
DITO: a CSP-based diagnostic engine
Yannick Pencolé1

Abstract. We present a new generic diagnostic engine to diagnose
systems that are modelled with first order logic. The originality of
this engine is that it takes benefit of recent advances in constraint
programming to perform satisfiability tests by the use of an off-the-
shelf CSP solver. The second contribution of this paper is the defi-
nition of an incremental search strategy that deals with the intrinsic
complexity of the problem to look for minimal diagnoses in complex
digital systems. The use of the DITO engine and its strategy is fully
illustrated on the c6288 circuit that is part of the classical ISCAS85
benchmark.

1 INTRODUCTION

Nowadays, the business around system maintenance has tremen-
dously raised. For an industrial company (like aeronautical, automo-
tive, energy companies), selling the way to maintain a complex sys-
tem is as crucial as selling the system itself. With the help of the new
technologies, new type of smart and embedded sensors are available
and provide more and more accurate piece of information about the
current health of a system that is operating. This is especially the case
in the aeronautical field where tools for diagnosis and maintenance
assistance is an economical need [1].

Diagnostic reasoning is in the heart of this new economical era,
but there is a pitfall: complexity. Diagnostic reasoning has been ad-
dressed for many years in the academic world and especially in Ar-
tificial Intelligence where the community of Model-Based Diagnosis
has developed many theoretical frameworks and algorithms. For in-
stance, solving diagnosis problems based on consistency-checking
is a pretty mature field where there exist classical algorithms usu-
ally called Generic Diagnosis Engines (GDE for short) to solve these
problems [10, 6, 8, 9, 7].

The point of view we address in this paper is the following one.
Constraint programming, constraint satisfaction problem are scien-
tific fields with many recent advances that keep improving the per-
formance of constraint solvers. The question is how Model-Based
diagnosis could benefit of these advances, as Model-Based diagnosis
usually requires a sound and complete theorem prover [10]? We pro-
pose DITO a generic diagnosis engine that models diagnosis problem
as CSPs and uses an off-the-shelf CSP solver to solve the encoded
problems. As the ultimate goal of DITO is to solve realistic prob-
lems, we also need to address the problem of the complexity that
is inherent to any diagnosis problem and independent from any the-
orem prover. Our strategy to use such a tool is to always provide
relevant and complete results even if they are not the most precise
ones, this strategy is conservative and is well-suited in the context of
maintenance, especially in aeronautics (for certification reasons).

1 LAAS, CNRS, Univ. de Toulouse, FRANCE,
email:yannick.pencole@laas.fr

This paper is organized as follows. Section 2 presents the neces-
sary background about Model-based Diagnosis that is needed to un-
derstand how DITO works. Section 3 describes in details how DITO

solves diagnosis problems. Section 4 proposes a strategy to effec-
tively and realistically solve diagnosis problems with DITO. Section
5 provides an experimental illustration of how DITO performs on a
realistic system, namely the c6288 circuit of the ISCAS85 bench-
mark [4]. A global discussion about this work is finally proposed in
Section 6.

Throughout this paper, any experimental results has been made
with the same settings. Even if DITO is modular and can use different
CSP solvers, the one that has been used here is Choco 2 [11]. All the
experiments were on an i5core (4GB memory). Time measurements
always include everything (encoding + constraint solving).

2 BACKGROUND
The theoretical framework of Model-based diagnosis has been in-
troduced by [10]; it is briefly recalled here. First, a diagnosis model
describes the underlying system as a set of components and a set of
behaviours. The model is defined with first-order logics.

Definition 2.1 (Diagnosis Model) A diagnosis model is a pair
(SD,COMPS) where:

• SD is a finite set of first-order sentences, called the system de-
scription;

• COMPS is the set of components of interest.

We shall come back to the notion COMPS later on in Section 4,
but for now COMPS is a set of terms of SD that represents the set
of components under monitoring in the system. The health state of
a component c ∈ COMPS is represented by the predicate Ab(c)
(which means that c is abnormal). Throughout this paper, SD only
describes nominal behaviours (faulty behaviours are out of the topic
of this paper); it follows that any sentence of SD containing a predi-
cate Ab(c) can always be equivalently written as a sentence starting
like¬Ab(c)⇒ Figure 2 illustrates such a system description for
the circuit depicted in Figure 1, introduced in [5]. The set of compo-
nents for this circuit is COMPS = {M1,M2,M3,A1,A2}. Each sen-
tence of Figure 2 describes the nominal behaviour of the circuit. For
instance the sentence M1desc states that if the component M1 is nor-
mal then the valuation of its output x is the product of the valuation
of its inputs a and c.

The objective of the diagnostic reasoning is to determine the set
of possible health states of the system which is represented as a con-
junction

σ(∆)
def
=
∧
c∈∆

Ab(c) ∧
∧

c∈COMPS\∆

¬Ab(c).

M3

M2

M1

A2

A1

e

d

c

b

a

f

g

x

y

z

Figure 1. A logical circuit with 3 multipliers (M1, M2 and M3) and 2
adders (A1 and A2).

M1desc : ¬Ab(M1)⇒ (v(x) = v(a) ∗ v(c))
M2desc : ¬Ab(M2)⇒ (v(y) = v(b) ∗ v(d))
M3desc : ¬Ab(M3)⇒ (v(z) = v(c) ∗ v(e))
A1desc : ¬Ab(A1)⇒ (v(f) = v(x) + v(y))
A2desc : ¬Ab(A2)⇒ (v(g) = v(y) + v(z))

Figure 2. One system representation of the circuit of Figure 1.

where ∆ is the set of abnormal components in the state: ∆ implicitly
represents a global health state and ∆ often denotes abusively the
corresponding health state.

An observation is a piece of information resulting from the mea-
surement of the system. In the logical framework, an observation is
then represented as a logical fact. Usually, there are several measure-
ment points in the system that induce a set of logical facts at a given
time. In this framework, we call observation the conjunction of these
logical facts and is commonly denoted OBS. Recalling the example
of Figure 1, if the inputs a, b, c, d, e and the outputs f, g are observ-
able, the conjunction

v(a) = 1 ∧ v(b) = 2 ∧ v(c) = 3 ∧ v(d) = 4 ∧ v(e) = 5

∧v(f) = 11 ∧ v(g) = 23

is one observation of the system. Moreover, it can easily be noticed
that this observation is consistent with our expectation about what the
system is supposed to do. The consistency-based diagnosis problem
is finally defined as follows.

Definition 2.2 (Diagnostic problem) A diagnostic problem DP is a
3-uple DP

def
= (SD,COMPS,OBS).

The solution of the problem (also called the diagnosis) is the set
of diagnostic candidates.

Definition 2.3 (Candidate) Let DP = (SD,COMPS,OBS), a can-
didate of DP is a health state σ(∆) such that SD ∧ OBS ∧ σ(∆) is
satisfiable.

By definition, if σ(∆) is a candidate of DP then any heath state
σ(∆′) with ∆ ⊂ ∆′ is a candidate. Indeed, for any component c ∈
∆′ \ ∆, the sentences ¬Ab(c) ⇒ . . . are definitively satisfiable
independently of OBS so if SD ∧ OBS ∧ σ(∆) is satisfiable, SD ∧
OBS ∧ σ(∆′) certainly is. From this, it follows that solving the DP
problem consists in determining the set of minimal candidates.

Definition 2.4 (Minimal Candidate) A candidate σ(∆) is minimal
if there does not exist another candidate σ(∆′) such that ∆′ ⊂ ∆.

3 DITO: A CSP-BASED ENGINE

The objective of DITO is to propose to solve generic diagnosis prob-
lems by the use of an off-the-shelf CSP solver that benefits of the
most recent advances in the constraint programming literature [2],
[3]. As for any algorithms solving DP problems proposed in the
literature, there is a need of an efficient satisfiability solver that is
successively called to check whether a health state is a candidate
[10, 6, 8, 9, 7].

The DITO engine implements, for the moment, a conflict-driven
algorithm as introduced in [6]. This algorithm relies on the encoding
of sub-problems as a CSP.

3.1 Constraint Satisfaction Problem

Definition 3.1 A constraint satisfaction problem (CSP for short) is a
3-uple (X,D,C) where:

• X = {x1, . . . , xn} is a set of variables.
• D = {Dom(x1), . . . ,Dom(xn)} is a set of domains. Dom(xi)

is the domain of the variable xi.
• C = {c1, . . . , cm} is a set of constraints. A constraint ci is a

subset of Dom(x1)× · · · ×Dom(xn).

An assignment (v1, . . . , vn) is a n-uple that belongs to
Dom(x1) × · · · × Dom(xn), any value vi being assigned to any
variable xi.

Definition 3.2 (consistent assignment) An assignment A is consis-
tent if

A ∈
m⋂
i=1

ci.

A consistent assignment is a solution of the CSP. Let Sol(CSP) de-
note the set of solutions of the CSP . The CSP is then unsatisfiable
iff

Sol(CSP) = ∅

that is there does not exist any consistent assignment of the CSP .
Any CSP solver proposes a language to specify (X,D,C) with

a set of operators to define the expressions and the constraints over
these expressions. Whatever the CSP solver that is in use, its lan-
guage can express the following constraint operators: 〈and〉, 〈or〉,
〈not〉, 〈eq〉, 〈neq〉, 〈lt〉, 〈gt〉, 〈leq〉, 〈geq〉; and the following arith-
metic operators: 〈plus〉, 〈minus〉, 〈mult〉, 〈div〉, 〈mod〉, 〈neg〉. This
is this set of operators that DITO uses to encode the problems.

3.2 Logical sentence encoding

To solve any diagnostic problem, DITO encodes sub-problems in the
CSP framework, by the use of the function encode:

encode : L → constraints

where L is the set of finite sentences of first-order logic and
constraints is the set of constraints that can be expressed within
the CSP framework.

To define encode , consider first a sentence ` of L. The resulting
CSP of ` is denoted (X`, D`, C`). The sentence ` may contain arith-
metic notations (as any sentence in Figure 2). Any arithmetic vari-
able v of ` is represented by a variable xv ∈ Xvar

` associated with

Dom(xv) ∈ D` which encodes the domain of v on xv . Any predi-
cate P(t) where t is a closed logical term2 is represented by a CSP
variable xpt ∈ Xpred

` with Dom(xpt) = {0, 1} ∈ D`. Finally,
X` = Xvar

` ⊕Xpred
` .

The function encode is recursively defined as follows.

1. encode(`) = 〈and〉(encode(`1), encode(`2)) if ` = `1 ∧ `2
(conjunction).

2. encode(`) = 〈or〉(encode(`1), encode(`2)) if ` = `1 ∨ `2 (dis-
junction).

3. encode(¬`) = 〈not〉(encode(`)) (negation).
4. encode(P (A,B,C, . . .)) = 〈eq〉(pABC..., 1) with pABC... ∈
Xpred

` (predicate).
5. encode(∀y, f(y)) = 〈and〉(encode(f(Y1)), encode(f(Y2)),)

with Yi ∈
⋃

x∈Xvar
`

Dom(x) (universal quantification).
6. encode(∃y, f(y)) = 〈or〉(encode(f(Y1)), encode(f(Y2)),)

with Yi ∈
⋃

x∈Xvar
`

Dom(x) (existential quantification).
7. encode(t1 op t2) = 〈op〉(encTerm(t1), encTerm(t2)) with

(op, 〈op〉) ∈ {(=, 〈eq〉), (6=, 〈neq〉), (<, 〈lt〉), (>, 〈gt〉), (≤
, 〈leq〉), (≥, 〈geq〉)} (arithmetic constraints).

The function encTerm:

T → expression

encodes any logical arithmetical term into a CSP solver expres-
sion.

1. encTerm(t1 op t2) = 〈op〉(encTerm(t1), encTerm(t2))
with (op, 〈op〉) ∈ {(+, 〈plus〉), (−, 〈minus〉), (∗, 〈mult〉),
(/, 〈div〉), (%, 〈mod〉) (binary operators).

2. encTerm(−t) = 〈neg〉(encTerm(t)) (unary operator).
3. encTerm(v) = v with v ∈ Xvar

` and Dom(v) = {V −, V +}
(variable).

4. encTerm(C) = C (integer).

By definition of the encode function, checking the satisfiability of
any sentence ` of L is equivalent to checking for the existence of a
consistent assignment of the CSP encode(`).

Property 1 For any finite sentence ` ∈ L,

` is satisfiable ≡ Sol(encode(`)) 6= ∅.

3.3 DITO Algorithm

This algorithm aims at computing the set of minimal candidates of
a consistency-based diagnosis problem. DITO implements a conflict-
driven algorithm by coupling a set enumeration tree search with suc-
cessive CSPs to look for minimal conflicts and, as a second stage, by
coupling another set enumeration tree search with successive CSPs
to look for minimal hitting sets.

3.3.1 Conflict-driven algorithm: background

Before going into the details of DITO algorithm, let first recall the
basic principle of a conflict-driven algorithm.

2 ` is a logical sentence so any term variable is either universally or existen-
tially quantified.

Definition 3.3 (conflict) Let ∆,∆′ ⊆ COMPS, a conflict
cf(∆,∆′) of DP is a disjunction of Ab() literals:

cf(∆,∆′)
def
=
∨
c∈∆

¬Ab(c) ∨
∨

c∈∆′

Ab(c)

such that:
SD ∧ OBS |= cf(∆,∆′).

A positive conflict pcf(∆) is a conflict such that pcf(∆)
def
=

cf(∆, ∅).

In other words, for a given system description SD and a given
observation OBS, a conflict is a necessary condition about the health
of the components to achieve consistency in SD∧OBS. In particular,
in the case of positive conflict, it asserts that at least one component
of the conflict is necessary abnormal.

Definition 3.4 (minimal conflict) A conflict cf(∆,∆′) of DP is
minimal if there does not exist ∆1 ⊆ ∆ and ∆2 ⊆ ∆′ with
∆1 ∪∆2 ⊂ ∆ ∪∆′ such that cf(∆1,∆2) is a conflict.

For a given problem DP, MCS+ denotes the set of minimal pos-
itive conflicts. Any conflict-driven algorithm then relies on the fol-
lowing result:

Theorem 1 A health state σ(∆) is a minimal candidate of DP iff:

σ(∆) |=
∧

cf∈MCS+

cf

and there is no ∆′ ⊂ ∆ such that σ(∆′) |=
∧

cf∈MCS+ cf

3.3.2 Search for minimal candidates

Theorem 1 leads the way to develop a conflict-driven algorithm to
determine the set of minimal candidates. As σ(∆) |=

∧
cf∈MCS+ cf

then, for each conflict cf of MCS+, there must exist in ∆ a compo-
nent involved in cf (i.e. ∆ is a hitting set of MCS+). Moreover as
there is no ∆′ ⊂ ∆ such that σ(∆′) |=

∧
cf∈MCS+ cf, it means that

this ∆ is a minimal hitting set.
Algorithms 1 and 2 describe the conflict-driven algorithm imple-

mented in DITO. Algorithm 1 simply describes the two stages: the
computation of the minimal positive conflict set and the computation
of the resulting minimal hitting set. Both computations rely on CSPs
and on the same set enumeration tree search: this search is described
in Algorithm 2.

Algorithm 1 Algorithm to search for minimal candidates
input: DP
MCS+ ← TreeSearch(encode(DP),COMPS)
MHS ← TreeSearch(encode(MCS+),

⋃
C∈MCS+(C))

return {σ(∆) : ∆ ∈MHS}

The set enumeration tree search implemented in DITO was pro-
posed in [12]. The basic principle is to enumerate the subsets S of
COMPS and check that:

1. SD ∧ OBS ∧ ¬
(∨

c∈S Ab(c)
)

is not satisfiable (so
∨

c∈S Ab(c)
is a positive conflict);

2.
∧

cf∈MCS+ cf ∧ ¬
(∨

c∈S Ab(c)
)

is not satisfiable (so S is a hit-
ting set of MCS+).

The enumeration strategy proposed in [12] determines the mini-
mal subsets S that make the initial CSP (either DP or MCS+) non-
satisfiable. The enumeration is a breadth-first search from the single-
ton sets, the sets of size 2, etc; it is implemented with the help of a
queue Q. Each node of this queue is a 3-uple (S, c, Ch) where S is
the current selected set of components, c is the last selected compo-
nent and Ch is an ordered set of components that are not selected
yet. For each visited node (Si, cpi, Chi), the algorithm tests the sat-
isfiability of the problem CSP ∪encode(¬Si). If the problem is not
satisfiable Si is then part of the final result. In order to improve the
efficiency, the algorithm takes into account the fact that any super-
set S′ ⊃ Si of any minimal non satisfiable subset Si is not part of
the solution. So if the visited node (Si, cpi, Chi) is satisfiable, the
set of components in Chi that would lead to the selection of such a
superset S′ are pruned.

Algorithm 2 Set enumeration tree search.
Function TreeSearch
input 1: CSP
input 2: C
N ← ∅
if Sol(CSP) 6= ∅ then
Q: queue
push((∅,∅, C),Q)
while Q 6= ∅ do

(S, cp, {cq1, . . . , cqk})← pop(Q)
for i from k to 1 do

(Si, cqi, Chi)← (S ∪ {cqi}, cqi, {cqi+1, . . . , cqk})
CSP ′ ← CSP ∪ encode(¬Si)
if Sol(CSP ′) = ∅ then
N ← N ∪ {(Si, cqi, Chi)}

else
for all (SN , cN , ChN) ∈ N do

if cN ∈ {cqi+1, . . . , cqk} then
if ChN ⊆ {cqi, . . . , cqk} then
Chi ← Chi \ {cN }

end if
end if

end for
push((Si, cqi, Chi),Q)

end if
end for

end while
end if
return {S : (S, c, Ch) ∈ N}

Theorem 2 Algorithm 1 is correct.

Proof The algorithm relies on Theorem 1. Satisfiability is imple-
mented as a CSP by the function encode (see Property 1) and Algo-
rithm 2 returns, by construction (see the proof in [12]) the minimal
sets of components such that a given CSP (either a diagnosis problem
DP or a minimal positive conflict setMCS+) is not satisfiable.

3.3.3 Example

Going back to the problem defined by Figures 1 and 2, let suppose
that

OBS ≡ v(a) = 1 ∧ v(b) = 2 ∧ v(c) = 3

∧v(d) = 4 ∧ v(e) = 5 ∧ v(f) = 11 ∧ v(g) = 22.

DITO arbitrarily chooses an order for the set of com-
ponents that is {A1 < A2 < M1 < M2 < M3}.
The enumeration to get the conflicts proceeds as follows:
∅,M3,M2, . . . ,A1,M2M3,M1M3,M1M2,A2M3, For
instance M2M3 is visited first as a set of two components because
M3 is the maximal component and M2 is the maximal component
that is lower than M3. M1M3 is visited second as the only compo-
nent greater than M2 is M3 so the next selected component is M1
associated with the maximal component M3, etc. Following this
search, DITO detects two minimal conflicts, namely:

{A2,M2,M3} and {A1,A2,M1,M3}.

From these sets, with the use of the same tree-search, we enumer-
ate the components to look for minimal hitting sets and the minimal
candidates of the problem follow:

σ(M3), σ(A2), σ(M1,M2), σ(A1,A2)

DITO solves this problem in 523ms and uses 9MB.

4 SEARCH STRATEGY FOR MINIMAL
DIAGNOSES

Intrinsically, the complexity of Algorithm 1 is in O(2n) where n is
the size of COMPS which makes this tool useless if we try to naively
solve a DP problem with a realistic set of components COMPS.
We propose in this section a strategy to cope with this issue. As
stated above, SD describes the nominal behaviour of the underly-
ing system. COMPS characterises on one hand the set of compo-
nents of the system but also on the other hand the granularity of the
diagnosis result. Suppose, for instance, that the underlying system
is composed of only one component |COMPS1| = 1 (the system
itself), the corresponding DP1 = (SD1,OBS,COMPS1) is a de-
tection problem (is the system abnormal or not?). Now suppose that
the same system than above can be partitioned into two components
c1, c2 ∈ COMPS2, then it corresponds to another diagnosis problem
DP2 = (SD2,OBS,COMPS2). DP2 is an isolation problem in the
sense that it can detect whether c1 is abnormal or c2 is abnormal.
DP1 and DP2 are logically different problems but they are defined
on the same system and the same observation. Only the precision has
changed. The main difference is that DP1 is simpler to solve than
DP2 as |COMPS1| < |COMPS2|.

Let Π ∈ 2COMPS be a partition of COMPS. We design SDΠ as
follows. We first copy SD into SDΠ. Any predicate Ab(c) in SDΠ is
then renamed AbComp(c) and for any subset S of components in the
partition Π, we add the sentence ¬Ab(S) ⇒

∧
c∈S ¬AbComp(c).

Given a partition Π, we can then define a new diagnosis problem
DPΠ = (SDΠ,OBS,Π). Let ∆ ⊆ COMPS, we define RΠ(∆)

def
=

{S ∈ Π : S ∩∆ 6= ∅}.

Theorem 3 For any minimal candidate σ(∆Π) of DPΠ there exists
a non-empty set of minimal candidates σ(∆) of DP such that ∆Π =
RΠ(∆).

Proof σ(∆Π) is a candidate of DPΠ so SDΠ ∧ OBS ∧∧
S∈∆Π

Ab(S) ∧
∧

S 6∈∆Π
¬Ab(S) is satisfiable. By construc-

tion of SDΠ, SDΠ ∧ OBS ∧ (
∧

S∈∆Π

∨
c∈S Abcomp(c)) ∧

(
∧

S 6∈∆Π

∧
c∈S ¬Abcomp(c)) is also satisfiable which leads to

the satisfiability of SD ∧ OBS ∧ (
∧

S∈∆Π

∨
c∈S Ab(c)) ∧

(
∧

S 6∈∆Π

∧
c∈S ¬Ab(c)). By construction of SD, σ(∆) with ∆ =

{c ∈ S : S ∈ ∆Π} (i.e. any components in ∆Π are said to be abnor-
mal) is a candidate of DP so there must exist ∆min ⊆ ∆ such that
σ(∆min) is a minimal candidate of DP.

As σ(∆Π) is minimal, for any ∆′Π ⊂ ∆Π, SDΠ ∧ OBS ∧∧
S∈∆′

Π
Ab(S)∧

∧
S 6∈∆′

Π
¬Ab(S) is not satisfiable therefore SDΠ ∧

OBS ∧
∧

S 6∈∆′
Π
¬Ab(S) is not satisfiable. It finally leads to the non-

satisfiability of SD ∧ OBS ∧ (
∧

S 6∈∆′
Π

∧
c∈S ¬Ab(c)) so there can-

not be any minimal candidate σ(∆min) of DP such that COMPS \
∆min ⊆ {c ∈ S : S 6∈ ∆′Π}.

Finally, any minimal candidate ∆min is such that ∆min ⊆ {c ∈
S : S ∈ ∆Π} and it must contain at least a component c ∈ S ∈
∆′Π for any ∆′Π ⊂ ∆Π, so ∆min is necessarily such that ∆Π =
RΠ(∆min).

Corollary 4 Let σ(∆1
Π), . . . , σ(∆n

Π) be the set of minimal candi-
dates of DPΠ, the set of minimal candidates of DP is the union of
the minimal candidates σ(∆) of DP such that ∆i

Π = RΠ(∆) for
any i ∈ {1, . . . , n}.

Proof If a minimal candidate σ(∆) of DP is not part of this union
then SD∧OBS∧

∧
c∈∆ Ab(c)∧

∧
c6∈∆ ¬Ab(c) is satisfiable and there

exists ∆Π = RΠ(∆) a candidate of DPΠ such that ∆Π is different
from any of the ∆i

Π. As σ(∆1
Π), . . . , σ(∆n

Π) is the set of minimal
candidates of DPΠ, ∆Π must then strictly include at least one σ(∆i

Π)
which is contradictory as it would mean ∆ is not minimal, since there
is at least one minimal candidate ∆i such that ∆i

Π = RΠ(∆i).

Theorem 3 and Corollary 4 offer a global set of strategies to search
for minimal candidates that take into account that the complexity of
Algorithm 1 is in o(2n). By aggregating the initial set of components
into subsystems, we can define DP problems that can drastically min-
imize the enumeration for the conflict search. Moreover, for each DP
solved, even if the DP is not the most precise one, the result of the
DP is correct in the sense that it provides a correct piece of informa-
tion about all minimal candidates and not just for a few of them. We
will illustrate this point in the section below.

5 DIAGNOSTIC SESSIONS ON A C6288
CIRCUIT

This section aims at illustrating the use of DITO on more realistic
problems than the one of Figure 1. We call diagnostic sessions a
sequence of diagnosis problems DPΠ1 ,DPΠ2 , . . . issued from the
same initial diagnosis problem DP = (SD,COMPS,OBS). For this
illustration, we use the C6288 circuit of the ISCAS85 benchmark.

5.1 DESCRIPTION OF THE C6288 CIRCUIT
The full details about this circuit are available in [4]. This circuit is
a 16x16 multiplier that contains 2406 gates (mostly NOR-gates and
AND-gates, and a few INV-gates). The input of this circuit consists
of two buses (A and B), each bus being a vector of 16 bits. The output
is a 32-bit bus P. The purpose of this circuit is to perform P = A ×
B. We choose this circuit as an example, as it is one of the largest
available in the set of ISCAS85 benchmarks and its global function
is rather elementary so extremely useful in practice. The circuit is
implemented as a 15x16 matrix of 240 full and half adder modules
(top half adder modules tham, bottom half adder modules bham, and
full adder modules fam). In the following, this matrix will be denoted
as a set of 15 columns C1, . . . ,C15. Each column Ci is composed of
16 adders denoted Ciadj. Each adder is composed of a set of gates, a

gate will be denoted CiadjGk (the kth gate of jth adder in Ci). As far
as the encoding of the diagnosis problems are concerned, the circuit
c6288 has been encoded with 11904 variables and 11932 constraints
between these variables. As opposed to the encoding of the problems
associated to Figure 1, where there were arithmetic variables, the
encoding of the c6288 circuit only contains boolean variables.

5.2 DIAGNOSTIC SESSION
We present here an interactive diagnostic session on the c6288 cir-
cuit. The diagnostic problem to solve is the following one. A circuit
c6288 receives as a input on its A-bus the value 29449 and the value
17006 on its B-bus. The output of the circuit (P-bus) is 500809692.
In this problem, we consider that the set of components COMPS are
the 2406 gates of the circuit. The available observations are the A, B
and P buses, which means that OBS will always denote the observa-
tion

OBS ≡ (A = 29449 ∧B = 17006 ∧ P = 500809692)

in the rest of this section. This problem has been selected by sim-
ulation. Indeed, we have randomly injected a faulty gate in the cir-
cuit among the 2406 gates present in the circuit. The selected gate is
C1ad1G7, it is a NOR-gate that belongs to the top half adder mod-
ule C1ad1 of the column C1. Notice that, as 29449 × 17006 =
500809694 6= 500809692, the problem is obviously detectable.
Hereafter, we present a diagnostic session with experimental results
that is based on this problem and that relies on the strategy proposed
in Section 4.

1. Fault Detection Problem. The first problem that is solved is the
fault detection problem which consists in detecting whether the
system behaves correctly or not. The first partition is therefore:

Π0 = {S0
0 = {COMPS}}.

DITO returns the minimal diagnoses {σ(S0
0)} in 114670ms (114s)

which states that there is definitely an inconsistency between the
model and the observation.

2. Column Isolation Problem 1: the circuit c6288 is arranged as a
set of 15 columns of adders (namely C1 to C15) and a column of
16 input and-gates (denoted C0). Partitioning into 16 components
requires endless computations, therefore the first partition that is
chosen is:

Π1 = {S0
1 = {C0}, S1

1 = {C1, . . . ,C8}, S2
1 = {C9, . . . ,C15}}

which means that DITO needs to solve a 3-component prob-
lem. DITO returns the minimal diagnoses {σ(S1

1)} in 285408ms
(285s).

3. Column Isolation Problem 2: the previous problem asserts that
if there are minimal candidates, they only involve components in
σ(S1

1), any components in COMPS \ S1
1 are necessarily consid-

ered as normal within the minimal candidates. The next step is to
decompose σ(S1

1) in smaller parts to get:

Π′2 = {S0
2 = {C1, . . . ,C3},

S1
2 = {C4,C5}, S2

2 = {C6, . . . ,C8}}.
The global partition of the system is actually Π2 = Π′2 ⊕ {S0

1 ∪
S2

1} but we already know that {S0
1 ∪ S2

1} is not involved in
any minimal candidates. Therefore DITO will solve the problem
(SDΠ′

2
,OBS,Π′2) where SDΠ′

2
≡ SDΠ2 ∧¬Ab(S0

1)∧¬Ab(S2
1).

It finally returns {σ(S0
2)} in 131735ms (131s).

Partition Solution Time(ms)
0 {S0

0 = {COMPS}} σ(S0
0) 114670

1 {S0
1 = {C0}, S1

1 = {C1, . . . ,C8}, S2
1 = {C9, . . . ,C15}} σ(S1

1) 285408
2 {S0

2 = {C1, . . . ,C3}, S1
2 = {C4,C5}, S2

2 = {C6, . . . ,C8} σ(S0
2) 131735

3 {S0
3 = {C1}, S1

3 = {C2}, S2
3 = {C3}} σ(S0

3) 56098
4 {S0

4 = {C1ad1, . . . ,C1ad15}, S1
4 = {C1gi1, . . . ,C1gi15,C1gj0}} σ(S0

4), σ(S1
4) 22850

5 {S0
5 = {C1ad1..8,C1gi1..8}, S1

5 = {C1ad9..16,C1gi9..16} σ(S0
5) 57195

6 {S0
6 = {C1ad1..2,C1gi1..2}, . . . , S3

6 = {C1ad7..8,C1gi7..8}} σ(S0
6) 33760

7 {S0
7 = {C1ad1}, S1

7 = {C1ad2}, S2
7 = {C1gi1}, S3

7 = {C1gi2}} σ(S0
7) , σ(S2

7) 36861
8 {S0

8 = {C1ad1G1..4}, S2
8 = {C1ad1G5..9}} σ(S0

8) , σ(S1
8) 17373

9 {S0
9 = {C1ad1G1}, . . . S3

9 = {C1ad1G4}} σ(S1
9), σ(S2

9), σ(S3
9) 37498

10 {S0
10 = {C1ad1G5}, . . . S4

10 = {C1ad1G9}} σ(S1
10), σ(S2

10), σ(S3
10) 66456

Table 1. Diagnostic session on a c6288 circuit.

4. The following problems: the next problems of this session fol-
low exactly the same principles that are described here above. The
result of each problem is presented on Table 1. At the problem
4, DITO returns two possible minimal candidates σ(S0

4), σ(S1
4)

which means that from this problem, we can derive two prob-
lems, one stating that ¬Ab(S0

4) ∧ Ab(S1
4) and the other one stat-

ing that Ab(S0
4) ∧ ¬Ab(S1

4). Table 1 does not present all the al-
ternatives but only a few of them. However, based on the prob-
lem 8, problem 9 (based on Ab(S0

8) ∧ ¬Ab(S1
8)) and problem

10 (based on ¬Ab(S0
8) ∧ Ab(S1

8)) are solved in order to show
all the minimal candidates for the initial candidates that involves
the top half adder module C1ad1 where the fault was actually in-
jected. These minimal candidates are σ(S1

9), σ(S2
9), σ(S3

9) and
σ(S1

10), σ(S2
10), σ(S3

10). Finally, let us notice that the minimal
candidate σ(S2

10) is actually the health state that was injected for
this scenario.

This session fully details a diagnostic session based on the injec-
tion of one fault in the circuit c6288. Due to lack of space, we cannot
detail the case where several faults are injected in the circuit. How-
ever the principles remain the same and the time results are similar
for each problem to solve as long as the number of components is
small. There is one difference that the presented scenario does not
show properly: it is the case when for a given partition Π, the mini-
mal candidates are such that σ(SΠ

i1 ∧ · · · ∧ SΠ
ik). In this case, there

are basically two options depending on the strategy of the user. If
the user wants to investigate other parts of the system before detail-
ing SΠ

i1 ∪ · · · ∪ SΠ
ik, the best way to do it is to make a new partition

whose SΠ
i1 ∪ · · · ∪ SΠ

ik is an element of it. In the other case, it is
required to split SΠ

i1 ∪ · · · ∪ SΠ
ik to always minimize the number of

components in the problem to solve.

6 DISCUSSION

The purpose of DITO is to benefit of constraint programming to boost
its performance without the need of more adhoc techniques like in
[6, 8]. A preliminary version of DITO was actually embedded into
the meta-diagnostic tool MEDITO [1]. This initial MEDITO diagno-
sis engine is now fully replaced by DITO. Experimental results show
how this engine can be used on realistic cases based on a hierarchical
view of the underlying system as in [8]. But the point of view is dif-
ferent and complementary. Instead of focusing on the search for spe-
cific minimal candidates (the most probable ones, the smallest ones)

as in [6, 8, 7], the idea is to always provide a global overview of the
system as a decision may not require the full precised solution. The
first perspective of this work is obviously to automate the proposed
strategy (automatic selection of the partitions) even if we believe that
a user might be interested to interact with. The other challenge is to
make DITO really be an anytime tool, that solves problem in a way
that DITO always provides a complete solution which converge to the
precise solution as time goes.

REFERENCES
[1] Nuno Belard, Yannick Pencolé, and Michel Combacau, ‘Medito: a

logic-based meta diagnosis tool’, in IEEE International Conference on
Tools with Artificial Intelligence, pp. 709–716, Boca Raton (FL), United
States, (11 2011).

[2] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Pe-
tit, ‘Global constraint catalogue: Past, present and future.’, Constraints,
12(1), 21–62, (2007).

[3] Nicolas Beldiceanu, Pierre Flener, and Xavier Lorca, ‘Combining tree
partitioning, precedence, and incomparability constraints’, Constraints,
13(4), 459–489, (2008).

[4] Iscas-85 c6288 16x16 multiplier. in
http://web.eecs.umich.edu/ jhayes/iscas.restore/c6288.html.

[5] Randall Davis, ‘Diagnostic reasoning based on structure and behavior’,
Artificial Intelligence, 24, 347–410, (1984).

[6] Johan deKleer and Brian C Williams, ‘Diagnosing multiple faults’, Ar-
tificial Intelligence, 32, 97–130, (1987).

[7] Alexander Feldman, Gregory Provan, and Arjan van Gemund, ‘Approx-
imate model-based diagnosis using greedy stochastic search’, Journal
of Artificial Intelligence Research, 38, 371–413, (2010).

[8] Alexander Feldman and Arjan van Gemund, ‘A two-step hierarchical
algorithm for model-based diagnosis’, in The Twenty-First National
Conference on Artificial Intelligence, pp. 827–833, Boston, MA, United
States, (2006).

[9] Karim Lunde, Rüdiger Lunde, and Burkhard Münker, ‘Model-based
failure analysis with rodon’, in ECAI 2006: 17th European Conference
on Artificial Intelligence, pp. 647–651, Riva del Garda, Trentino, Italy,
(2006).

[10] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32, 57–95, (4 1987).

[11] The Choco Team, ‘choco: an open source java constraint programming
library’, in CPAIOR’08 Workshop on Open-Source Software for Integer
and Contraint Programming, Paris, France, (2010).

[12] Xiangfu Zhao and Dantong Ouyang, ‘Improved algorithms for deriv-
ing all minimal conflict sets in model-based diagnosis’, in Advanced
Intelligent Computing Theories and Applications. With Aspects of The-
oretical and Methodological Issues. Third International Conference on
Intelligent Computing, pp. 157–166, Qingdao, China, (8 2007).

