaneous phenomenon that modifies the state of the
component. The language makes no distinction about
the nature of the event, that can be coming from an en-
vironmental stimulus or can be an internal event. Such
an event might be observable or not observable. Syn-
tactically speaking, we also propose that an observ-
able event e is described in Altarica by adding a tag
observable to the declaration of the event:
event e: observable;

Adding tags to events and variables is the syntactical way
to express how a system is observed in the Altarica model.
Now we need to define the formal semantics of this obser-
vation model.

Definition 8 (Observable valuation mask). The observable
variable mask obs is a function that maps any valuation to
a logical formula,

• obs(v = val) = (v = val) if v is observable;

• obs(v = val) = > (true) if v is not observable.

This observable valuation mask can be extended to any
set of valuations:

obs({v1 = val1, . . . , vn = valn}) =

obs(v1 = val1) ∧ · · · ∧ obs(vn = valn).

Each configuration of a node is partially observable
through an observable valuation mask.

Definition 9 (Observable Part of a Configuration). The ob-
servable part of a configuration c is obs(c).

The observable mask only applies on states, configura-
tions. Now, let formally define observable events.

Definition 10 (Observable event mask). The observable
event mask eobs is a function that maps any event to an
event:

• eobs(e) = e if e is observable;

• eobs(e) = ε if e is not observable.

Note that eobs also applies to ε and eobs(ε) = ε. The
observable event mask can also be extended to a set of syn-
chronized events 〈e1, . . . , en〉 as follows:

eobs(〈e1, . . . , en〉) = 〈eobs(e1), . . . , eobs(en)〉.

From the definitions of mask here above, it is now possi-
ble to define the observable part of any transition t ∈ T of
the constrained automaton associated to any type of node.

Definition 11 (Observable Part of a Transition). The
observable part of a transition 〈s, f, e, s′〉 in a con-
strained automaton JCK associated to a node N is
〈obs(s), obs(f), eobs(e), obs(s′)〉.

Now that the way to model what is observable in an Al-
tarica specification is fully defined, we can define the type
of observations that can be stated in an Altarica diagnosis
problem. An observation of the system for a given diagno-
sis problem should consist of:

1. observed events from EO on one hand;

2. observable variable changes on the other.

The first type of observation is similar to the one that is
modeled in a fault diagnosis problem. The second one is
related to the fact that a variable is observed. Suppose that
the model has an observable variable v (flow or state vari-
able), by stating that a variable is observable we mean that,
at anytime, it is possible to know its value so especially at
the time when the value of the variable changes.
Definition 12. An observation OBS of the system modeled
by a node N is a non-empty sequence of couples (e, c) ∈
(EO,L(VO)) with VO the set of observable variables and
L(VO) the logical language on the valuations of VO.

An observable OBS is a non-empty sequence, as we
might be able to observe something at the time the sys-
tem starts operating, this first observation is actually the
initialization of observable variables that is represented as
(ε,

∧
v∈VO

v = valinit). It might also be possible that
no observable variable are available, in this case, the ob-
servation is nothing represented as (ε,>). The system
may evolve and then generates the change of values for
a set of variables V 1

O, it is represented within OBS by
(ε,

∧
v∈VO

v = valinit).(ε,
∧

v∈V 1
O
v = val1) and so on.

During its evolution, the system might also generate an ob-
servable event o (or a synchronized event like for instance
〈ε, ε, o1, ε, o2, . . . 〉) and some instantaneous value changes
l, that is represented as (o, l). If the occurrence of the event
o does affect any observable variable, it is represented as
(o,>).

3.2 How to model faults, failures in an Altarica
specification

A diagnosis problem aims at determining what went wrong
given a set of observations. In a Model-Based diagnosis
framework, the ’what went wrong’ part is specified in the
model but mostly depends on the objectives of the diag-
nosis that is performed on the system. We might be inter-
ested in malfunctioning behaviors by determining the func-
tional modes of the components and identify the ones that
are tagged as failing modes. We might be interested in iden-
tifying fault events that cause the problems. Within an Al-
tarica specification, we actually propose the user to model
any kind of these diagnostic objectives.
• A failure is usually defined as a phenomenon where

a system does not operate properly, that is it does not
proceed as expected with the given inputs. If such a
system is specified as an Altarica node, the failure then
occurs only if the system is in a failure state. To model
these failure states, we propose to declare some state
variables as failure state variables, as follows:
state var: bool : failure

• A fault is usually a phenomenon that is the cause of a
system’s failure. Within an Altarica specification, we
propose to model it as a fault event, as follows:
event e : fault

Depending on the diagnosis objectives and the underlying
system, we might model only failure states (see Section 4.1
for an example) or only fault events (see Section 4.2) or even
both (see Section 5). By using failure state variables, we
actually implicitly specify failure modes. Let VFS ⊆ VS be
the set of state variables that are declared as failure variable.
Definition 13 (Failure mode). A failure mode m is a set of
valuations for each variable of VFS ,

m ∈ Dom(VFS).

A state s has a failure mode m if:

s |= m.

4 Definition of Model-based diagnosis
problems

The purpose of this section is to illustrate the expressivity of
the Altarica language by presenting within the same model-
ing framework, two classical model-based diagnosis prob-
lems that are usually studied independently.

4.1 Static Diagnosis Problem
This problem, commonly called the polybox problem, con-
sists of a digital circuit (the circuit of [Davis, 1984]) made
of a set of multipliers M1,M2,M3 and adders A1, A2. The
initial problem is a static problem in the sense that the ob-
servations OBS represent one timepoint and the state of the
system is supposed to be permanent.

node multiplier
flow

x,y : RANGE : in;
p : RANGE : out;

state
ab: bool: failure;

assert
not ab => (p = (x*y));

edon

node adder
flow

x,y : RANGE : in;
s : RANGE : out;

state
ab: bool: failure;

assert
not ab => (s = (x+y));

edon

node circuit
flow

a,b,c,d,e : RANGE : in,observable;
f,g : RANGE : out,observable;

sub
A1,A2: adder;
M1,M2,M3: multiplier;

assert
M1.p = A1.x; M2.p = A1.y; M2.p = A2.x;
M3.p = A2.y; a=M1.x; b=M2.x; c=M1.y;
c=M3.x; d=M2.y; e=M3.y; f=A1.s; g=A2.s;

edon

Figure 2: Description of the circuit in Altarica.

Figure 2 fully presents the model of the circuit. The sys-
tem is actually modeled with the node circuit that con-
sists of 5 sub-nodes. Each sub-node has a type (that is either
adder or multiplier). Flow variables at this level are
the inputs (in) and the outputs (out) of the system and they
are all observable. The assert section defines the struc-
tural model of the circuit (the links). For each sub-node,
there is one state variable ab that is boolean and that just
asserts whether the sub-node is abnormal ab = true or
not ab = false. The functional behavior of each sub-
node is finally described as an assertion.

The diagnosis problem, introduced in [Reiter, 1987], was
introduced as follows. Given a system description SD
(in first order logic), a set of observations OBS (a valua-
tion of the observable variables) and a set of components
COMPS, find a diagnosis ∆ as a subset of COMPS such
that SD ∧ OBS ∧

∧
c∈∆Ab(c) ∧

∧
c6∈∆ ¬Ab(c) is satisfi-

able. In the Altarica world, the problem is defined like this.
Given the Altarica model M as the one of figure 2, given

OBSM = (ε,OBS) find in JCM K a configuration that sat-
isfies the observation OBSM and extract its failure mode.
In this case, a failure mode is a valuation of all the ab state
variables so it corresponds to an initial diagnosis ∆.

4.2 Discrete Event Diagnosis Problem
The second problem that is presented here is the classical
fault diagnosis problem on discrete event system illustrated
by the HVAC system [Sampath et al., 1995].

node valve
state V: [1,4];
event stuck_closed1, stuck_closed2: fault;

stuck_open1, stuck_open2: fault;
open, close;

trans
V=1 |- close -> V:=1; V=1 |- open -> V:=2;
V=1 |- stuck_open1 -> V:=4; V=1 |- stuck_closed1 -> V:=3;
V=2 |- open -> V:=2; V=2 |- close -> V:=1;
V=2 |- stuck_open2 -> V:=4; V=2 |- stuck_closed2 -> V:=3;
V=3 |- open -> V:=3;V=3 |- close -> V:=3; V=4 |- open -> V:=4;
V=4 |- close -> V:=4;

init V:=1;
edon

node pump
state P: [1,4];
event start, stop;

failed_on1, failed_on2, failed_off1, failed_off2: fault;
trans

P=1 |- stop -> P:=1; P=1 |- start -> P:=2;
P=1 |- failed_on1 -> P:=4; P=1 |- failed_off1 -> P:=3;
P=2 |- start -> P:=2; P=2 |- stop -> P:=1;
P=2 |- failed_on2 -> P:=4; P=2 |- failed_off2 -> P:=3;
P=3 |- start -> P:=3; P=3 |- stop -> P:=3;
P=4 |- start -> P:=4; P=4 |- stop -> P:=4;

init P:=1;
edon

node controller
state C: [1,4];
event open, close, start, stop: observable;
trans
C=1 |- open -> C:=2; C=2 |- start -> C:=3;
C=3 |- stop -> C:=4; C=4 |- close -> C:=1;
init C := 1;
edon

node hvac
sub v: valve; p: pump; c: controller;
sync

<c.open,v.open>; <c.close,v.close>;
<c.start,p.start>; <c.stop,p.stop>;

edon

Figure 3: Description of the HVAC system in Altarica.

The HVAC system is modeled as a hvac node. This node
is composed of three sub-nodes: a valve, a pump and
a controller. In this example, the structural model is
represented as event synchronizations only described in the
hvac node. Each sub-node is modeled as a set of transitions
that are triggered by events that modify the internal state of
each sub-node. Here, there is no observation of any state,
only the events of the controller are observable. The fault
information is carried on a subset of events. The keyword
init defines the initial state of each sub-node, so here it
also defines the initial state of the system.

The model presented on Figure 3 is purely event-based,
the underlying constrained automaton of this system is
equivalent to the global model G defined in [Sampath et al.,
1995]. It is indeed, by construction, a pure Mealy machine
without any ε-transitions since there is no flow variables,
no assertions. The first diagnosis problem that can be de-
fined on the HVAC system is: given OBS a sequence of
observable events, find a subset F of fault events such that
there exists in the modelG a trajectory from the initial state,
containing as fault events exactly the set F , that satisfies
OBS. Back to the Altarica world, the problem is defined as

follows. The sequence of observations OBS (for instance
open, start, stop, close, start) becomes OBSM :

(〈c.open, ε〉,>), (〈c.start, ε〉,>),

(〈c.stop, ε〉,>), (〈c.close, ε〉,>), (〈c.start, ε〉,>).

The diagnosis problem then becomes: find a subset F of
events declared as fault such that there exists in the con-
strained automaton a trajectory from the initial configura-
tion that satisfies OBSM , trajectory that contains, as fault
events, the set F exactly. The second problem that can be
defined is the one that is solved by the diagnoser approach
of [Sampath et al., 1995]. Instead of just computing a set
of faults F , the problem is defined as determining the set of
couples (x, F) where x is global state of the system. In the
model of Altarica, it means that it is required to keep track
of the current failure mode: in this particular case, a fail-
ure mode is exactly one state. To keep track of the failure
mode, it suffices to add the keyword failure to any state
variable of the model. Then to finally get (x, F), it suffices
to extract from the last configuration of the trajectory the
failure mode to get x.

5 State/Event-based Diagnosis Problem: a
UGV diagnosis problem

In the previous section, we show that it is possible to specify
with the Altarica language two classical problems:

1. the first one is state-based, the observations provide
a partial information about the underlying state of the
system;

2. the second one is event-based, the observations are a
sequence of events and the purpose is to determine
which fault events have occurred.

The main strength of Altarica is its ability to provide into
one fully specified specification language event-based be-
haviors (Mealy machines) and state-based behaviors (Moore
machines). Our proposal is now to take advantage of this
expressivity to model state/event-based diagnosis problems
and thus refine the type of information that is provided
within the model. To illustrate our objective, we investi-
gated a case study: a diagnosis problem in Robotics.

We consider a model of an unmanned ground vehicle
(UGV) capable of autonomous navigation in challenging
environmental conditions, such as in the presence of fog,
smoke or airborne dust. In order to achieve safe autonomous
navigation, the UGV needs to be equipped with a perception
system capable of performing obstacle detection. This task
is critical since any detection error could lead to catastrophic
consequences, hence the motivation to perform diagnosis on
this perception system. Figure 4 shows a high-level view of
our proposed model of a perception system. In the model in
Fig. 4, the sensors observe aspects of the environment from
their mounting position on the UGV, providing sensor data.
These sensor data, e.g. 3D points, are transformed into a
common world frame by a function RawDataToWorld,
thanks to calibration parameters (e.g. the position and ori-
entation of the sensor in a frame related to the vehicle)
and the full localization of the vehicle in the world. Once
this operation is performed, the data can be fused into a
common representation, which is then interpreted. An ex-
ample of this interpretation for obstacle detection is mak-
ing the distinction between obstacle and free space. The

Env
iron

men
t

Rot
E

Perception

RawDataTo
World1

RawDataTo
World2

RawDataTo
World3

Sen
sor

Dat
a 1

World
Sensor
Data1

World
Sensor
Data3

World
Sensor
Data2

modified Model for the DX article
EC: 20/05/2016

Sensor3

Mask

Obs
(En

viro
nme

nt)

Calibration parameters,
Localisation

Sensor1

Sensor2 Fusion Interpretation

Sen
sor

Dat
a 2

Sen
sor

Dat
a 3

Figure 4: UGV perception component overview

output of the perception model is then a representation of
the environment (RotE in Fig. 4). Each function in that
model, namely sensori, RawDataToWorldi, Fusion
and Interpretation contains a submodel. Figure 5
shows one of these submodels, for sensor1.

OK
Sen

sor
data

 1

Sensor1

degraded
good quality

degraded
low qualityMask1

Obs
(En

viro
nme

nt)

Sensor1 OK

Sensor1LowDataRate

Sensor1broken

degraded modes

nominal modes

broken modes
Sensor1LowRate & LowQuality

ε

f_sensor1

s_ldr

to Fusion

e_ldr

εε
f_sensor1

ε
ε

s_ldre_smoke

ε

e_ldr

New Model for Sensor (22/03/2016)

model for DX EC 20-05-2016

Sensor1LowDataQuality

Obs
1(E

nvir
onm

ent)

s_smoke

Figure 5: Model for one sensor

Note that our perception system has multiple sensors (3
in our case). This is because it has been shown that us-
ing multiple sensors, and more particularly multiple sens-
ing modalities (e.g. LIDARs, RADARs, and visual/IR cam-
eras), is key to perform resilient perception in challenging
environmental conditions [Peynot et al., 2009], as the UGV
perception system can benefit from the complementarity be-
tween the distinct multiple sensing modalities. For example,
mm-wave RADARs can see through smoke or airbone dust
while LIDARs often cannot, which means returns from LI-
DARs are often misinterpreted as obstacles, however, LI-
DARs usually are much more accurate than RADARs [Cas-
tro and Peynot, 2012]. These differences of perception make
the problem of fusing and interpreting data acquired by
multiple sensing modalities particularly difficult [Gerardo-
Castro et al., 2014], as they can generate many failures of
obstacle detection. To address this challenge, the originality
of our modeling example is that it includes a model of the
environment mask so that different observation configura-
tions are possible. For example, if smoke occurs, the obser-
vation mask of the sensors that are sensitive to smoke (in the
previous example, the LIDAR) can be degraded and con-
sequently the diagnosis process can take the environment
mask as responsible for a degraded mode.

Figure 6 fully shows the model of one sensor of the pro-
posed UGV model. The sensor is modeled as a sensor
node. This node is composed of two sub-nodes: the ob-
servation mask mask1 of the sensor and sensor1. Each
elementary node contains several behavioral modes and the
mode changes by the occurrence of events. For instance, in

sensor1, there are three operating modes (see Figure 5)
and three events (s_ldr,e_ldr,f_sensor1) that affect
the current mode of the sensor. Among these events, one
is considered as a fault event (f_sensor1) that is not re-
coverable and the others (namely start/end of low data rate:
s_ldr,e_ldr) are not considered as faults (as s_ldr is
actually recoverable). This part of the model is the event-
based part, it handles the way that instantaneous phenom-
ena like s_ldr or f_sensor1 affect the internal state of
the system. The state-based part of the model is composed
of the flow variables and the set of assertions. It is used to
model the fact that in the presence of smoke the sensor is
not able to produce high quality data even if its operating
mode is nominal. Indeed, the cause of the low-quality data
might not be due to a problem in the sensor (a low data rate
issue) but due to the presence of smoke in the environment.
This is modeled by asserting that the presence of smoke in
the mask leads to a low quality input of the sensor. In this
example, the model contains failure modes (one diagnostic
objective is to estimate the current failing mode based on
which UGV reconfigurations can be automatically planned
during the mission) and fault events (a second diagnostic ob-
jective is to estimate the health of the UGV for maintenance
after the mission).

node mask_1
state

mode: {ok, degraded};
flow

quality: {good,low};
event

s_smoke, e_smoke: observable;
trans

mode=ok |- s_smoke -> mode:=degraded;
mode=degraded |- e_smoke -> mode:=ok;

init
mode:=ok;

assert
(mode=ok) => (quality=good);

edon

node sensor_1
flow

input: {good,low};
output: {empty,degraded,ok};

state
mode: {nominal, degraded, broken}:failure;
rate: {good,low}:failure;

event
s_ldr, e_ldr: observable;
f_sensor1: fault;

trans
mode !=broken |- f_sensor1 -> mode:=broken;
mode = nominal and rate = good |- s_ldr -> mode:=degraded, rate:=low;
mode = degraded and rate=low |- e_ldr -> mode:=nominal, rate:=good;

assert
((mode=nominal) and (input=good)) => (output=ok);
((mode=nominal) and (input=low)) => (output=degraded);
((mode=degraded) and (rate=low)) => (output=degraded);
(mode=broken) => (output=empty);

init
mode:=nominal;
rate:=good;

edon

node sensor
flow

data: {empty,degraded,ok};
sub

m: mask_1;
s: sensor_1;

assert
m.quality = s.input;
s.output = data;

edon

Figure 6: Part of the UGV system in Altarica.

6 Discussion
This aim of the paper is to present a specification language
that has the great advantage to have a precise semantics as
a constrained automaton. Within this modeling framework,
we show that it is possible to model classical diagnosis prob-
lems that are rather different in the literature and these mod-
els do not use the full expressivity power of Altarica. More-
over, we investigated a case study from the robotics field
where we need to use all the expressity power of Altarica to
express a more complex diagnosis problem that is a combi-
nation of a state-based problem and an event-based problem.

This paper did not discuss the way to effectively solve
diagnosis problems within Altarica. Solving such generic
problems with one diagnosis engine is our perspective.
There already exist tools, like ARC, that are able to per-
form model analysis on Altarica specifications. Among
these analyses, it is in particular possible to use commands
like sequences and cuts: a cut can be seen as a function
that extracts from the Altarica model an abstracted set of
trajectories that match a specification. It is a way to ex-
plore the model from initial configurations to final config-
urations and extract relevant pieces of information. This is
particularly this type of methods that [Kuntz et al., 2011]
use to design diagnostic rules from an Altarica specifica-
tion. This type of approach attempts to compile the pieces
of information that are necessary to run a diagnostic engine.
What we propose here as Altarica specifications of diagno-
sis problems is actually more generic than what is proposed
in [Kuntz et al., 2011] and cannot be compiled as simple
diagnostic rules. One naive way to solve a complete diag-
nostic problem written in Altarica would be to update the
diagnoser approach [Sampath et al., 1995] to the underlying
constrained automaton of the Altarica specification. This
is indeed theoretically possible if the domain of the vari-
ables are finite however, we believe that it is not the right
way to go due to the space complexity issue. We think that
the best way to go would be to benefit from a close inte-
gration of tools that actually perform state-based diagnosis
like [Feldman et al., 2010; Pencolé, 2014; Shchekotykhin
et al., 2015] with tools that perform event-based diagnosis
[Lamperti and Zanella, 2002; Pencolé and Cordier, 2005;
Grastien and Anbulagan, 2013]. Investigating a diagnosis
problem also require the diagnosability analysis of a prob-
lem. ARC is actually a model-checker that has been specif-
ically developed to model-check Altarica specifications so
it could be use to check diagnosability questions as well as
NuSMV [Bozzanoa et al., 2014].

References
[Bozzanoa et al., 2014] Marco Bozzanoa, Alessandro Cimatti,

Oleg Lisagorb, Cristian Mattareia, Sergio Movera, Marco
Roveria, and Stefano Tonettaa. Safety assessment of altarica
models via symbolic model checking. Science of Computer
Programming, 98(4):464–483, 2014.

[Brleck and Rauzy, 1994] S. Brleck and A. Rauzy. Synchroniza-
tion of constrained transitions systems. In First International
Symposium on Parallel Symbolic Computation, 1994.

[Castro and Peynot, 2012] M.P.G. Castro and T. Peynot. Laser-
to-radar sensing redundancy for resilient perception in adverse
environmental conditions. In ARAA Australasian Conference
on Robotics and Automation (ACRA), Sydney, Australia, De-
cember 2012.

[Chanthery et al., 2010] Elodie Chanthery, Yannick Pencolé, and
Nicolas Bussac. An ao*-like algorithm implementation for ac-
tive diagnosis. In 10th International Symposium on Artificial In-
telligence, Robotics and Automation in Space, pages 378–385,
Sapporo, Japan, 8 2010.

[Chittaro et al., 1993] L. Chittaro, G. Guida, C. Tasso, and E. Top-
pano. Functional and teleological knowledge in the multimod-
eling approach for reasoning about physical systems: a case
study in diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6):1718 – 1751, 1993.

[Davis, 1984] Randall Davis. Diagnostic reasoning based on
structure and behavior. Artificial Intelligence, 24:347–410,
1984.

[Feldman et al., 2010] Alexander Feldman, Gregory Provan, and
Arjan van Gemund. Approximate model-based diagnosis us-
ing greedy stochastic search. Journal of Artificial Intelligence
Research, 38:371–413, 2010.

[Gerardo-Castro et al., 2014] Marcos P. Gerardo-Castro, Thierry
Peynot, Fabio Ramos, and Robert Fitch. Robust multiple-
sensing-modality data fusion using gaussian process implicit
surfaces. In IEEE International Conference on Information Fu-
sion, Salamanca, Spain, July 2014.

[Grastien and Anbulagan, 2013] Alban Grastien and Anbu Anbu-
lagan. Diagnosis of discrete event systems using satisfiability
algorithms: a theoretical and empirical study. IEEE Transac-
tions on Automatic Control (TAC), 58(12):3070–3083, 2013.

[Kuntz et al., 2011] Fabien Kuntz, Stéphanie Gaudan, Christian
Sanino, Éric Laurent, Alain Griffault, and Gérard Point. Model-
based diagnosis for avionics systems using minimal cuts. In
22nd International Workshop on Principles of Diagnosis, 2011.

[Lamperti and Zanella, 2002] Gianfranco Lamperti and Marina
Zanella. Diagnosis of discrete-event systems from uncertain
temporal observations. Artificial Intelligence, 137:91–163,
2002.

[Pencolé and Cordier, 2005] Yannick Pencolé and Marie-Odile
Cordier. A formal framework for the decentralised diagnosis of
large scale discrete event systems and its application to telecom-
munication networks. Artificial Intelligence, 164(2):121–170, 5
2005.

[Pencolé, 2014] Yannick Pencolé. Dito: a csp-based diagnostic
engine. In 21st European Conference on Artificial Intelligence,
pages 699–704, Prague, Czech Republic, 8 2014.

[Peynot et al., 2009] Thierry Peynot, James Underwood, and
Steven Scheding. Towards reliable perception for unmanned
ground vehicles in challenging conditions. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1170–1176, Saint Louis, MO, USA,
October 2009.

[Point and Rauzy, 1999] G. Point and A. Rauzy. Altarica - con-
straint automata as a description language. European Journal
on Automation, 33:1033–1052, 1999.

[Point, 2000] G. Point. AltaRica: Contribution à l’unification des
méthodes formelles et de la Sûreté de fonctionnement. PhD the-
sis, Université Bordeaux I, 2000.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32:57–95, 4 1987.

[Sampath et al., 1995] Meera Sampath, Raja Sengupta, Stéphane
Lafortune, Kasim Sinnamohideen, and Demosthenis Teneket-
zis. Diagnosability of discrete-event systems. Transactions on
Automatic Control, 40(9):1555–1575, 9 1995.

[Shchekotykhin et al., 2015] Kostyantyn Shchekotykhin, Dietmar
Jannach, and Thomas Schmitz. A divide-and-conquer-method
for computing multiple conflicts for diagnosis. In Proceedings
of the 26th International Workshop on Principles of Diagnosis
(DX-2015), pages 3–10, 2015.

