
Modular fault diagnosis in discrete-event
systems with a CPN diagnoser
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Abstract: This paper addresses the problem of fault diagnosis in discrete-event system. The
system under investigation is modelled as a labelled Petri net. We first propose an equivalent
encoding of the classical diagnoser with the help of a CPN diagnoser. We then apply this
encoding to define a modular CPN diagnoser.
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1. INTRODUCTION

The problem we are dealing with is the supervision of
fault events in a discrete event system as introduced in
Sampath et al. (1995); as stated in the survey of Zaytoon
and Lafortune (2013), this is a very active research area.
As opposed to the classical and initial modelling approach,
the system here is modelled as a labelled Petri net defined
as an extension of the classical Petri net formalism. The
use of Petri nets for solving diagnosis problems received
much more attention these recent years like in Genc and
Lafortune (2007), Dotoli et al. (2009), Cabasino et al.
(2011) and several new diagnosis definitions relying on the
Petri net formalism has been proposed and investigated.
The first objective of this paper is to import the initial
diagnosis problem introduced in Sampath et al. (1995)
into the world of labelled Petri net and more specifically
to define a diagnoser with Petri nets that solves exactly
the same problem with the same time efficiency (constant
time). The paper comes out with the original definition of
an equivalent diagnoser as a coloured Petri net (CPN) that
has the advantage to have a graphical representation that
is drastically reduced and can be helpful for further anayl-
yses. This new representation is then used to implement a
modular diagnoser that also benefit of this size reduction
and that is more suitable for large distributed system.

2. PROBLEM STATEMENT

2.1 Background

Definition 1. A Petri net is a 3-uple N = 〈P, T,A〉 such
that:

• P is a finite set of places;
• T is a finite set of transitions, with P ∩ T = ∅;
• A : (P × T ) ∪ (T × P ) → N is the relation between

places and transitions that represents the arcs and
their weights.

A state of a Petri net is defined by a marking M : P → N
which maps any place of the net to the number of tokens
that it contains. A marked Petri net is a couple 〈N,M0〉

where N is a Petri net and M0 is an initial marking. Let
•t = {p ∈ P |A(p, t) > 0} denote the preset of t and let
t• = {p ∈ P |A(t, p) > 0} the post set of t. A transition
t is fireable if for any place p of •t, M(p) ≥ A(p, t). A
transition that is fired from a marking M leads to the
marking M ′ such that for any p M ′(p) = M(p) +A(t, p)−
A(p, t). We say that M ′ is reachable from M by t and is

denoted: M
t−→ M ′. From this immediatly follows the

notion of firable transition sequences from marking M

denoted: M
t1−→M1 . . .Mn−1

tn−→Mn, n ∈ N.

With the help of this formalism, any event e that occurs
in the system is modelled as a transition te ∈ T , in other
words, any effective occurrence of the event e in the system
is modelled by the fire of the transition te. For the sake of
generality and flexibility, we propose to model the system
with an extended version of Petri nets, called labelled Petri
net.

Definition 2. A labelled Petri net is a 6-uple S =
〈P, T,A, `,Σ,M0〉 such that:

• 〈P, T,A,M0〉 is a marked Petri net;
• Σ is the set of transition labels;
• ` : T → Σ is the label mapping.

An event of the system, here, is modelled as a label of Σ.
Two net transitions may be associated to the same label
(if ` is a bijection, the labelled Petri net is just a classical
Petri net). Any effective occurrence of the event e in the
system is modelled by the fire of one transition t ∈ T such
that `(t) = e. We can therefore model non-determininistic
behaviours of the system.

2.2 Diagnosis problem

In the model-based diagnosis as introduced in Sampath
et al. (1995), we assume that the system can be modelled
as a discrete event system over a finite set of events Σ.
Events are either observable (Σo ⊆ Σ) or non-observable
(Σuo ⊆ Σ). Among the set of non-observable events, there
are the fault events (Σf ⊆ Σuo).
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Fig. 1. System example

Definition 3. The model of the supervised system is a
bounded labelled Petri net such that Σ is the set of events
of the system composed of:

• Σo the set of observable events;
• Σuo the set of unobservable events, and among them

the set of fault events Σf .

Figure 1 depicts a small example that will be used through-
out this paper as a running example. This system has a
fault event f and two observable events (namely o1 and o2

). It is bounded and contains 3 reachable marking states
(M1 : [p1 = 2, p2 = 0]) denoted 2p1 , M2 : [p1 = 0, p2 = 2]
denoted 2p2 and M3 : [p1 = 1, p2 = 1] denoted p1p2).

Given the model of the system, now we are ready to recall
the statement of a diagnosis problem on such a system.
Let P : Σ∗ → Σ∗o denote the natural observable projection
recursively defined as follows: for any σ.e, σ ∈ Σ∗, e ∈ Σ,
P(σ.e) = P(σ).e if e ∈ Σo otherwise P(σ.e) = P(σ) and
P(ε) = ε.

Definition 4. Let S be a model of a discrete event system,
let σ = σ′.o, σ′ ∈ Σ∗o, o ∈ Σo be an observable sequence of
the system, the diagnosis of σ in S, denoted ∆(S, σ) is the
maximal set {(M1, F1), . . . , (Mn, Fn)} such that:

(1) if σ is empty, ∆(S, σ) = {(M0,∅)};
(2) if σ is not empty, then for any i ∈ {1, . . . , n}

there exists at least a firable sequence Mo
t1i−→

. . .
tki−→ Mi such that

⋃k
j=1 `(tji) ∩ Σf = Fi and

P(`(t1i).`(t2i) . . . `(tki)) = σ with `(tki) = o.

Going back to Example 1, here are different diagno-
sis problems and their solution: ∆(S, ε) = {(2p1,∅)},
∆(S, o1) = {(2p2,∅)}, ∆(S, o2o2) = {(2p2, {f}), (2p2,∅),
(2p1, {f}), (p1p2, {f})}.
Proposition 5. Definition 4 is equivalent to the problem
defined in Sampath et al. (1995).

Proof. As the model of the system is bounded, its reach-
able marking graph G is finite and gathers the set of
firable sequences from the marking M0. So G is exactly the
finite state machine, called global model, that is defined in
Sampath et al. (1995). On the other side, given a finite
state machine G, as defined in Sampath et al. (1995), it is
trivial to convert it into a bounded labelled Petri net (any
state of G becomes a place, any transition of G becomes
a net transition), hence the equivalence.

2.3 Problem statement with silent closure

∆(S, σ) summarizes what could have possibly happened
before the last observation of σ. Another problem that

can also be considered to extend ∆(S, σ) with the silent
closure (Lamperti and Zanella (2003)) by also taking into
account what could happen after the last observation and
that is non-observable. This problem, is important in a
modular framework (see Section 4.2).

Definition 6. Let S be a model of a discrete event system,
let σ = σ′.o, σ′ ∈ Σ∗.o, o ∈ Σo be an observable sequence
of the system, the extended diagnosis of σ in S, denoted
∆+(S, σ) is the maximal set {(M1, F1), . . . , (Mn, Fn)} such
that for any i ∈ {1, . . . , n} there exists at least a firable

sequence Mo
t1i−→ . . .

tki−→ Mi such that
⋃k

j=1 `(tji) ∩
Σf = Fi and P(`(t1i)`(t2i) . . . `(tki)) = σ.

Back to Example 1, here are different solutions of extended
diagnosis problems: ∆+(S, ε) = {(2p1,∅), (p1p2, {f}),
(2p2, {f})}, ∆+(S, o1) = {(2p2,∅)}, ∆+(S, o2o2) =
{(2p2, {f}), (2p2,∅), (2p1, {f}), (p1p2, {f})}.

3. COLORED PETRI NET DIAGNOSERS

3.1 Classical diagnoser

To fully solve the diagnosis problem on-line, the classical
solution is to compute a specific deterministic finite state
machine that maps any possible observable sequence σ of
the system to the diagnosis result, namely ∆(S, σ), this
machine is called a diagnoser. We propose here its defini-
tion relying on the model of the system as a labelled Petri
net. Let M denote the finite set of reachable markings of
S (as S is supposed to be bounded).

Definition 7. The diagnoser of S is the finite state machine
D = (Q,E,Σo, qo) such that:

(1) Q is a finite set of states; a state is a non-empty subset

of 2M×2Σf
;

(2) E ⊆ Q× Σo ×Q is a finite set of transitions;
(3) Σo is the set of observable events;
(4) q0 ∈ Q is the initial state.

Q and E are defined by induction as follows. LetQ0 = {q0}
with q0 = {(M0,∅)}, and E0 = {}. Given Qi, i ≥ 0, we
compute Qi+1. So, for any state q in Q, for any o ∈ Σo, let
q′obe the maximal set {(M ′1, F ′1), . . . , (M ′k, F

′
k)} such that

for any (M ′, F ′) ∈ q′o, there exists (M,F ) ∈ q and M
t1−→

. . .
tm−→ M ′ in S with `(tm) = o and ∀r ∈ {1, . . . ,m − 1}

`(tr) 6∈ Σo and F ′ = F ∪ ({`(tr)}r∈{1,...,m−1} ∩ Σf ). If the

state q′o 6= ∅ and q′o 6∈
⋃i

j=0Qj , then q′o ∈ Qi+1.

The transition q
o−→ q′o is in Ei+1. By construction, as the

set of reachable markings and the set of faults is finite,
there exists n such that Qn = ∅ and En = ∅. And finally,
Q =

⋃n−1
i=0 Qi and E =

⋃n−1
i=0 Ei.

By definition, for any observable sequence σ of the system,
the transition path of the diagnoser from the initial state
q0 that follows σ leads to the state q = ∆(S, σ).

Back to the system S of Figure 1, its classical diagnoser
contains 11 states and 19 transitions. Its initial state is
q0 = ∆(S, ε) = {(2p1,∅)}. There is a transition q0

o1−→
q1 = ∆(S, o1) = {(2p2,∅)}, and so on.

Trivially, we can also define the extended diagnoser D+ =
(Q+, E+,Σo, q

+
0 ) in the similar way as D. The only differ-



ence is in the construction of Q+. First q+
0 is the maximal

set {(M1, F1), . . . , (Mk, Fk)} such that there exists for any

i ∈ {1, . . . , k}, a sequence M0
t1−→ . . .

tm−→ Mk in S with
∀r ∈ {1, . . . ,m}, `(tr) 6∈ Σo and Fk = {`(tr)}r∈1,...,m ∩
Σf . The other difference is in the construction of Q+

i+1

from Q+: in the selection of a transition sequence M
t1−→

. . .
tm−→ M ′ in S, instead of imposing that `(tm) = o and

∀r ∈ {1, . . . ,m− 1}, `(tr) 6∈ Σo, we just impose that there
exists one and only one transition ti, i ∈ {1, . . . ,m} such
that `(ti) is observable and `(ti) = o. Finally F ′ becomes
F ∪ ({`(tr)}r∈{1,...,m} ∩Σf ). The rest remains unchanged.
Back to the system S of Figure 1, its extended diagnoser
contains 8 states and 13 transitions. Its initial state is
q0 = ∆+(S, ε) = {(2p1,∅), (p1p2, {f}), (2p2, {f})}. There

is a transition q0
o1−→ q1 = ∆+(S, o1) = {(2p2,∅)}, and so

on.

3.2 About coloured Petri nets

We present here a simplified version of the definition of
coloured Petri nets that will be sufficient throughout this
paper. The principle of coloured Petri net is to extend the
notion of token with a type, also called a colour. Let C
be a finite set of colours. For any place p, we associate a
set of possible colours (denoted Csec(p) ⊆ C). A colour
marking M of p is then a function that associates to
any possible colour c ∈ Csec(p) a number of tokens of
this colour: if M(p, c) = n, it means that n tokens of
colour c hold in the place p in the marking M . For any
transition t, we also associate a set of possible colours
(denoted Csec(t) ⊆ C). For any colour ct of Csec(t), we
define an input arc relationship, denoted A−(p, t, ct), as
a function that maps any colour cp ∈ Csec(p) to a pre-
incidence weight: A−(p, t, ct)(cp) = n means that the
transition t cannot be fired on the colour c if M(p, cp) < n
and if the transition is effectively fired on colour ct , n
tokens of colour cp are consumed in the place p. From this
follows a notion of preset

•
t(ct) = {p ∈ P |∃cp ∈ Csec ∧

A−(p, t, ct)(cp) > 0}. In a similar way, we define an output
arc relationship, denoted A+(p, t, c), as a function that
maps any colour cp ∈ Csec(p) to a post-incidence weight:
A+(p, t, c)(cp) = n means that if the transition t is fired
on the colour c then n tokens of colour cp are produced
in the place p. From this follows a notion of postset
t•(ct) = {p ∈ P |∃cp ∈ Csec ∧ A+(t, p, ct)(cp) > 0}. All
this is finally summarised in the following definition.

Definition 8. A marked coloured Petri net is a 5-uple
(P, T,A−, A+, C, Csec,M0) such that:

• P is a finite set of places;
• T is a finite set of transitions;
• C is a finite set {c1, . . . , cn} of n colours;
• Csec : P ∪ T → 2C is a colour mapping for

places/transitions;
• A− : (P × T × C) → (C × N) is the function which

maps any preset place p ∈ P of a transition t ∈ T for
a colour c ∈ Csec(t) to a weight function which maps
a colour of Csec(p) to a weight (∈ N).
• A+ : (T × P × C) → (C × N) is the function which

maps any postset place p ∈ P of a transition t ∈ T
for a colour c ∈ Csec(t) to a weight function which
maps a colour of Csec(p) to a weight (∈ N).

• M0 : P × C → N is the initial marking.

A transition t ∈ T is ct-firable given a marking M iff
ct ∈ Csec(t) and ∀p ∈ P,∀cp ∈ Csec(p),M(p, cp) ≥
A−(p, t, ct)(cp). Firing t from a marking M on a colour
ct ∈ Csec(t) leads to the new marking ∀p ∈ •t(ct)t•(ct),
∀cp ∈ Csec(p), M0(p, cp) = M(p, cp) + A+(t, p, ct)(cp)

−A−(p, t, ct)(cp). Firing a transition is denoted M
t−→

M ′. Note that the proposed coloured Petri nets are sup-
posed to be deterministic, for any reachable marking, if a
transition is c-firable it cannot be c′-firable with c′ 6= c, so

the notation M
t−→M ′ is not ambiguous.

3.3 Coloured diagnoser

We propose to define a coloured Petri net that is equivalent
to the classical diagnoser, that is for any observable
sequence σ of the system, the coloured version also returns
∆(S, σ). The principle of the encoding is the following.

(1) ∆(S, σ) is a set of couples (M,F ) where M is a reach-
able marking of S and F is a subset of faults from
Σf , such a couple is called a diagnosis hypothesis. A
place of the coloured diagnoser will represent such a
hypothesis.

(2) ∆(S, σ) as a whole is called a belief state (a set
of diagnosis hypotheses). We propose to model any
possible belief state of the classical diagnoser as a
colour.

(3) Finally, the transitions of the classical diagnoser are
labelled with observable events of Σo, in our encod-
ing, any observable event o of the diagnoser will be
represented by one transition and one transition only.

The formal definition of the diagnoser is as follows. Re-
calling the classical diagnoser D = (Q,E,Σo, qo). Let
H = {h1, . . . , hm} be the set of diagnosis hypotheses that
can be found in D (h ∈ H iff there q ∈ Q such that h ∈ q).
Definition 9. The coloured diagnoser of S is the coloured
Petri net DC = (P, T,A−, A+, C, Csec,M0C) such that:

• P is the finite set of places {pi}i|hi∈H , one place per
diagnosis hypothesis;

• T is the set of transitions {to}, o ∈ Σo;
• C is the set of colours {ci}i|qi∈Q, one colour per

diagnosis;
• Csec is the colour mapping function, as defined be-

lows;
• A− and A+ are the set of arcs as defined belows;
• M0C is the initial state, such that M0C(p0, c0) = 1

with po the place that is associated to the hypothesis
h0 = (M0,∅) and c0 the colour associated to q0 ∈ Q
and for any other combinations of p ∈ P and cp ∈
Csec(p),M0C(p, cp) = 0.

For any p ∈ P , Csec(p) = {ci ∈ C|h ∈ qi ∈ Q}
where h is the hypothesis of H associated to p, in other
words each colour associated to the place p represents a
diagnoser state of D where the hypothesis h associated to

p is present. For any to ∈ T , Csec(to) = {ci ∈ C|∃qi
o−→

qj ∈ E}. A−(p, to, ci) is defined if and only if there exists

a diagnoser transition qi
o−→ qj in E such that h, the

hypothesis of H associated to p, is in qi (to summarise, ci
is the colour of qi ∈ D, to is the net transition associated
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Fig. 2. Coloured diagnoser of system S.

with the observable o and p is associated to a hypothesis
that is in qi). For any c ∈ Csec(p)\{ci}, A−(p, to, ci)(c) = 0
and A−(p, to, ci)(ci) = 1. Finally, A+(to, p, ci) is defined if

and only if there exists a diagnoser transition qi
o−→ qj

in E such that h, the hypothesis of H associated to p, is
in qj . For any c ∈ Csec(p) \ {cj}, A+(to, p, ci)(c) = 0 and
A+(to, p, ci)(cj) = 1.

Figure 2 presents the coloured diagnoser of the system
S presented in Figure 1. It is composed of 6 places,
2 transitions and 20 arcs. This coloured diagnoser con-
tains 11 colours C = {c0, . . . , c10}. On the figure, we
present two reachable markings. The first one has the
colour c0, it is the initial marking, c0 is associated to
{(Mo = 2p1,∅)} = ∆(S, ε). The second marking is
represented by the colour c1, it is associated to the
diagnosis {(2p1, {f}), (p1p2, {}), (2p2, {f})} = ∆(S, o2).
With help of the transition to2, these two markings en-

code the classical diagnoser transition {(2p1,∅)} o2−→
{(2p1, {f}), (p1p2,∅), (2p2, {f})}. The corresponding in-
put arc relationship is defined by

A−(2p1, to, c0) = (1, 0, . . . , 0) (1 only for c0)

and the corresponding output arc relationship is defined
by

A+(to, 2p2f, c0) = (0, 1, 0, . . . , 0) (1 only for c1)
A+(to, 2p1f, c0) = (0, 1, 0, . . . , 0)
A+ (to, p1p2, c0) = (0, 1, 0, ..., 0).

Proposition 10. Let σ = o1, . . . , ok be an observable se-
quence of the system S, there exists in DC one and only

firing sequence M0C
to1−→ . . .

tok−→M leading to a reachable
marking M that encodes ∆(S, σ).

Proof. By construction.

Definition 11. The extended coloured diagnoser of S is
the coloured Petri net D+

C defined as in Definition 9 by
replacing D by D+.

3.4 Comparative analysis

This subsection presents a comparative analysis between
the classical diagnoser and the coloured one. First, as
stated by Proposition 10, the coloured diagnoser solves the
same problem as the classical diagnoser (see Definition 4).

One main advantage of the classical diagnoser for solving
a diagnosis problem on-line is the fact that updating a
diagnosis after the reception of a new observation is in
constant time. This advantage is obviously kept with the
coloured diagnoser (from the current coloured marking,
the update consists in triggering the unique transition
associated to the new observation and the in-going colour).
The main difference is from a graphical viewpoint. The
classical diagnoser explicitly enumerates the set of possible
diagnoses of the system (each diagnosis of the system is a
state of the diagnoser). A diagnosis ∆(S, σ) is a subset of
M× 2Σf whereM is the set of reachable markings of the
system S (see Definition 3) and Σf is the set of faults.

In the worst case, |M| is in o(2|P |) where P is the set of
places of S so the number of possible diagnosis hypotheses
is in o(2|P | × 2|Σf |). As ∆(S, σ) can be any non-empty
subset of M × 2Σf , the number of possible diagnoser

states is in the worst-case in o(22|P |×2|Σf |
). Regarding

the number of transitions, it obviously follows the same
trend. In the worst-case, there are |Σo| output transitions
from any diagnoser state so the number of transitions is

also in o(22|P |×2|Σf |
). Now, looking back to the coloured

diagnoser, the set of diagnoser information is presented
in a more factorized way. The coloured diagnoser is not
a finite state machine but is represented as a Petri net.
Diagnosis information of any ∆(S, σ) is then dispatched
over a set of places. One place is associated with one and
only one diagnosis hypothesis (an element of M × 2Σf )
therefore the number of places of DC is in the worst-case
in o(2|P | × 2|Σf |). As far as the number of transitions, it
is by construction |Σo| and the number of arcs is in the
worst-case in o(2|P |×2Σf ). The double exponentiality that
is necessary to encode the complete diagnosis problem is

in the number of colours (in o(22|P |×2|Σf |
)).

The last question to answer is: is the display of a coloured
diagnoser always smaller than its classical counterpart?
The answer is no. By construction, the number of transi-
tions in the coloured version is smaller than in the classical
version in any case. But it might happen that the number
of places in DC is greater than the number of states in D.
It happens when the set of diagnosis hypotheses H that
is involved in the set of diagnoses ∆(S, σ) is greater than
the set of diagnoses itself. In this case the classical diag-
noser contains few states with a lot of distinct diagnosis
hypotheses in them.

4. MODULAR SUPERVISION OF A
DISCRETE-EVENT SYSTEM

For large systems, it might not be possible (due to the
double exponential number of belief states) or even in-
teresting to compute the global diagnoser D. We propose
here a modular coloured diagnoser. The principle here is
to decompose the system S into a set of modules Si and
to compute a coloured diagnoser based on this decompo-
sition. The challenge here is to define a net which can
provide a set of module diagnoses ∆(Si,PSi(σ)) (set of
local markings + local faults based on the observation
of module Si only) that is globally consistent, i.e. for
any module hypothesis h (state + faults) there exists in
∆(S, σ) a global hypothesis that contains h and for any
global hypothesis of ∆(S, σ), it must be composed of a



module hypothesis h of ∆(Si,PSi
(σ)). Details can be found

in Contant et al. (2006) for instance.

4.1 Module decompositions

Recalling that the model of the system S is a labelled
Petri net 〈P, T,A, `,Σ,Mo〉 (see Definition 3), we define
the notion of module as follows.

Definition 12. (Module). A module is a labelled Petri net
which is a part of S. Sk = 〈Pk, Tk, Ak, `k,Σk,M0k〉 is a
module of S = 〈P, T,A, `,Σ,M0〉 such that:

• Pk ⊆ P ;
• Tk ⊆ T such that for any t ∈ Tk , •t ∩ Pk 6= ∅ and
t• ∩ Pk 6= ∅;
• Ak ⊆ A with Ak = {a|a ∈ A((Pk ×Tk)∪ (Tk ×Pk))};
• Σk = {e|∃t ∈ Tk ∧ `(t) = e};
• `k is the labelling function ∀t ∈ Tk, `k(t) = `(t);
• M0k is such that ∀p ∈ Pk,M0k(p) = M0(p) and
∃p ∈ Pk|M0k(p) > 0.

By construction a module contains its own set of faults

Σf
k , its own set of non-observable events Σuo

k and its own
set of observable events Σo

k . At any time, there is at least
one token in a place of the module (a module is therefore
an independent process). To perform modular diagnosis,
it is required to have a decomposition that fully covers
S. We also consider in this setting that two modules only
communicate through synchronised events, which means
that only transitions can belong to several modules.

Definition 13. A set of modules S1, . . . , Sm is a sound
decomposition if

(1) any place of P is in one and only one module Si,
(2) any transition of T belongs to at least one module Si,
(3) for any observation o ∈ Σo, if o belongs to several sets
{Σo

k1, ...,Σ
o
km},m ≥ 2 then any transition t of T such

that `(t) = o is such that •t ⊆
⋃m

j=1 Pkj and for any

j ∈ {1, . . . ,m}, •t ∩ Pkj 6= ∅.

Conditions 1 and 2 state that the set of modules covers
the system, there is no place and transition that is not
in a module. Condition 1 also states that the resources
of the system are not shared (every module has its own
resources, that is its own places). Condition 2 states that
some transitions might be shared between modules. They
represent synchronous communications between modules.
Condition 3 asserts the localisation of any observation, in
other words, an observation o contains enough information
to know the source of this observation.

In the following, we will focus on specific sound decompo-
sitions where any shared transition t is observable. With
this assumption, we ensure that the decomposition is ac-
curate in the sense of Pencolé et al. (2006) so we get the
modularity.

Figure 3 presents a modular system. It is composed of
two modules: the module S1 contains the places p0, p1

and p2 and the transitions a, f1, d1, d2 whereas the module
S2 contains the places p3, p4 and the transitions a, b1,
f2. The events a, d1, d2 and b1 are observable. The
events f1 and f2 are non-observable and faulty events. The
transition labelled with event a is a shared transition. This
decomposition is sound and accurate.

p0

d1

p1

d2

p2

f1

a b1 f2

p4

p3

Fig. 3. Modular system S.

4.2 Modular coloured diagnoser

This section defines a coloured diagnoser that relies on a
sound module decomposition and therefore improves its
space complexity. The basic idea is to compute one diag-
noser per module and compute transition synchronisations
between each of them. In order to have a correct modular
diagnoser in the end, it is necessary to start with the
construction of an extended colour diagnoser per module.

For any module Si, we can compute an extended modular
diagnoser D+

i . Let S′i be the labelled Petri net that
contains any place p of Si and any non-shared transition t
of Si with their respective label. For any shared transition
t ∈ Ti , add to S′i the transition t′ such that

•
t′ = •t ∩ Pi

and t′• = t• ∩ Pi, the label of t′ is the label of t.

Definition 14. The extended modular diagnoser D+
i of Si

is the extended diagnoser of the system S′i (see below
Definition 7).

At this stage, any module Si is considered as a whole
system (due to the transformation from Si to S′i ). The
coloured diagnoser that we propose for such a module Si

is simply defined as follows.

Definition 15. The coloured diagnoser of Si is the ex-
tended coloured diagnoser D+

Ci = (P+
i , T

+
i , A

+
i−, A

+
i+, C

+
i ,

C+
seci,M

+
0i) over S′i obtained by Definition 11.

A coloured diagnoser for a given module is an independent
net that is able to follow the flow of observations from
that module, disregarding any other observations: given a
global sequence of observation σ, the diagnoser observes
PΣo

i
(σ) (the observation from Si) and is able to provide a

local diagnosis ∆+(S′i,PΣo
i
(σ)), that is a subset ofM′i×2Σf

i

whereM′i is the set of reachable markings from the system
S′i. Until now, the set of local diagnosers are not synchro-
nised so now we need to consider such synchronisations to
complete the construction of the modular diagnoser. If a
shared transition labelled with an event o between modules
{Sk1, . . . , Skm} exists, it is observable and the diagnosers
of {Sk1, . . . , Skm} can see it and should be synchronized
on any occurrence of the event o.

Now we are ready to complete the construction of the
extended modular coloured diagnoser. Let S1, . . . , Sm be
a sound module decomposition of a system S with their
respective coloured diagnoser D+

Ci. We assume that any

D+
Ci has its own colours (no common colours). Let •it, t•i

denote the respective preset and postset of any node t in
the diagnsoser D+

Ci. Let Σso ⊆ Σo be the set of shared
observations (at least two diagnoser modules can see such
an event).

Definition 16. Let S1, . . . , Sm be a sound module decom-
position of a system S, the extended modular coloured
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Fig. 4. Modular coloured diagnoser of system in Figure 3.

diagnoser D+
MC = (P+, T+, A+

−, A
+
−, C

+, C+
sec,M

+
0 ) is the

coloured Petri net such that:

• P+ =
⋃m

i=1 P
+
i ;

• T+ =
⋃m

i=1 T
+
i \ {tio ∈ T

+
i , o ∈ Σso} ∪ Tso where Tso

is the observable shared transitions (see below);
• A+

−, A
+
− (see below);

• C+ =
⋃m

i=1 C
+
i ∪ Cso where Cso is the set of colours

defined over Tso (see below);
• C+

sec is such that ∀p ∈ P+ ∩ P+
i , C

+
sec(p) =

C+
seci(p),∀t ∈ T+ ∩ T+

i , C
+
sec(t) = C+

seci(t) and ∀t ∈
Tso, C

+
sec(t) = Cso

sec(t) where Cso
sec(t) is the colour

mapping associated to a shared transition t (see be-
low);

• M+
0 is such that ∀i ∈ {1, . . . ,m},∀p ∈ P+ ∩P+

i ,∀c ∈
Csec(p),M

+
0 (p, c) = M+

0i(p, c).

For any o ∈ Σso, Tso contains one unique transi-
tion to. Let no be the number of diagnoser modules
that can see o, and assume, without loss of gener-
ality, that these diagnosers are {D+

i }i∈{1,...,no}. So to
replaces the transitions {toi ∈ T+

i }i∈{1,...,no} associ-
ated to o in the modular diagnoser. For any no-uple
(c1, . . . , cno) of the product

∏no

i=1 Cseci(toi), we generate
a new colour c(c1, . . . , cno) that we add to Cso

sec(to) and to
Cso. A+

− is then defined as follows: ∀t ∈ T+ ∩ T+
i , ct ∈

C+
seci(t),∀p ∈ •it(ct),∀cp ∈ C+

seci(p), A
+
−(p, t, ct)(cp) =

A+
i−(p, t, ct)(cp) (intuitively any non shared transition

is unchanged in the modular diagnoser), and for any
to ∈ Tso,∀c(c1, ..., cno

) ∈ Cso
sec(to),∀i ∈ {1, . . . , no}∀p ∈

•it(ci),∀cp ∈ C+
seci(p), A

+
−(p, to, c(c1(p), . . . , cno

))(cp) = 1,

0 otherwise. And finally A+
+ is ∀t ∈ T+ ∩ T+

i , ct ∈
C+

seci(t),∀p ∈ t•i(ct),∀cp ∈ C+
seci(p), A

+
+(t, p, ct)(cp) =

A+
i+(t, p, ct)(cp), and for any to ∈ Tso,∀c(c1, . . . , cno) ∈

Cso
sec(to),∀i ∈ {1, . . . , no}∀p ∈ t•i(ci),∀cp ∈ C+

seci(p),
A+

+(to, p, c(c1, ..., cno))(cp) = 1, 0 otherwise.

Figure 4 presents the modular diagnoser of the sys-
tem in Figure 3. It contains 4 transitions, 9 places and
25 arcs. Example 1 is ∆+(S, ε) = {(p4,∅), (p3, {f2})}
which is the initial marking of the diagnoser in Figure
4 (colour c10 for module 1, colour c20 for module 2).
Example 2 is ∆+(S, b1) = {(p0p3, {f2}), (p0p4, {f2})}.
As •2b1(c20) = {p4, p3f2}, A+

−(p4, b1, c20)(c20) = 1 and

A+
−(p3f2, b1, c20)(c20) = 1, b1 is c20-firable. Moreover,

A+
+(b1, p4f2, c20)(c21) = 1 and A+

+(a, p3f2, c20)(c21) =
1. The next marking of module 2 is associated to
{(p3, {f2}), (p4, {f2})}. Module 1 did not change the
diagnosis of the modular diagnoser so it is consis-

tent with ∆+(S, b1) (colour c10 and c21). Last exam-
ple is ∆+(S, b1a) = {(p2p3, {f1, f2}), (p1p3, {f2})}. By
construction, the transition a is c(c10, c21)-firable. The
modular diagnoser reaches the marking of c11 (mod-
ule 1) and c22 (module 2). The diagnosis of module
1 is {(p2, {f1}), (p1,∅)} and the one of module 2 is
{(p3, {f2})}, they are globally consistent with ∆+(S, b1a).

5. DISCUSSION

We propose to solve the fault diagnosis problem on DES by
the use of a CPN diagnoser. We first present a CPN diag-
noser that is fully equivalent to the diagnoser of Sampath
et al. (1995) but its graphical representation is drastically
reduced. This representation as a CPN diagnoser is then
used to implement a modular diagnoser which also benefits
of the size reduction. Correctness and accuracy of the
modular diagnoser is based on a sound and accurate mod-
ule decomposition. To our best of knowledge, the closest
work to this one is the work of Moreira et al. (2012)
that defines a Petri Net diagnoser relying on a automaton
model and not a Petri net model. Perspectives are now
to start from this new representation to exploit CPN and
design extended diagnosers (intermittent faults, supervi-
sion patterns, unsound module decompositions) with an
optimal size.
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