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Abstract. This paper addresses the problem of analyzing the per-
formance of algorithms that solve the fault diagnosis problem in
discrete-event systems in an experimental way. To achieve this pur-
pose, we define a set of metrics for algorithm comparison on one
hand. On the second hand, we propose an experimental platform
based on a tool called DIADES (Diagnosis of Discrete-Event Sys-
tems) to run experiments and measure different algorithms.

1 INTRODUCTION

Fault Diagnosis in Discrete-Event Systems is the problem of deter-
mining the set of fault events that have occurred in a dynamic event-
driven system usually based on a sequence of observed events. In the
literature, there are many works and algorithms to solve this prob-
lem either from the AI community or the Automatic Control commu-
nity. Most of these algorithms have been developed in order to solve
special cases of system by introducing some assumptions or special
properties (distributed systems [2, 12], coordinated systems [4], cen-
tralized diagnosis [15], decentralized diagnosis [12], distributed di-
agnosis [2], flexible diagnosis [11],...). The main drawback of these
methods is not really in the methods themselves but is the lack of a
generic method to experimentally compare these approaches to solve
the same problems. The kind of question raised by this paper is: given
one diagnosis problem, given the set of available algorithms that are
able to solve this problem, which one is experimentally the best?

This is not the first time that this question has been asked: the DXC
competition is definitely an attempt to answer the question [7]. How-
ever, in this paper, we adopt a complementary point of view. Instead
of analyzing one real system as DXC proposes, we want to analyze
algorithms on a specific class of systems (that is the class of discrete-
event systems) independently from a model of any underlying and
specific system. In the Model-Based diagnosis principle, there is a
clear distinction between the Model and the algorithm that runs the
Model [10]. Algorithm performance is affected by both the quality of
the model and the algorithm itself, however the way to measure this
performance is different. The quality of the model can be measured
by correctness and diagnosability analyses whereas the intrinsic per-
formance of an algorithm can be measured only by comparing it to
the optimal algorithm on the same model whatever the quality of this
model.

In order to find an answer to the previous question, it is first re-
quired to define what ’best’ means and a way to define why an algo-
rithm would perform ’better’ than another one: this is the first con-
tribution of this paper. We introduce a set of metrics for the specific
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problem of Fault Diagnosis in Discrete-Event Systems that can be
exploited to compare the algorithmic performances. The second con-
tribution of this paper is to propose a framework to define common
problems (benchmarks) that can be freely utilized by the community.
As opposed to many contribution on Model-Based diagnosis, we pro-
pose here to rely on randomly generated problems to measure the
algorithm performance: as explained above, we are interested here
in comparing the intrinsic performance of algorithms on the same
model, whatever the quality of that model.

This paper is organized as follows. Section 2 first recalls the for-
mal definition of the problem in the classical manner. Section 3 dis-
cusses the notion of performance of diagnosis algorithms that tend
to solve the problem. Section 4 introduces some metrics whose ob-
jective is to measure the performance of algorithms. Section 5 de-
scribes some simple experiments, it firstly describes how the studied
problem has been randomly generated by DIADES and secondly il-
lustrates the proposed metrics by comparing the performance of two
basic algorithms (’Forward breadth-first search’ and ’Forward depth-
first search’).

2 FAULT DIAGNOSIS PROBLEM
This section formally recalls the fault diagnosis problem on dynamic
discrete-event systems as defined for instance in [15].

2.1 Discrete-event system
A Discrete-Event System (DES) is a system whose behaviour is fully
characterised at any time by a sequence of events that has occurred
from an initial state. In this paper, the system is supposed to be a set
of N components Sys = {Comp1, . . . ,CompN} that are commu-
nicating with each other by synchronized events. There are many for-
malisms to represent such a system ([15], communicating automata
[9], process algebra [3], Petri nets [2]. . . ). Without loss of generality,
the formalism chosen in this paper is synchronized automata.

Definition 1 (Model of a component) The model of a component
Compi is an automaton A(Compi) = (Qi,Σi, Ti, q0i) where

• Qi is a finite set of states;
• Σi is the finite set of events;
• Ti ⊆ Qi × Σi × Ti is the finite set of transitions;
• q0i is the initial state.

A trace τ = e1 . . . ek of a component Compi is a possible se-
quence of events such that there exists a finite transition path from
state q0i in the automaton A(Compi): q0i

e1−→ q1 . . . qj−1

ej−→
qj . . . qk−1

ek−→ qk. Among the set of events Σi, two subsets are
distinguished:



1. Σobs
i is the set of observable events: an observable event, once it

occurs, is supposed to be recorded by the diagnosis process;
2. Σint

i is the set of interacting events: if it occurs, an interacting
event occurs at least in two components simultaneously and thus
represents a communication between these two components.

No assumption is made about whether an interacting event is observ-
able or not, however, for the sake of simplicity here as it is not the
scope of the paper, we suppose that any interacting event e between
Compi and Compj (e ∈ Σint

i ∩Σint
j ) that is observable on Compi

(e ∈ Σobs
i ) is also observable on Compj (e ∈ Σobs

j ). Any interact-
ing event e is associated to a set of components that simultaneously
interact each other so any interacting event implicilty represents a
structural connection between these components. A connection be-
tween a set of components {Compj1

, . . . ,Compjl
} exists iff there

exists an interacting event e that belongs to every component of this
set and only to these ones. The set of connections between the com-
ponents is called the structural model of the system, also called the
topology . The model of the system results from the synchronised
product of the component model.

Definition 2 (Model of a system) The model of the system is the au-
tomaton M = A(Sys) = (Q,Σ, T, q0) where

• Q ⊆ Q1 ×QN is the finite set of global states;
• Σ =

⋃N
i=1 Σi is the finite set of events;

• T ⊆ Q× Σ×Q is the finite set of global transitions;
• q0 = (q01, . . . , q0N ) is the global initial state.

The (q1, . . . , qN )
e−→ (q′1, . . . , q

′
N ) belongs to T iff

1. e is not an interacting event and there exists one and only one
i ∈ {1, . . . , N} such that qi

e−→ q′i ∈ Ti and for any j ∈
{1, . . . , N} \ {i} qj = q′j ;

2. e is an interacting event and belongs to the components
{Compi1

, . . . ,Compik
} and for any j ∈ {i1, . . . , ik} qj

e−→
q′j ∈ Tj and for any j ∈ {1, . . . , N} \ {i1, . . . , ik},qj = q′j .

Finally, in the following Q and T will respectively denote the set
of global states and transitions that are reachable from the initial
state q0. Straightforwardly, Σobs denotes the set of observable events⋃N

i=1 Σobs
i and a global trace τ = e1 . . . ek of the system Sys is a

possible sequence of events such that there exists a finite transition
path from state q0 in M : q0

e1−→ q1 . . . qj−1

ej−→ qj . . . qk−1
ek−→

qk.

2.2 Diagnosis problem and solution
Now we are ready to define the classical Fault diagnosis problem on
DES.

Definition 3 (Fault) A fault is a non-observable event f ∈ Σ.

A fault is represented as a special type of non-observable event that
can occur on the underlying system. Once the event has occurred, we
say that the fault is active in the system, otherwise it is inactive.

Definition 4 (Diagnosis problem) A diagnosis problem is a triple
(SD,OBS,FAULTS) where SD is the global model of a system
Sys, OBS is the set of timed observations {(o1, t1), . . . , (om, tm)}
with ti ∈ R+, ti < ti+1, oi ∈ Σobs, and FAULTS is the set of fault
events defined over SD.

Informally speaking, (SD,OBS,FAULTS) represents the prob-
lem of finding the set of active faults from FAULTS that has oc-
curred relying on the model SD and the sequence of observations
OBS.

Definition 5 (Diagnosis Candidate) A diagnosis candidate is a
couple (q, F ) where q is a global state of M (q ∈ Q) and F is a
set of faults.

A diagnosis candidate represents the fact that the underlying system
is in state q and the set F of faults has occurred before reaching state
q.

Definition 6 (Solution Diagnosis) The solution ∆ of the problem
(SD,OBS,FAULTS) is the set of diagnosis candidates (q, F ) such
that there exists for each of them at least one global trace τ of SD
such that:

1. the observable projection of τ is exactly the sequence o1 . . . om
and the last event of τ is om;

2. the set of fault events that has occurred in τ is exactly F ;
3. the final state of τ is q.

Informally, candidate (q, F ) is part of the solution if it is possible
to find out in SD a behaviour of the system satisfying OBS which
leads to the state q after the last observation of OBS and in which
the faults F have occurred.

3 Diagnosis Algorithms

There exist many algorithms to solve the fault diagnosis problem pre-
sented above [15], [9], [18], [12], [16], [5], [6]. The purpose of some
of them is to perform off-line diagnosis (also called post-mortem di-
agnosis): they consider OBS as a fixed set of observations when the
algorithm starts and their objective is to find the solution of the prob-
lem. On the other side, some algorithms are so-called on-line in the
sense that when the algorithm starts, the underlying system is oper-
ating, at a given time OBS is partly known and the purpose of the
algorithm is not only to provide in the end the solution to the prob-
lem (SD,OBS,FAULTS) but also to provide through the operating
time of the system some diagnosis updates. Depending on the type of
algorithms used, some performance indicators defined below may be
pertinent or not to measure the performance of an algorithm. Perfor-
mance of on-line algorithms especially requires a set of performance
indicators related to time and diagnosis update capabilities that are
not pertinent in the case of off-line diagnosis algorithms. Before in-
troducing the performance indicators, a set of definitions related to
the result provided by any algorithms is required.

Definition 7 (Current Diagnosis) The current diagnosis of an op-
erating algorithm ALG at time t is the set of candidates that ALG
provides at time t if it is available, or the most recent set of candi-
dates provided by ALG before t.

Usually, off-line algorithms provide two set of candidates. The
first set is provided when the algorithm starts and usually consist of
(q0,∅) whereas the second set is provided when the algorithm ends.
However, some off-line algorithms may be incremental and thus pro-
vide more updates. On-line algorithms, as opposed to off-line algo-
rithms, must provide updated sets of candidates so the current diag-
nosis is changing over the time.



Definition 8 (Final Diagnosis) The final diagnosis of an algorithm
ALG is the current diagnosis when the algorithm ends.

The final diagnosis of an algorithm is the final result and thus
should provide the solution of the problem.

3.1 Off-line algorithm performance
Since the underlying system Sys is real and has really emitted the set
of observations OBS, any diagnosis problem is associated to the real
trace τreal of the system and, as a consequence the real diagnosis of
the system.

Definition 9 (Real Diagnosis) The real diagnosis is the candidate
(qreal, Freal) associated to the real trace τreal.

Determining (qreal, Freal) or at least Freal is the main objec-
tive of any diagnosis algorithms but to reach this objective, there are
many obstacles. First, Definition 4 defines a model-based diagnosis
problem that relies on the existence of a sound model SD so that
τreal is assumed to be represented in the model SD. However, in
practice as described in [1], this may be not the case so the algorithm
may not be able to determine τreal as a possible trace which means
that (qreal, Freal) may not be representable in SD at all.

Definition 10 (Sound problem) The problem
(SD,OBS,FAULTS) is sound if τreal is represented in the
problem.

In other words, if the problem is sound, the solution diagnosis con-
tains the real diagnosis.

Definition 11 (Sound Algorithm) The algorithm ALG is sound
with respect to the problem (SD,OBS,FAULTS) if the solution di-
agnosis is contained in the final diagnosis.

A sound algorithm ALG always provides a superset of the solu-
tion diagnosis which guarantees that if the problem is sound, ALG
provides the real diagnosis.

Definition 12 (Accurate Algorithm) The algorithm ALG is accu-
rate with respect to the problem (SD,OBS,FAULTS) if the final
diagnosis is exactly the solution diagnosis.

An accurate algorithm is a particular sound algorithm that returns
the smallest superset of the solution diagnosis. An accurate algorithm
takes benefit of all the observations to refine the candidates and pro-
vide the smallest but still correct refinement.

Second, even if the real trace is represented in SD, the lack of
observable events may lead to many ambiguities, which means that
the diagnosability level of the algorithm is poor.

Definition 13 (Diagnosable problem) The problem
(SD,OBS,FAULTS) is diagnosable if the solution diagnosis
contains only one candidate.

Definition 14 (Fault-Diagnosable problem) The problem
(SD,OBS,FAULTS) is fault-diagnosable if the solution di-
agnosis contains only candidates as {(q1, F ), . . . , (qk, F )}.

In other words, if the problem is fault-diagnosable then the occur-
rence of the faults F are certain, only the state estimate is ambigu-
ous.

Property 1 If the problem is sound and diagnosable, the final diag-
nosis of any accurate algorithm on this problem is the real diagnosis.

This property provides the skeleton for the design of performance
indicators. An algorithm that optimally performs on a given problem
(SD,OBS,FAULTS) requires soundness and diagnosability analy-
ses on one hand as proposed for instance in [15], [14], [13], [1] and
accuracy analyses on the other hand, which is the main concern of
this paper.

3.2 On-line algorithm performance
An on-line algorithm must perform as well as an off-line when it
ends, which means that the above definitions and properties also
hold for on-line algorithms. However, the second challenge of on-
line algorithms is to propose diagnosis updates through time relying
on a flow of observations that leads to the full sequence of OBS. In
other words, on-line algorithms should solve a finite-set of diagno-
sis problems derived from the initial problem (SD,FAULTS,OBS).
At time ti, a new observation oi is received and the on-line algorithm
should then provide a diagnosis update at time ti that is the solution
of the problem (SD,FAULTS,OBSi) where OBSi = {(oj , tj) ∈
OBS ∧ tj ≤ ti}.

Definition 15 (Perfect On-Line Algorithm) An on-line algorithm
ALG is perfect iff ∀i ∈ {1, . . . , |OBS|}, the current diagnosis of
ALG at time ti is the solution of (SD,FAULTS,OBSi).

Such an algorithm is called perfect as there is no other algorithms
that can perform better: at any time, it provides the solution for the
available set of observations. Such an algorithm exists and is defined
in [Sampath95] and is called the diagnoser. The diagnoser for a given
system description SD and a given set of faults FAULTS is a de-
terministic finite-state machine obtained by a complete knowledge
precompilation: each state of the diagnoser provides the current di-
agnosis and each transition is labeled with an observable event of the
system. To solve the diagnosis problem with the diagnoser, the un-
derlying algorithm simply builds the unique transition path from the
initial state of the diagnoser (the initial diagnosis) associated to the
given sequence of observations OBS, the state ending this path pro-
vides the final diagnosis. For the observation (oi, ti) is the sequence
OBS, it is sufficient to trigger one transition to get a diagnosis up-
date, which is in constant time and almost instantaneous. Moreover,
by the construction of the diagnoser during the precompilation stage,
any diagnoser state reached by a transition path from the initial state
associated to the sequence of observations OBSi is the solution of
the problem (SD,FAULTS,OBSi).

Now, why not keeping using this diagnoser to solve any online
diagnosis problem if it is perfect? The reason is that the precompila-
tion may not be practically feasible: recalling that N is the number
of components in the system, the size of the machine to build is in
the worst case in o(22N ) and in o(2|FAULTS|).

4 PERFORMANCE METRICS
This section lists a set of performance metrics. These indicators are
generic in the sense that most of them compare any type of algorithm
results two by two. In particular, it does not necessarily rely on the
real diagnosis that is usually unknown unless further analyses on the
system are perform or the faulty scenario results from a simulation
in which faults have been injected [7]. If the real diagnosis ∆real is



known then it can be utilized as any other diagnosis to measure the
performance of the available algorithms. As detailed in this section,
the proposed metrics, once they are applied on the real diagnosis
∆real, are equivalent to some metrics also proposed in [7].

4.1 Time-Independent generic metrics
Time-Independent metrics take into account two diagnoses (a set
of diagnosis candidates) ∆1 and ∆2 resulting from the diagnosis
problem (SD,FAULTS,OBS) and provide some ways to com-
pare them. Let ∆1 = {(qi1 , Fi1), . . . , (qil , Fil)} and ∆2 =
{(qj1 , Fj1), . . . , (qjk , Fjk )} be two diagnoses on a given diagnosis
problem (SD,FAULTS,OBS).

Definition 16 (Belief State Distance) The Belief State Distance
BSD(∆1,∆2) is:

|{q,∃(q, F ) ∈ ∆1 \∆2}|+ |{q,∃(q, F ) ∈ ∆2 \∆1}|.

The metrics BSD relies on the so-called Hamming distance: it
counts the number of differences between the two belief states
{qi1 , . . . , qil} and {qj1 , . . . , qjk} so it behaves as a distance that is
null iff {qi1 , . . . , qil} = {qj1 , . . . , qjk}. The same type of metrics
can be define to compare the fault candidates only.

Definition 17 (Fault Candidate Distance) The Fault Candidate
Distance FCD(∆1,∆2) is

|{F,∃(q, F ) ∈ ∆1 \∆2}|+ |{F,∃(q, F ) ∈ ∆2 \∆1}|.

When performing off-line diagnosis, we may not be interested in
estimating the current belief state as it is not necessary to provide
further diagnosis updates, in this case then, BSD is not the most im-
portant metrics to look at, but it is FCD as it is the one that only takes
into account the difference between fault candidates.

These previous two metrics compare the diagnoses as a difference
of information and has the advantage to be a mathematical distance
in order to measure how far from each other the diagnoses are. How-
ever, this distance does not compare carefully the common candi-
dates. Hence the introduction of the notion of accuracy and precision.

Definition 18 (Accuracy)

Acc(∆1,∆2) =
|∆1 ∩∆2|
|∆1 ∪∆2|

Acc(∆1,∆2) is a ratio that states the number of common candi-
dates in ∆1 and ∆2. It tends to 1 when ∆1 = ∆2, it tends to 0 if
no common candidate exists. This metrics can especially be utilized
when the diagnosis ∆real is known. Indeed, for any diagnosis ∆1,
Acc(∆1,∆real) is 0 if ∆1 does not contain the real candidate. It
can also be utilized when the theoretical solution (Definition 6) of
(SD,FAULTS,OBS) is known: any accurate algorithm providing
the diagnosis ∆′ is necessarily such that Acc(∆,∆′) = 1. Last but
not least, by analyzing Acc(∆,∆real), if it is zero, it also means that
the model is not sound and needs to be redesigned [1].

Definition 19 (Precision)

Prc(∆1,∆2) = min

(
|∆1|
|∆2|

,
|∆2|
|∆1|

)
.

The precision checks the ratio between the number of candidates.
If Prc(∆1,∆2) = 1, it means that ∆1 and ∆2 have the same preci-
sion. If the precision is lower than 1, the closer it is to 0, the higher
the difference of ambiguity is between ∆1 and ∆2. By comparing
a diagnosis ∆1 to the solution ∆ of (SD,FAULTS,OBS), we can
measure the precision level of the algorithm that provided ∆1. Two
cases hold:

1. |∆1| > |∆| means that the algorithm is not as precise as the ac-
curate algorithm. In this case, it means that the algorithm does not
take benefit of the full observability represented in SD. It may be
due to the fact the algorithm is computing an approximation of the
solution.

2. |∆1| < |∆| means that the algorithm only returns partial solu-
tions in the sense that even if the problem is sound, the solution
provided by the algorithm may be just wrong.

Precision and accuracy are complementary metrics, as precision
does not measure anything about common diagnosis. A less accurate
diagnosis may be more precise than a more accurate diagnosis. Ul-
timately, for a given sound problem (SD,FAULTS,OBS) and its
solution ∆, the objective is to design an algorithm that provides ∆′

such that BSD(∆′,∆) → 0, FCD(∆′,∆) → 0, Acc(∆′,∆) → 1
and Prc(∆′,∆)→ 1.

4.2 Time metrics
Definition 20 (Horizon) The Horizon HALG(i) is the time
duration required by the on-line algorithm ALG to solve
(SD,FAULTS,OBSi).

The Horizon of a perfect diagnosis algorithm is ∀i,H(i) =
0. The Horizon measures the capability of an on-line algorithm
to follow the flow of observations. For example, if HALG(i) >
ti+1, then ALG is not able to provide a final diagnosis
for the problem (SD,FAULTS,OBSi) before it has to solve
(SD,FAULTS,OBSi+1). The consequence is that ALG can have
cumulative delays which show that ALG has weak on-line perfor-
mances.

4.3 Reality metrics
In [7], other metrics are defined. As opposed to the one presented
above, they require the knowledge of the real diagnosis. Such met-
rics measure the quality of the couple (SD,ALG) as a whole, in the
sense that to improve the values measured by these metrics, either
SD or ALG or both must be improved. Especially, the improvement
of SD usually consists of improving the soundness of the model [1]
or the diagnosability of the model and the underlying system by sen-
sor placement [17],[13].

Definition 21 (False Positive) The number of false positive (FP) is
the number of faults in ∆ALG that are not in ∆real = (qr, Fr):

FP = |{f ∈ FAULTS, ∃(q, F ) ∈ ∆ALG ∧ f 6∈ Fr}|

FP usually indicates a lack of diagnosability.

Definition 22 (False Negative) The number of false negative (FN)
is the number of faults in ∆ such that:

FN = |{f ∈ Fr, ∀(q, F ) ∈ ∆ALG, f 6∈ F}|.

FN usually indicates a lack of soundness.



5 FIRST EXPERIMENTS
In this section, we present a set of experiments about two basic al-
gorithms denoted FBFS (Forward Breadth-First Search) and FDFS
(Forward Depth-First Search) in order to show the effectiveness of
the presented metrics. As stated above, we are not concerned in this
section about the quality of the model SD,OBS such as diagnos-
ability and soundness that are out of scope of this paper and requires
simulated scenarios and a fault injection simulator to compute for
instance the accuracy of the algorithm with respect to the real di-
agnosis. In these experiments, SD is assumed to be sound (the real
trace is represented in the model). The purpose is to compare some
algorithms with each other on the same diagnosis problem and to
compare their performance.

5.1 Algorithm descriptions
The algorithms to run these first experiments have been chosen for
their simple description and not for their efficiency. The aim here is
to show how the metrics are able to characterize the behaviour of
algorithms. As explained in Section 2.2, the starting point of both
algorithms is N automata and their synchronization law which im-
plicitly represent SD, a given set of faults FAULTS to diagnose and
the sequence of observations OBS = {(o1, t1), . . . , (om, tm)}.

5.1.1 Forward breadth-first search: FBFS

The principle of the FBFS algorithm is to start from an initial belief
state I2 and searches with help of a Breadth-First Search (BFS) strat-
egy the set of traces of the global model M that can emit OBS and
extracts from them the diagnosis candidates. Note that by construc-
tion this algorithm is sound as the BFS guarantees it will find out the
complete set of traces. The search space (similar to the behavioural
space in [9]) is recursively defined as follows. For each candidate of
(q, F ) ∈ I, we associate the state s = (q, F, 0) where 0 means that
no observation has occurred. Then, let s = (q, F, k) be a state of
the search space then s′ = (q′, F ′, k′) is a state of the search space
iff there exists a transition q e−→ q′ in M and one of the following
condition holds:

1. e is observable, F = F ′ and k′ = k + 1;
2. e ∈ FAULTS, F ′ = F ∪ {e} and k′ = k;
3. e is neither faulty nor observable and F = F and k′ = k.

The set of states s′ defined as above is denoted next(s, e). Finally
FBFS is simply defined as follows by the use of a queue (First In
First Out):

FBFS(M,FAULTS,OBS,I): output D
do

for(s=(q,F,0) : (q,F) in I)
push(queue,s);
visited(s) <- true;

endfor

while(not empty(queue))
s=(q,F,k) <- pop(queue);
if(k=m) then insert((q,F),D);
else

2 In Section 2.2, we supposed the initial belief state is {(q0, ∅)} however,
here, for the sake of generality, we do not make any assumption about it, it
can be any set of diagnosis candidates.

for(s’ : next(s,e), e event of M)
if ((e = o_k or not_observable(e))

and not (visited(s’)))
then

push(queue,s’); visited(s’) <- true
endif

endfor
endif

endwhile
done

5.1.2 Forward depth-first search: FDFS

The principle of the FDFS algorithm is similar to the one of FBFS
except that the search strategy relies on a Depth-First Search. As for
its counterpart, this algorithm is sound. The main difference is the
use of a stack (Last In First Out) instead of a queue.

FDFS(M,FAULTS,OBS,I): output D
do
for(s=(q,F,0) : (q,F) in I)

push(stack,s);
visited(s) <- true;

endfor

while(not empty(stack))
s=(q,F,k) <- pop(stack);
if(k=m) then insert((q,F),D);
else

for(s’ : next(s,e), e event of M)
if ((e = o_k or not_observable(e))

and not (visited(s’)))
then

push(stack,s’); visited(s’) <- true
endif

endfor
endif

endwhile
done

5.2 Generation of the Diagnosis Problem
In this paper, as opposed to usual Model-Based Diagnosis papers, we
decide to run experiments on a purely random Diagnosis Problem.
In order to generate this problem, we develop a random generator
for Diagnosis Problem with help of the DIADES tools developed in
CNRS-LAAS [8]. The generation of the illustrating model is in three
stages.

1. Topology generation: the topology (see Section 2.1) is randomly
chosen with help of the tool generate topology. The topol-
ogy of this example has been generated by fixing the number of
components to 10.

2. Component generation: for each component of the topology, the
behaviour of this component (see Definition 1) is randomly gener-
ated with help of the tool des generate that takes as input the
previously generated topology and thus generates a set of 10 au-
tomata (see Table 1) and their synchronization model (see Section
2.1). Most importantly, des generate generates automata that
are globally consistent in the sense that the global model exists and
each local transition of each automaton belongs at least once to the
global model. The size of the global model is big enough so that



Diades (with its tool global model) was not able to compute
it due to lack of computational resources (memory resources) 3, it
has given up after building 185 000 states and 1 000 000 transi-
tions (theoretically, the number of states for this example is lower
than 1010 which the number of states in the free product of the 10
automata).

3. To finally define FAULTS and OBS, we use the tool simulate
that takes as input the set of 10 automata and randomly generates
a scenario of a fixed observable size. The scenario utilized in the
following example consists of a sequence of 10 observations. To
define FAULTS, we selected a set of 9 non-observable events as
faults.

Comp StateNb TransNb Comp StateNb TransNb
C0 7 16 C1 20 46
C2 5 15 C3 20 45
C4 9 22 C5 8 12
C6 15 31 C7 5 17
C8 18 42 C9 8 23

Table 1. Size of the randomly generated automata for this example

5.3 First Results

This subsection presents some experiments that illustrate perfor-
mance metrics introduced in Section 4.1 and the way to use them
for comparing the behaviour of diagnosis algorithms to each other.
Figures 1, 2, 3, 4 present the behaviour of the metrics of Section
4.1 with the algorithms FBFS and FDFS for the diagnosis prob-
lem (SD,FAULTS,OBS) that is described in the previous section.
For every Figure, there are three curves. For a given metrics m, the
thick curve represents m(∆FDFS(t),∆) where ∆ is the solution of
(SD,FAULTS,OBS) (see Definition 6) and ∆FDFS(t) is the partial
diagnosis (a set of candidates) that FBFS is able to provide at time
t. The thin plain curve represents m(∆FBFS(t),∆) and finally the
dashed curve represents m(∆FDFS(t),∆FBFS(t)).

Figure 1 illustrates the Belief State Distance. At time 0, the dis-
tance between the initial diagnosis (q0,∅) and the solution is in this
case 230. At time 50, FDFS starts to produce new candidates that
improves the BSD as it is getting closer to the solution. The FDFS
curve really shows the overall behaviour of a DFS strategy, when the
BSD is stable for a while, it means that FDFS keeps backtracking.
As opposed to FDFS, FBFS takes longer to provide the first candi-
dates and the final solution.

This difference can be clearly seen on
BSD(∆FDFS(t),∆FBFS(t)) that keeps growing from time 40
to time 80 which shows that FBFS and FDFS are drastically dif-
ferent algorithms. FBFS accelerates the computation of candidates
in the end whereas DFS provides candidates with a more stable
speed.

Figure 2 illustrates the Fault Candidate Distance. As opposed to
BSD,FCD is very small at initial time. It is due to the fact that the
initial diagnosis (q0,∅) has an empty set of fault candidates whereas
the solution diagnosis contains 9 fault candidates only (but many pos-
sible states associated to them). FDFS provides the correct fault can-
didates at time 30, whereas FBFS provided them at time 50.

3 At present, the way the tool global model is implemented is far from
being optimal.
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Figures 3 and 4 respectively describe the overall accuracy met-
rics and precision metrics (embedding belief states and fault can-
didates). As noticed by analyzing BSD and FCD, the accuracy of
FDFS clearly improves earlier than the accuracy of FBFS. Both
accuracy tend to 1 which results from the fact that both algorithms
are sound on the given problem. Finally, Acc(∆FDFS(t),∆FBFS(t))
also tends to one that shows both algorithms converge on the same
solution. As far as the precision is concerned, the behaviour is
rather similar to accuracy where FBFS and FDFS are compared
to the solution ∆. The most interesting metrics is in this case
Prc(∆FDFS(t),∆FBFS(t)) which measures the relative precision of
both algorithms over time. Due to the fact that the strategies of FBFS
and FDFS are drastically different the behaviour of the relative pre-
cision is rather erratic till it converges to 1.
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6 CONCLUSION
In this paper, we discuss the problem of evaluating the performance
of diagnosis algorithms that solve the Fault-Diagnosis problem from
an experimental point of view. For this special problem, there is a
clear distinction between the model part (a set of automata or any
equivalent representation) and the algorithm that solves the problem.
That is the main reason of introducing a set of proper metrics for al-
gorithms only and for introducing a framework to randomly generate
models as it is proposed with the tool DIADES. Of course the ex-
periments presented here are very preliminary and we expect in the
very close future to generate a full set of benchmarks and to analyze
more sophisticated algorithms with the ones developed in our previ-
ous work [12],[16] as a priority. The model generator we are using
defines a set of parameters (number of nodes, connectivity, number
of states, number of observable events, . . . ) that should be interesting
to play with in order to generate very different type of DES models
and thus sees how algorithms perform on them. There will be two
main objectives, that, we actually believe, are essential for the MBD
community:

1. to have a clear understanding about how the available diagnosis
algorithms scale on the same problems;

2. and more importantly, to have a better understanding about how
to improve the efficiency of the algorithms by closer comparative
analyses of one another.
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