
Random generator of k-diagnosable discrete event systems

Yannick Pencolé1 2

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, LAAS, F-31400 Toulouse, France

e-mail: yannick.pencole@laas.fr

Abstract
This paper presents a random generator of dis-
crete event systems that are by construction k-
diagnosable. The aim of this generator is to pro-
vide an almost infinite set of diagnosable systems
for creating benchmarks. The goal of such bench-
marks is to provide a solid set of examples to test
and compare algorithms that solve many prob-
lems around diagnosable discrete event systems.

1 Introduction
For many years, the problem of fault diagnosis in discrete
event systems has been actively addressed by different sci-
entific communities such as DX (AI-based diagnosis) [1;
2], FDI (Fault Detection and Isolation), DES (Discrete
Event Systems) [3]. Depending on the community, many
differents aspects of the same problem have been addressed
such as the design of efficient diagnosers, the checking of di-
agnosability properties, the effective modelling of real sys-
tems. When dealing with performance, most of the contri-
butions present experimental results on specific examples of
their own usually inspired or based on real world systems.
The main problem about these contributions is that they are
not really comparable as they are not applied on the same
benchmarks. Moreover, used benchmarks may not be al-
ways completly defined in a paper due, most of the time, to
confidential data that cannot be published so other academic
contributors cannot use them for comparison purposes. In
order to analyse and boost the effective performance of algo-
rithms addressing the fault diagnosis problem in DES, com-
mon and fully available benchmarks become a necessity.

This paper addresses the random generation of k-
diagnosable systems. We here propose the possibility to
generate (and store on a web page) k-diagnosable systems
that have been generated without any kind of bias that would
come from a specific diagnosis/diagnosability method. By
doing so, we propose to design a random category for
benchmarks as the SAT community proposed for SAT prob-
lems and to get the same advantages by comparing different
diagnosis/diagnosability approaches on the same but ran-
dom systems. The choice of generating k-diagnosable sys-
tems is motivated by the fact that they can be used as exam-
ples for:

1. diagnosis algorithms: given a fault f , we know by con-
struction that the most precise algorithm will determine
its occurrence with certainty within the next k observa-
tions after the occurrence of f ;

2. diagnosability algorithms: the fact that a fault f is k-
diagnosable is usually the worst case for this type of
algorithms (as they all look for the existence of an am-
biguous scenario to conclude the system is not diag-
nosable).

The paper is organised as follows. After formally re-
calling the problem that motivates the generation of bench-
marks, we describe the fundamental property which is being
used for the effective generation of systems where a given
fault f is k-diagnosable. Then the description of the algo-
rithm of the generator is provided as well as some details
about its effective implementation.

2 Background
This paper addresses the random generation of benchmarks
for the problem of the fault diagnosis of discrete event sys-
tem. This problem is briefly recalled in this section. We
assume that the reader is familiar with the notations of the
language theory (notion of Kleene closure, prefixes,...).

2.1 Modelling
We suppose that the system under monitoring behaves as an
event generator that can be modelled as an automaton.
Definition 1 (System description). The model (system de-
scription) SD of a discrete event system S is a finite state
automaton SD = (Q,Σ, T, q0) where:

• Q is a finite set of states;

• Σ is a finite set of events;

• T ⊆ Q× T ×Q is a finite set of transitions;

• q0 is the initial state of the system.

Σ is the set of events that the system can produce. Among
Σ we distinguish events that are observable Σo ⊆ Σ and
events that are not observable. When the system operates,
its effective behaviour is represented by a trace of the au-
tomaton (also called a run).
Definition 2 (Trace). A trace τ ∈ Σ∗ of the system is a finite
sequence of events associated with a transition path from the
initial state q0 to a state q in the model of the system.

The set of traces of the system is the language generated
by its model and is denoted L(S) (so the automaton SD
generates the language L(S)). Let PΣ′(τ) be the classical
projection of a sequence τ of Σ∗ on the alphabet Σ′ recur-
sively defined as follows:

1. PΣ′(ε) = ε;

2. PΣ′(τ.e) = PΣ′(τ) if e 6∈ Σ′;

3. PΣ′(τ.e) = PΣ′(τ).e if e ∈ Σ′.

Based on this notion of projection, we can associate with
any trace of the system its observable part.

Definition 3 (Observable trace). Let τ be a trace of the sys-
tem, the observable trace στ is the projection of τ over the
set of observable events Σo:

στ = PΣo
(τ).

2.2 Diagnosis problem and solution
Now we are ready to define the classical Fault diagnosis
problem on DES.

Definition 4 (Fault). A fault is a non-observable event f ∈
Σ.

A fault is represented as a special type of non-observable
event that can occur on the underlying system. Once the
event has occurred, we say that the fault is active in the sys-
tem, otherwise it is inactive. We consider here the problem
of permanent faults as initially introduced in [4].

Definition 5 (Diagnosis problem). A diagnosis problem is
a triple (SD,OBS,FAULTS) where SD is the model of
a system, OBS is the sequence of observations of Σ?o and
FAULTS is the set of fault events defined over SD.

Informally speaking, (SD,OBS,FAULTS) represents
the problem of finding the set of active faults from FAULTS
that have occurred relying on the model SD and the se-
quence of observations OBS.

Definition 6 (Diagnosis Candidate). A diagnosis candidate
is a couple (q, F) where q is a state of SD (q ∈ Q) and F is
a set of faults.

A diagnosis candidate represents the fact that the under-
lying system is in state q and the set F of faults has occurred
before reaching state q.

Definition 7 (Solution Diagnosis). The solution ∆ of the
problem (SD,OBS,FAULTS) is the set of diagnosis can-
didates (q, F) such that there exists for each of them at least
one trace τ of SD such that:

1. the observable trace of τ is exactly the sequence
OBS = o1 . . . om and the last event of τ is om;

2. the set of fault events that has occurred in τ is exactly
F ;

3. the final state of τ is q.

Informally, candidate (q, F) is part of the solution if it is
possible to find out in SD a behaviour of the system satisfy-
ing OBS which leads to the state q after the last observation
of OBS and in which the faults F have occurred.

2.3 Diagnosability
Diagnosability is a property of the system that asserts
whether a fault f of a system S can be always diagnosed
with certainty after the observation of a finite set of obser-
vations [4]. In other words, once the fault f has occurred in
S, it is sufficient to wait a certain amount of observations to
ensure that any candidate (q, F) of the solution contains f
(f ∈ F).

Definition 8 (Diagnosability). The fault f is diagnosable in
a system S if:

∃n ∈ N+,Diagnosable(n)

where Diagnosable(n) stands for:

∀τ1.f ∈ L(S),∀τ2 : τ1.f.τ2 ∈ L(S)

|PΣo(τ2)| ≥ n⇒
(∀τ ∈ L(S), (PΣo

(τ) = PΣo
(τ1.f.τ2)⇒ f ∈ τ)).

Definition 9 (k-Diagnosability). The fault f is k-
diagnosable, k ∈ N+, in a system S if:

Diagnosable(k) ∧ ¬Diagnosable(k − 1).

Diagnosability is a property that relies on the liveness
of the observability of the system which means that, to be
(k)-diagnosable, a system must not generate unbounded se-
quences of unobservable events (no cycle of unobservable
events in SD). Throughout this paper, we consider that the
observability of the system is live.

3 Random Generator
The aim of this section is to present the algorithm that is
being used to randomly generate a discrete event systems
where a fault f is k-dignosable and that has been imple-
mented inside the Diades software. We focus on the gener-
ation of a system with one fault only. (see th conclusion for
the generation for n, n > 1 faults).

3.1 Signatures and fault ambiguity
The algorithm that generates a k-diagnosable system relies
on the notion of signatures. Let f be a faulty event, the sig-
nature of f is the set of observable traces resulting from the
projection of system traces that contain at least one occur-
rence of an event f before the last observation of the trace.
Definition 10 (Signature). The signature of an event f into
a system S is the language Sig(f) ⊆ Σ?o such that

Sig(f) ={στ |τ = τ1.o.τ2 ∈ L(S),

f ∈ τ1, o ∈ Σo, τ2 ∈ Σ?, στ = PΣo
(τ)}.

In the following, we will also denote by Sig(¬f) the set
of observable traces associated with the traces of the sys-
tem that do not contain any fault f before the last obser-
vation. Intuitively speaking, as long as the current observ-
able trace is in Sig(¬f)∩Sig(f), we know that the system
may have produced a faulty trace or a non-faulty trace be-
fore the last observation. k-diagnosability ensures that the
ambiguity can last at most for k observations. The principle
of the generator relies on the following result that formal-
izes this intuition. Let LARGESTPREFIXES(τ, n) = {τ ′i :
τ = τ ′iτi, |τi| = i, i ∈ {0, . . . , n − 1}} be the set of the n
largest prefixes of τ (τ being a prefix of itself).
Theorem 1. In the system S, the event f is k-diagnosable
if and only if:

1. For any observable trace σ in Sig(¬f)∩Sig(f), there
exists n < k such that LARGESTPREFIXES(σ, n) ⊆
Sig(¬f) ∩ Sig(f) and LARGESTPREFIXES(σ, n +
1) 6⊆ Sig(¬f) ∩ Sig(f).

2. There exists at least one observable
trace σ in Sig(¬f) ∩ Sig(f) such that
LARGESTPREFIXES(σ, k − 1) ⊆ Sig(¬f) ∩ Sig(f)
and an observable o such that σo ∈ Sig(f).

Proof: (⇒)Let τ1.f be a trace of the system S. As S is
k-diagnosable, there exists m ≤ k such that ∀τ2 : τ1.f.τ2 ∈
L(S), |PΣo

(τ2)| ≥ m ⇒ (∀τ ∈ L(S), (PΣo
(τ) =

PΣo
(τ1.f.τ2) ⇒ f ∈ τ)). Consider one of these

trace τ1.f.τ2 such that τ2 contains exactly m observa-
tions (PΣo

(τ2) = o1 . . . om). k-diagnosability implies
that there exists a minimal integer n ∈ {1, . . . ,m − 1}
such that PΣo

(τ1.f).o1 . . . on+1 ⇒ f ∈ τ as soon as
τ ∈ L(S) and PΣo

(τ) = PΣo
(τ1.f).o1 . . . on+1, there-

fore PΣo(τ1.f).o1 . . . on+1 ∈ Sig(f) \ Sig(¬f) and ∀i ∈
{1, . . . , n}, PΣo(τ1.f).o1 . . . oi ∈ Sig(f) ∩ Sig(¬f). So
LARGESTPREFIXES(PΣo(τ1.f).o1 . . . on, n) ⊆ Sig(¬f) ∩
Sig(f). So for any τ1.f there exists n < k
such that LARGESTPREFIXES(PΣo

(τ1.f).o1 . . . on, n) ⊆
Sig(¬f) ∩ Sig(f). Now, remark that for any observ-
able sequence σ that belongs to Sig(¬f) ∩ Sig(f), there
must exist a trace τ1.f.τ2 of the system, with τ2 con-
taining at least one observable event, such that σ =
PΣo

(τ1.f.τ2), so there must exist n < k such that σ ∈
LARGESTPREFIXES(PΣo

(τ1.f).o1 . . . on, n) ⊆ Sig(¬f) ∩
Sig(f) so, for any σ that belongs to Sig(¬f) ∩ Sig(f),
there is no set LARGESTPREFIXES(σ, n+ 1) that only con-
tains ambiguous signatures.

Finally, as S is k-diagnosable, we know that there exists
at least one trace τ.f.τ1.o1, such that τ is a trace of the sys-
tem that does not contain f , τ1 is a finite continuation of τ.f
that is unobservable and o1 is observable and there is a fi-
nite continuation τ2o2τ3o3 . . . τkok with PΣo

(τi) = ε such
that for any i ∈ {1, . . . , k − 1}, PΣo

(τ.f.τ1.o1 . . . τioi) ∈
Sig(¬f) ∩ Sig(f) PΣo

(τ.f.τ1.o1 . . . τkok) ∈ Sig(f) \
Sig(¬f) which implies the condition 2 with σ =
PΣo

(τ.f.τ1.o1 . . . τk−1ok−1).
(⇐) Suppose now that conditions 1 and 2 hold. Consider
an observable trace σ that is ambiguous (σ ∈ Sig(f) ∩
Sig(¬f)). Condition 1 states that there exists n < k such
that LARGESTPREFIXES(σ, n) ⊆ Sig(¬f) ∩ Sig(f) and
LARGESTPREFIXES(σ, n+ 1) 6⊆ Sig(¬f) ∩ Sig(f). Con-
sider now any largest observable trace σ′ such that |σ′| −
|σ| = m and σ ∈ LARGESTPREFIXES(σ′,m) ⊆ Sig(¬f)∩
Sig(f), it follows that LARGESTPREFIXES(σ′,m + n) ⊆
Sig(¬f) ∩ Sig(f) and LARGESTPREFIXES(σ′,m + n +
1) 6⊆ Sig(¬f) ∩ Sig(f). As σ′ is one of the largest ob-
servable trace holding this condition, any observable trace
σ′o, o ∈ Σo, is either in Sig(f) or in Sig(¬f) but not in
both of them. Condition 1 states that m + n < k, so k ob-
servations at least are required to solve the ambiguity. Con-
dition 2 states that there exists at least such an observable
trace σ′ with m + n = k − 1 and an observation o so that
σ′o is definitively in Sig(f) so f can be diagnosed with
certainty in this case with exactly k observations. Hence the
result.

3.2 Algorithm

The principle of the random generator is depicted in Al-
gorithm 1. Given a parameter k and a fault event f , the
algorithm randomly generates a system S where the event
f is k-diagnosable by construction. We also provide an-
other parameter deg which is the maximal number of output
transitions that is allowed per state during the generation of
the system. Parameter deg is important for the creation of
benchmarks as the output degree has a strong influence on
the diagnosis/diagnosability computations.

Algorithm 1 General algorithm for the random generation
of k-diagnosable systems.

Input: k ∈ N, k ≥ 1
Input: f an event
Input: deg maximal output degree
(Σo,Σ)← GENERATEEVENTS()
S ← ∅
AmbSig(f)← GENERATEAMBSIGNATURE(k,Σo, deg)

/* AmbSig(f) = (Q,Σo, T, q0, A) a deterministic au-
tomaton */
MF[q0]← GENERATESTATES()
MNF[q0]← GENERATESTATES()
for all q ∈ Q in Breadth-First Order from q0 do

(Σfo ,Σ
¬f
o)← RANDOMSPLIT(Σo, q)

S ← S∪ GENFAULTEXTS∗(MF[q],Σfo ,deg)
S ← S∪ GENNOMEXTS∗(MNF[q],Σ¬fo ,deg)
for all q o−→ q′ ∈ T do

if MF[q′] = ∅ then
MF[q′]← GENERATESTATES()
MNF[q′]← GENERATESTATES()

end if
S ← S∪
GENNOMEXTS(MNF[q],MNF[q′],o,deg)
if q′ 6∈ A then
S ← S∪ GENNOMEXTS(MF[q],MF[q′],o,deg)

else
if q ∈ A then
S ← S∪ GENEXTS(MF[q],MF[q′],o,deg)

else
S ← S∪
GENFAULTEXTS(MF[q],MF[q′],o,deg)

end if
end if

end for
end for
Output: S where f is k-diagnosable.

The generation is composed of two steps. The first one
is the generation of the ambiguous signature with GENER-
ATEAMBSIGNATURE. The result of this function is a de-
terministic automaton AmbSig(f) = (Q,Σo, T, q0, A) that
actually generates the language Sig(f)∩Sig(¬f) (any tran-
sition path from state q0 to an accepting state of A rep-
resents a sequence of Sig(f) ∩ Sig(¬f)). The automa-
ton AmbSig(f) is generated with respect to the conditions
1 and 2 that are defined in Theorem 1 to ensure the k-
diagnosability of the resulting system S. The second step of
the generation is the effective generation of S based on the
ambiguous signature AmbSig(f). The idea is to map every
state q of AmbSig(f) with two sets of states in S denoted
MF [q] andMNF [q]. Given any path σ ofAmbSig(f) that
leads to state q with, as a last observation, the event o, any
state of MF [q] (resp. MNF [q]) will be reached by at least
one transition path τ of S starting from a state of MF [q0]
(resp. MNF [q0]) that ends with a transition labelled with o
and the observable projection of τ is exactly σ. The differ-
ence between MF and MNF is that any underlying path
of S leading to a state of MF [q] (resp. MNF [q]) has an
observable projection which is a prefix of Sig(f) (resp. a
prefix of Sig(¬f)). To generate S we explore AmbSig(f)
from its initial state in a breadth-first search manner. For a
given state q, we have to consider three types of transition

generations going out of any state ofMF [q],MNF [q]. The
first ones are the transition paths that will lead to an observa-
tion o that belongs to AmbSig(f), the second one is the set
of transition paths that do not lead to an observation o that
belongs to AmbSig(f) but lead to an observation o′ that
belongs to Sig(f) only and the third one is the set of transi-
tion paths that do not lead to an observation o that belongs
to AmbSig(f) but lead to an observation o′′ that belongs to
Sig(¬f) only.

The second and third cases are handled by randomly split-
ting Σo into two subsets (Σfo ,Σ

¬f
o) each of them only con-

taining observable events that are not output event of q in
AmbSig(f) (RANDOMSPLIT(Σo, q)). Then given Σfo , we
randomly generate faulty extensions for a subset of Σfo (the
selection of the subset is also random and might even be
empty if q has no output events in AmbSig(f), indeed if q
has no output events, it must be extended to ensure that the
observability of the system is live). An extension is a set of
acyclic and unobservable transition paths that lead to a tran-
sition labeled with an observable event from Σfo . A faulty
extension ensures that an event f has at least occurred on
any generated transition path before the observable transi-
tion (GENFAULTEXTS). Given Σ¬fo , we proceed the same
way to generate non-faulty extensions (GENNOMEXTS).
As, in these two cases, the traces generated by these ex-
tensions are not associated with observable traces involved
in AmbSig(f) any more, it is sufficient to generate further
extensions on these traces and guarantee that the observ-
able language associated with these further extensions is live
(this procedure is denoted by the ∗ in GENNOMEXTS∗ and
GENFAULTEXTS∗).

The last case to handle now is the case where the observ-
able event o is an output event of q in AmbSig(f), which
means that there exists one and only one transition q o−→ q′

in AmbSig(f). If q′ has never been visited, the set of states
MF [q′] and MNF [q′] are generated first. A nominal ex-
tension is generated from MNF [q] to MNF [q′]. Depend-
ing on the status of q′, the extension between MF [q] and
MF [q′] is different. If q′ 6∈ A, it means that any prefix
generated by AmbSig(f) with paths from q0 to q′ are pre-
fixes of sequences in Sig(f) ∩ Sig(¬f) but they are not in
Sig(f) ∩ Sig(¬f), they can therefore be only in Sig(¬f):
extensions between MF [q] and MF [q′] are then nominal
extensions. Now, if q′ ∈ A, there are two cases. If q 6∈ A,
it means the system must become faulty between the states
ofMF [q] andMF [q′] so that paths of the system that reach
any state of MF [q′] is associated with an observable trace
that belongs to Sig(f) (GENFAULTEXTS). If q ∈ A, any
path that reaches a state of MF [q] is already faulty (its ob-
servable trace is already in Sig(f)), any type of extension
from MF [q] to MF [q′] is therefore possible (faulty or not),
hence the use of GENEXTS.

3.3 Implementation
Algorithm 1 is implemented with the help of the Diades
library package [5]. Diades is a set of C++ libraries
that implement discrete event systems in a component-
based way, different diagnosis algorithms as defined in
the spectrum of [6] (from component-based algorithms
to diagnoser-based algorithms). DIADES also imple-
ments a diagnosability checker as well as an accuracy
checker. The generator results in a Linux terminal command
dd-diagnosable-des-generate with a set of pa-

rameters like the number of (un)observable events the output
degree of transitions, the parameter k, the minimal number
of observable events involved in the ambiguous signature,
the number of states (still experimental). One particular pa-
rameter is the seed parameter that allows the generation of
the same system (the seed ensures the same generation of
random numbers). By construction, the algorithm is linear
in the number of states. A set of pre-computed benchmarks
as well as the implemented generator are available at the
following url:
http://homepages.laas.fr/ypencole/benchmarks

4 Conclusions
To test and compare diagnosis and/or diagnosability algo-
rithms, fully detailed and available benchmarks are a ne-
cessity. In order to test how generic is an algorithm, we
propose here an algorithm that randomly generates systems
where a fault f is k-diagnosable. We also propose an im-
plementation within the DIADES framework. Extension to
generate systems with n k-diagnosable faults is easy, it re-
quires to repeat the generation of the ambiguous signatures
for the n faults and explore them in parallel to generate the
k-diagnosable system. Our short-term perspective is to im-
prove the generator to allow a better control of the number
of generated states. A fixed number of generated states re-
quires to add new constraints in the generation that prop-
agate during the generation process. Without any control
about this propagation, the generation may just fail as it
could become an over-constrained problem. Our perspec-
tive is to also go one step further by generating diagnosable
systems that are component-based in order to scale up the
size of the generated system. The DIADES framework al-
ready has a tool to generate component-based systems [5]
which ensures that any component is globally consistent, but
adding the constraint of diagnosability makes the generation
far more complex to implement.

References
[1] Gianfranco Lamperti and Marina Zanella. Diagnosis of

discrete-event systems from uncertain temporal obser-
vations. Artificial Intelligence, 137:91–163, 2002.

[2] Yannick Pencolé and Marie-Odile Cordier. A formal
framework for the decentralised diagnosis of large scale
discrete event systems and its application to telecommu-
nication networks. Artificial Intelligence, 164(2):121–
170, 2005.

[3] Janan Zaytoon and Stéphane Lafortune. Overview of
fault diagnosis methods for discrete event systems. An-
nual Reviews in Control, 37:308–320, 2013.

[4] Meera Sampath, Raja Sengupta, Stéphane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. Transactions
on Automatic Control, 40(9):1555–1575, 9 1995.

[5] Yannick Pencolé. Fault diagnosis in discrete-event sys-
tems: How to analyse algorithm performance? In Di-
agnostic reasoning: Model Analysis and Performance,
pages 19–25, Montpellier, France, 2012.

[6] Anika Schumann, Yannick Pencolé, and Sylvie
Thiébaux. A spectrum of symbolic on-line diagnosis
approaches. In 17th International Workshop on Princi-
ples of Diagnosis, pages 194–201, Nashville, TN USA,
2007.

http://homepages.laas.fr/ypencole/benchmarks

	Introduction
	Background
	Modelling
	Diagnosis problem and solution
	Diagnosability

	Random Generator
	Signatures and fault ambiguity
	Algorithm
	Implementation

	Conclusions

