
A chronicle-based diagnosability approach for discrete

timed-event systems: application to Web-Services

Yannick Pencolé and Audine Subias
CNRS; LAAS; 7 avenue du colonel Roche F-31077 Toulouse, France

Université de Toulouse; UPS,INSA,INP,ISAE; LAAS; F-31077 Toulouse, France
ypencole@laas.fr, subias@laas.fr

Abstract: This paper addresses the problem of diagnosability analysis in Web Ser-
vices. In particular, it focuses on the analysis of the impact of time to the diagnostic
capabilities in Web Service workflows. The diagnosability analysis that is proposed in
this paper aims at determining the diagnostic capabilities of a previously developped
algorithm for the diagnosis of Web Services. This diagnostic algorithm is based on
chronicle recognitions. Faults that can occur during the execution of service workflows
are described by means of chronicles.

To perform this diagnosability analysis, the problem is firstly defined as a language-
based analysis which leads to the definition of exclusiveness tests between the languages
represented by the chronicles. To deal with the time aspects inherent to the chronicles,
we then propose to perform the automatic analysis by the use of time Petri nets.
Exclusiveness tests are then defined on reachability graphs of time Petri nets which
implicitly represent chronicle languages.

Key Words: Discrete-event systems, web service, workflow, diagnosis, diagnosability,
chronicle, time Petri nets,

1 Introduction

Nowadays, Web Services appear as one promising solution for business integra-
tion. However, despite the growing interest, an important challenge still exists to
make Web Services a dependable technology. Developing self-healing Web Ser-
vices is still an open issue. A self-healing Web Service is able to monitor itself, to
diagnose the causes of a failure and to recover from the failure, where a failure
can be either the inability to provide a given service, or a loss in the service
quality. The WS-DIAMOND 1 project is a step in this direction. The first goal
of this project was to develop a framework for self-healing service execution of
complex Web Services, where monitoring, detection and diagnosis of anomalous
situations is carried on and repair/reconfiguation is performed so that reliability
and availability of Web Services are guaranteed. The second goal of the project
was to devise guidelines for designing services in such a way that they can be eas-
ily diagnosed and recovered during their execution. As the possibility to perform
accurate diagnosis (fault identification or even only detection) during execution

1 This work results from the WS-DIAMOND project funded by the European Com-
mission, IST, FET-OPEN framework, under grant IST-516933.

depends on the available observations, this second objective supposes diagnos-
ability analysis to provide information about the classes of behavior of the system
under different anticipated fault situations. Diagnosability is the property of a
system to generate observations that allow to detect and discriminate faults in
a finite time after their occurrences.

The work presented in this article focuses on this diagnosability aspect in
the field of Web Services. As observations and faults may be represented in dif-
ferent ways that depend on the considered diagnosis approach, diagnosability
analyses are also related to the approach that is used to diagnose the system.
In this paper, we study the impact of time to the diagnostic capabilities in Web
Service workflows and thus focus our study on a particular model-based diagno-
sis approach called monitoring approach [D4.2, 2006]: this algorithm developed
in the WS-DIAMOND framework and presented in [Cordier et al., 2007], is a
chronicle-based approach; it determines whether faults have occurred in the exe-
cution of a workflow by the recognition of predefined chronicles (graph of events
with temporal contraints).

Starting from this diagnostic algorithm, we propose in this paper to firstly
define the diagnosability property that states whether the chronicle-based al-
gorithm of [Cordier et al., 2007] will perform well or not on a given workflow.
This diagnosability property is defined as a property over event languages that
represent execution workflows and recognised chronicles. Then, we propose an
automatic way to analyse the diagnosability of a given workflow by the use of
time Petri nets which is a suitable formalism to implicitly represent the languages
associated with execution of workflows and chronicles.

The paper is organized as follows. Section 2 briefly introduces the notion of
monitoring and diagnosis of Web Services followed by a more detailed descrip-
tion of the underlying diagnostic approach based on chronicles. Before defining
the diagnosability problem over this chronicle approach, Section 3 first recalls
the general diagnosability problem for discrete event systems and then defines
diagnosability for timed discrete event systems. Section 4 then shows how to
test diagnosability in the framework defined by the chronicle-based diagnostic
algorithm. Then, an exclusiveness test for analysing the workflow diagnosability
is derived in Section 5. This section particularly shows that, due to the time
aspects inherent to the use of chronicles, the set of behaviors to handle for diag-
nosability purposes are possibly infinite and thus require an adequate and finite
representation. The use of time Petri nets to model chronicles are then discussed
in this section. Finally, Section 6 presents a diagnosability checker tool. The use
of this checker is illustrated on a foodshop Web Service [D4.2, 2006].

2 Monitoring and Diagnosis of Web Services

2.1 General principle

In the monitoring approach, the diagnosis relies on an event-based method.
Workflows of web service orchestrations are thus seen as event-based systems.

receiveOrder]0, +∞[

orderAcquisitionError

selectWH]0, 5[splitOrder]0, 4[

checkAvail]0, 10[checkAvail&reserve]0, 30[

TimeOut

allAvail?]0, 2[

Figure 1: Extract workflow of a shop service

Figure 1 gives an illustrative example of workflow. The duration of each
activity is given by a time interval. For instance, the activity receiveOrder waits
till an order is received by the client, thus it may not end (unbounded time
interval). Once this first activity has finished, the activities selectWH (select
warehouse) and splitOrder start: selectWH lasts in the worst case 5 time units
whereas splitOrder lasts in the worst case 4 time units.

A workflow defines then a partial order of events. A workflow run is a sequence
of event instances:

(e1, t1) . . . (en, tn)

where (e1, t1) is the first event instance of the run. A run can be either a full
run in this case (en, tn) represents the end of the workflow or a partial run that
is not full.

The monitoring approach focuses on the time aspect of the workflow by tak-
ing into account that some activities may have a duration that can be pertinent
to refine the diagnosis of the faults occurring during a workflow run. The ba-
sic idea [D4.2, 2006] of the method is to diagnose the occurrence of a fault by
analysing the flow of observations (starts and ends of activities of the workflow)
and matching this flow with a set of available chronicles. A chronicle is a partial
order of events with time constraints and is associated with the occurrence of a
fault. Once a chronicle is recognized, the diagnosis approach then automatically
returns the associated fault as a diagnostic candidate that explains the observ-
able part of the workflow. The set of chronicles used to perform the diagnosis
is designed by expertise and with help of structural and temporal conformance
analysis ([Eder et al., 2007]).

In this framework, faults are associated to activities. For example, in Figure 1,
two faults are represented (illustrated by diamonds on activities). The first one
is located in the activity receiveOrder and represents an order acquisition error.
The second one is an unexpected delay (Timeout) in the checkAvail&reserve
(check availability and reserve) activity (that requires an interaction with remote
supplier services).

2.2 The chronicle-based diagnosis approach

The basic formal concepts of the chronicle-based approach applied to the moni-
toring of web services have been defined in WS-DIAMOND project [D4.2, 2006]
[Cordier et al., 2007]. We recall the principle of this diagnostic algorithm in this
section.

As said previously the monitoring approach is an event-based approach. An
event is extended by the notion of type. The type of an event actually defines
what is observed in the workflow. Depending on the available sensors and the
reasoning accuracy that must be reached by the diagnosis algorithms, an event
type in a workflow may be the name of an activity act : in this case, the diag-
noser is able to observe that an activity of name act is actually running (e.g.
receiveOrder). The type can also be the name of an activity augmented with
the fact that the activity is starting (namely act−) or ending (namely act+): in
this case the diagnoser is able to observe the event “an activity act is starting”
and distinguish it from the event “an activity act is ending” (e.g. receiveOrder−,
receiveOrder+). It may be also the case that some of the parameters of a given
activity are observable. In this case, an event type may have the following form
act(?var1 = val1, . . . , ?varn = valn) that represents the event: “The activity
act is running with the parameters ?var1 = val1 ,. . . , ?varn = valn” (e.g.
receiveOrder(?items = ”potatoes”, ?custInfo = ”Client23416 ”)). Finally, the
type of event can also be the combination of previous types.

receiveOrder− t = 2

receiveOrder+ t = 24

selectWH− t = 25

splitOrder− t = 26

splitOrder+ t = 27

checkAvail&reserve− t = 28

receiveOrder− t = 2

receiveOrder+ t = 10

splitOrder− t = 25

splitOrder+ t = 40

selectWH− t = 41

checkAvail&reserve− t = 42

Figure 2: Partial normal and faulty runs of the workflow presented in Figure 1.

Figure 2 represents two partial runs of the workflow presented in Figure 1
where the considered type of events are the starting events and the ending events
of each activity of the workflow. The first run is a normal run with no fault. Each
event has an occurrence time that satisfies the time constraints defined in the
workflow. The second run is a faulty run. An order acquisition error occurs in
the receiveOrder activity that provokes an unexpected delay in the splitOrder
activity (the duration of the activity splitOrder in this run is 15 whereas the
normal duration for this activity is not greater than 4 (see Figure 1)).

In the following and without loss of generality, we will consider that the set
of possible event types is available and is denoted E . If the type of events simply
represents the name of the activity, then E is obviously a finite set of types as
the number of activity names in a given workflow is finite. If the types of events
have the other forms then E may be an infinite enumerable set of types as the
number of values associated to each variable may be infinite and enumerable.

An event is then stamped with the date of its occurrence. An event is a pair
(e, t) where e ∈ E is an event type and t is the occurrence date of the event
t ∈ R. Instead of observing an event like “The activity act has started”, here the
considered event is “The activity act started at time t”. The occurrence dates of
the events are then of main importance for the chronicle definitions.

A chronicle model c is a pair (S, T) where S is a set of events and T a set
of constraints between their occurrence dates. Figure 3 presents two temporal
graphs, each of them represents a chronicle model. The first one is composed of
four events. Time constraints between events are represented by time intervals.

An interval]0,+∞[is the way to represent an order between two events without
any other time constraints. The second one is composed of two events.

receiveOrder−

checkAvail&reserve−

checkAvail−

allAvail−

splitOrder− checkAvail&reserve−

]0
,+
∞

[

]0,+∞
[]0,

+∞
[

]0,+∞
[

]5, 100]

Figure 3: Two chronicles derived from the workflow (Figure 1).

Each chronicle is described in a specific formalism ([Cordier et al., 2007]).
The descriptions for the previous chronicles is given below:
S1 = {(receiveOrder,?t1),

(checkAvail&Reserve−,?t2),
(checkAvail−,?t3),
(allAvail−,?t4),
}

T1 = {?t1 <?t2, ?t1 <?t3, ?t2 <?t4, ?t3 <?t4}
and
S2 = {(splitOrder−,?t1),

(checkAvail&Reserve−,?t2), }
T2 = {5 <?t2−?t1 ≤ 100}

3 Diagnosability of discrete event systems

3.1 Diagnosability Analysis: background

Diagnosability covers a set of properties that have been studied for many years
in different fields [D5.1, 2007]. For continuous systems, diagnosability is stated in
terms of detectability and isolability [Chen and Patton, 1994], [Basseville, 2001],
[Travé-Massuyès et al., 2001], [Staroswiecki and Comtet-Varga, 1999]. In the dis-
crete event systems (DES) context, the first definitions have been given in
[Sampath et al., 1995]. Then, several extensions have been proposed for intermit-
tent faults ([Contant et al., 2004]) and for more generic patterns [Pencolé, 2004],
[Jéron et al., 2006]. Generally, the approaches for continuous systems adopt a

state-based diagnosis (SBD) point of view in the sense that diagnosis is per-
formed on a snapshot of observables, i.e. one observation at a given time point.
DES approaches perform generally event-based diagnosis (EBD) and achieves
state tracking, which means dynamic diagnosis reasoning achieved across time.
Moreover, a unified diagnosability definition for state-based diagnosis and event-
based diagnosis approaches have been proposed in [Cordier et al., 2006].

As presented previously, the monitoring approach using chronicles exploits
the delays between two event instances for a better discrimination between di-
agnosis candidates. To study the diagnosis capabilities of such an approach, the
classical event-based diagnosability approach is not sufficient as the delays be-
tween two event instances are not taken into account. In this subsection, an
extension of the classical event-based framework for diagnosability checking is
proposed. This extension introduces the notion of time and delay and is described
in a way that is similar to the classical event-based diagnosability problem.

3.2 Diagnosability Analysis of discrete timed-event systems

Let us start now to define the diagnosability problem of activity workflows. From
Section 2, it follows that a workflow can be interpreted as a language of words.
Each word r is either a partial or a full run of the workflow. Let us denote by
Σ = E × R the set of possible event instances of the workflow then a run r

belongs to the Kleene closure of Σ (denoted Σ?):

r ∈ Σ?

The workflow language Lw is the prefix-closed language of all the possible
runs of the workflow:

Lw ⊆ Σ?.

The workflow language explicitly characterizes the set of all possible runs of
a given workflow. A run can be normal i.e. it results from the specification of
the normal workflow (it can be a BPEL Business Process Execution Language
for Web Services specification for instance) or abnormal i.e. it results from the
occurrence of a fault in the workflow. Generally, only a part of Lw is known
(the normal part and some faulty parts). Depending on the available sensors,
only a subset of activities in the workflow runs are observable. For a given run
r, its observable part rOBS can be defined by the sequence of observable events:
rOBS = POBS(r). POBS is the classical projection operator that removes from
any run r the unobservable events and keeps the observable one in rOBS . With
help of this operator, the observations OBS of the workflow are then defined as
a language of observable events.

An observation σ of the workflow is a sequence of observable events resulting
from the projection on the observable events of a sequence in the workflow, it is

thus a word of the language:

OBS = POBS(Lw).

Figure 4 presents the observations of the runs presented in Figure 2. In this
figure it is supposed that only the start of each activity of the workflow is ob-
servable; the events related to the end of the activities are not observable.

receiveOrder− t = 2

selectWH− t = 25

splitOrder− t = 26

checkAvail&reserve− t = 28

receiveOrder− t = 2

splitOrder− t = 25

selectWH− t = 41

checkAvail&reserve− t = 42

Figure 4: Observable part of the partial runs of Figure 2.

From this, follows the notion of signatures in this framework. Let F =
{f1, . . . , fn} be the set of basic faults that could occur in the workflow and
that requires a diagnosis, let Lfi

be the sub-language of Lw that contains all the
runs in which fi holds: the fault signature Sig(fi) is the observable language:

Sig(fi) = POBS(Lfi
) ⊆ OBS.

The second observable run of Figure 4 is typically part of the signature
Sig(orderAcquisitionError) (see Figure 1).

By extension, if we denote by f0 = norm the absence of any fault of F (i.e.
f0 ≡ norm ≡ ¬f1 ∧ . . .∧¬fn), and Lf0 the sub-language of Lw that contains all
the runs in which none of the fault fi, i > 0 holds, it follows the normal signature
is the observable language:

Sig(f0) = POBS(Lf0) ⊆ OBS.

The first observable run of Figure 4 is typically part of the normal signature
Sig(f0).

The characteristic fault signature Sigc(fi) is the observable language:

Sigc(fi) = POBS(Lfi
) \ (

⋃
j 6=i

POBS(Lfj
))

Figure 5: Diagnosable/Not diagnosable

If the observable part of a run belongs to Sigc(fi), then the occurrence of
fi (or the absence of fault represented by f0) during the run is certain, there
is no ambiguity. Finally under the single fault assumption, the diagnosability
definition can be refined in terms of languages as follows:

f0, f1, . . . , fn are diagnosable in the workflow W iff the set

{Sig(f0), Sig(f1), . . . , Sig(fn)}

is a partition of OBS, in other words:

∀i ∈ {0, . . . , n}, Sig(fi) = Sigc(fi).

Figure 5 illustrates two different configurations. On the left hand, the faults
are diagnosable. Any possible observable run of a workflow characterizes either
f0 or f1 or f2. The three signatures are disjoint so they are characteristic. On
the right hand of Figure 5, the faults are not diagnosable. Sig(f2) overlaps a
part of Sig(f0) so there exists at least one observable run whose underlying
run is affected by the fault f2 or is not affected by any fault (f0 holds). There
are also some observable runs that make the presence of f1 and f2 ambiguous
since Sig(f1) ∩ Sig(f2) 6= ∅. Finally, as Sig(f1) ∩ Sig(f0) = ∅, f1 is said to be
detectable: if f1 is present then the observable run is certainly abnormal, hence a
fault detection (but not a fault identification, as both f1 and f2 can still explain

the run). f2 may not be detectable as it can explain observable runs that are
also explained by the absence of the f2.

4 Diagnosability and chronicles

A chronicle is a set of observable events with some time constraints. A good chron-
icle is used to characterize a situation relying on its observable consequences. In
a chronicle-based diagnosis approach, each abnormal situation (i.e. a fault fi in
our context) is usually associated to a set of chronicles, each chronicle recogniz-
ing a sub-part of the corresponding fault signature Sig(fi). The main positive
point with these approaches is their high efficiency due to the symptom-to-fault
knowledge they rely on. The counterpart is usually the difficulty of acquiring
and updating the chronicle base.

Chronicle recognition proceeds as follows. Given a flow of observed event
instances, a chronicle recognition system is in charge of checking on the fly
whether the flow matched with some of the chronicles in the base. A chronicle
model is said to be recognized if the flow of event instances contains an instance of
every event in the chronicle model and these instances satisfy the time constraints
defined in the chronicle model. More formally:

A chronicle model c = (S, T) is recognized in an observable sequence σ of
event instances iff:

– there exists, for all event (ei, ti) ∈ S = {(e1, t1), . . . , (en, tn)}, an event in-
stance (ei, t

′
i) in σ and

– the constraint system {t1 = t′1, . . . , tn = t′n} ∪ T is satisfiable.

In the following, the predicate recognition(c, σ) will denote the fact that the
chronicle model c is recognized in the observable sequence σ. The chronicle on
the right hand in Figure 3 is recognized by the second observable run of Figure 4
but not by the first one.

By construction, a chronicle model may be recognized in several observable
runs σ of a workflow, these sequences define the recognition language of the
chronicle model in the workflow.

Let c be a chronicle model and OBS the observations of the workflow W , the
recognition language L(c,OBS) is the set of observations σ ∈ OBS such that
recognition(c, σ).

A chronicle model is designed in order to be associated to the occurrence of
a fault. In the following, a chronicle model associated to a fault f is denoted
c(f). By construction, once a chronicle c(f) is recognized, the monitoring ap-
proach provides the occurrence of the fault f as a possible diagnosis candidate
that explains the current observations. It follows that a chronicle model c(f)
associated to the fault f is necessarily such that: L(c(f), OBS) ⊆ Sig(f). The

left-hand chronicle in Figure 3 is a chronicle that represents compatible time con-
straints with the normal workflow presented in Figure 1. In every normal run,
this chronicle model is recognized, in this case, the recognition language of the
chronicle includes Sig(f0). The right-hand chronicle in Figure 3 represents an
unexpected delay in the splitOrder activity. As said previously, this is a possible
consequence of a dataAcquisitionError fault in the activity receiveOrder . The
recognition language of the chronicle is included in Sig(dataAcquisitionError).

Depending on the definition of a chronicle c(f), it is possible that its recog-
nition language is included in the characteristic signature of the fault f .

A chronicle c(f) characterizes f iff:

L(c,OBS) ⊆ Sigc(f) ⊆ Sig(f).

If c(f) characterizes the occurrence of f , it means that the occurrence of the
fault f during the observed run is certain.

Let L ⊆ OBS be a set of observations, a chronicle model c covers L iff L ⊆
L(c,OBS). A set of chronicle models c1, . . . , cn covers L iff L ⊆

⋃n
i=1 L(ci, OBS).

Let f be a fault, a set of chronicle models c1, . . . , cn covers f iff it covers
Sig(f).

Once we know that a set of chronicles covers a fault f , we know that, if the
fault f occurs, one of the chronicle c1, . . . , cn will be at least recognized. Given
these definitions, we can now present the relationship between fault diagnosabil-
ity and chronicle modeling as a sufficient condition for diagnosability.

Property 1 Let f be a fault in the workflow W , if there exists a set of chronicles
C(f) = {c1(f), . . . , cn(f)} such that:

1. C(f) covers f , and

2. ∀j ∈ {1, . . . , n}, cj(f)characterizes f,

then f is diagnosable in the workflow W .

Proof: Firstly, condition 1 implies that Sig(f) ⊆
⋃n

i=1 L(ci(f), OBS). Sec-
ondly, condition 2 implies that

⋃n
i=1 L(ci(f), OBS) ⊆ Sigc(f). It follows that

Sig(f) = Sigc(f), hence the result.
From Property 1, it follows that, under the single fault assumption, checking

the diagnosability of a fault f relying only on a set of chronicles requires checking
whether two chronicles c(f) and c(f ′) are exclusive or not (see more details
in the next subsection). If c(f) and c(f ′) are not exclusive then they are not
characteristic as Sig(f)∩Sig(f ′) 6= ∅. The next subsections present the chronicle
exclusiveness test as a mean to study the diagnosability of the workflow.

5 Exclusiveness test of chronicles

5.1 Problem statement

Two chronicles are exclusive if they cannot be recognized with the same flow
of event instances. In the following and for the sake of simpler notations, the
recognition language L(c(f), OBS) of a chronicle model c(f) is simply denoted
by C.

From a diagnosability point of view, the proposed exclusiveness analysis can
be performed relying on two kinds of inputs:

– Check for the non exclusiveness of chronicles C1 = c1(f1) and C2 = c2(f2):
that is C1 ∩ C2 6= ∅ ? As C1 ⊆ Sig(f1) and C2 ⊆ Sig(f2), if C1 ∩ C2 6= ∅ then
f1 and f2 are not diagnosable.

– Check for the non exclusiveness between a chronicle C = c(f) and a non
faulty model of the monitored system i.e. a non faulty model WN of the
workflow W : that is C ∩ POBS(LWN

) 6= ∅ ? As C ⊆ Sig(f), f 6= f0, if
C ∩ POBS(LWN

) 6= ∅ then f is not diagnosable and more precisely f is not
detectable.

Informally, the exclusiveness of chronicle models is illustrated as follows: let
us consider the two simple chronicle descriptions:

1. c1: event ♣ followed by event ♦

2. c2: event ♦ followed by event ♠.

If the observed event flow is ♣ ♣ ♦ ♦, four instances of c1 can be identified
but if the event flow is extended by the event ♠ two instances of c2 will also be
identified. This is illustrated on Figure 6.

As the events of the flow are ordered and time-stamped each instance of a
chronicle can be associated to a Time Support. The Time Support of a chronicle
instance is the necessary time interval leading to the chronicle recognition. The
exclusiveness analysis of the chronicles can then be interpreted as an analysis of
the time supports. Given a base of chronicles the time supports of the chronicles
can be determined. Then for one observable run of the workflow it is possible to
determine which chronicle will be recognized. Thus, it is possible at design stage
to conclude the exclusiveness of the chronicles for some particular observable runs
and the non exclusiveness for other observable runs. Moreover, in the case of non
exclusiveness it is possible to determine for one specific run of the workflow which
chronicle will be first recognized. This may be of interest to point out useless
chronicles when several chronicles are supposed to identify the same fault. If the

♣ ♣ ◊ ◊
C1_Instance_1

C1_Instance_2

C1_Instance_3

C1_Instance_4

♠

C2_Instance_1

C2_Instance_2

Figure 6: Instances of chronicles

set of all possible runs of the workflow i.e. the workflow language is known more
general conclusions can be done.

Obviously, the difficulty is to determine for a chronicle all the possible Time
Supports. Indeed, in a general way, a chronicle model describes not only logi-
cal relationships between the events (e.g. conjunction and disjunction) but also
time relationships between events. These relationships are expressed through
the constraints of the chronicle description. The time constraints (precedence
constraint, interval constraint ...) are expressed with relative dates. That means
that the exclusiveness analysis must deal with an important number of chronicle
instances. Therefore, a complete enumeration of the possible instances of each
chronicle is not realistic as the set of possible instances i.e. the state space is in-
finite. The challenge of the diagnosability analysis which is performed at design
stage, is then to deal with the combinatorial explosion of the chronicle instances.

The approach proposed in this work is not to deal with all these instances i.e.
with all the temporal behaviors associated to a chronicle but rather to consider
classes of temporal schema. Our proposal is to generate a state space abstraction
to realize the diagnosability analysis. More precisely we propose to work with
a time abstraction of the different instances of a chronicle and to perform the
exclusiveness analysis on this time abstraction. The aim of this time abstraction
is to obtain a finite representation of the set of instances which is generally
infinite in the case of time constraints.

5.2 Time abstraction

Several results exist in the field of state space abstraction in a general way
without focusing on the chronicle notion. Results exist both in the automata or

Petri Nets (PN) world, as these two models are widespread. In the first case,
Timed Automata are mainly used [Alur and Dill, 1994] and in the second case
many Petri net based models with time extensions have been proposed.

Among these models, Time Petri Nets (TPN) [Merlin and Farber, 1976] is
prominent as several effective analysis methods have been proposed (see for in-
stance [Berthomieu and Menasche, 1983], [Berthomieu and Diaz, 1991]). Time
Petri nets extend Petri nets with temporal intervals associated to transitions.
Firing delay ranges are then associated to transitions.

A Time Petri Net is a tuple

< P, T, Pre, Post,m0, Is >

in which < P, T, Pre, Post,m0 > is a Petri net with P the set of places, T the set
of transitions, m0 the initial marking and Pre, Post the forward and backward
incidence functions. Is : T → I+ is a function called the Static Interval function
that associates a time interval to each transition of the net. I+ is the set of non
empty real intervals with non-negative rational end-points. The left-end-point
and the right-end-point of the interval associated to a transition t are respectively
the static earliest firing date of t, and the the static latest firing date of t.

A state of TPN [Berthomieu and Diaz, 1991] is a couple s = (m, I) in which
m is a marking and I : T → I+ is a function that associates a time interval
to each transition enabled by m. The initial state is s0 = (m0,I0) with I0 the
restriction of Is to the transitions enabled by m0. Every enabled transition must
be fired in the associated interval. This interval is relative to the enabling date
of the transition and depends on the date of the last transition firing. Firing a
transition t after a delay θ from state s = (m, I) is possible iff:

m ≥ Pre(t) ∧ θ ∈ I(t)

∧(∀t′ 6= t), (m ≥ Pre(t′)⇒ θ ≤ sup(I(t′))).

The state s′ = (m′, I ′) reached by firing the transition t is given by:

– the new marking m′ classically defined by m′ = m− Pre(t) + Post(t)

– for every transition t′ enabled by m′:

1. I ′(t′) = I(t′) − θ if t′ 6= t and m − Pre(t) ≥ Pre(t′): the firing of t′ is
not affected by the firing of t

2. I ′(tr) = Is(tr) otherwise.

For TPN several techniques are available to generate state space abstraction
in order to obtain a finite representation of the behavior. These state space
abstractions are based on this notion of state of TPN . Let us consider that a

RéseauxdePetritemporels

p0

t0

[3,5]Î p2

tÏ
[2,3]Î p3

t’

[5,7]Î p5p4

p1

t2

[0,2]Î
t1

[3,5]Î
c0

c1

c2

c3

c4 c5

c6c7

c8

t’

t0

t1

t0

t1

t

t2 tt’

t’t

t’ t2

classe Ä*� Ä � Ä-� Ä* Ä*�
marquage �6��@6��� ����@���Æ ����@���Æ �6 �@6��Æ � � @6��Æ
domainedetir Æ!o�	 q oWÐ �,o�	~�,o�� �,o�	�o� �,o�	Ñ�,o��

 Áo�	~�,o�Æ �,o�	 � o��
 Áo�	 � o�Æ

classe Ä-Æ Ä-Ò Ä�Ð Ä*Ó
marquage ���&@6��� �� §@Q��� ���§@���Æ � � @Q���
domainedetir �!o�	µo¦ �,o�	 q o�� �po�	�o� �Áo�	 q o��

�Áo�	 q o�� �Áo�	Ñ�,o��

Figure1.2. Réseautemporel et son ÔjÕ�Ö . La variable × Ø estnotéeÙ .

Les propriétés(i) à (iv) sontnécessairespour qu’un réseausoit non borné,mais
passuffisantes.Cethéorèmepermet,parexemple,dedémontrerquelesréseauxdesfi-
gures1.1,1.3(gauche)et1.3(milieu) sontbornés,maisil nepermetpasdedémontrer
que le réseaufigure 1.3 (droit) estbornébien quecelui-ci n’admettequequarante-
huit classesd’états.Si l’on omet (iv), on ne peutplus montrerque1.3 (milieu) est
borné,omettantdeplus(iii), on nepeutinférerque1.3 (gauche)estborné.La condi-
tion obtenueserésumealorsà la propriétébornépour le réseaude Petri sous-jacent
[KAR 69].

Figure 7: Time Petri Net and State Class graph from [Berthomieu et al., 2004]

RéseauxdePetritemporels

p0

t0

[3,5]Î p2

tÏ
[2,3]Î p3

t’

[5,7]Î p5p4

p1

t2

[0,2]Î
t1

[3,5]Î
c0

c1

c2

c3

c4 c5

c6c7

c8

t’

t0

t1

t0

t1

t

t2 tt’

t’t

t’ t2

classe Ä*� Ä � Ä-� Ä* Ä*�
marquage �6��@6��� ����@���Æ ����@���Æ �6 �@6��Æ � � @6��Æ
domainedetir Æ!o�	 q oWÐ �,o�	~�,o�� �,o�	�o� �,o�	Ñ�,o��

 Áo�	~�,o�Æ �,o�	 � o��
 Áo�	 � o�Æ

classe Ä-Æ Ä-Ò Ä�Ð Ä*Ó
marquage ���&@6��� �� §@Q��� ���§@���Æ � � @Q���
domainedetir �!o�	µo¦ �,o�	 q o�� �po�	�o� �Áo�	 q o��

�Áo�	 q o�� �Áo�	Ñ�,o��

Figure1.2. Réseautemporel et son ÔjÕ�Ö . La variable × Ø estnotéeÙ .

Les propriétés(i) à (iv) sontnécessairespour qu’un réseausoit non borné,mais
passuffisantes.Cethéorèmepermet,parexemple,dedémontrerquelesréseauxdesfi-
gures1.1,1.3(gauche)et1.3(milieu) sontbornés,maisil nepermetpasdedémontrer
que le réseaufigure 1.3 (droit) estbornébien quecelui-ci n’admettequequarante-
huit classesd’états.Si l’on omet (iv), on ne peutplus montrerque1.3 (milieu) est
borné,omettantdeplus(iii), on nepeutinférerque1.3 (gauche)estborné.La condi-
tion obtenueserésumealorsà la propriétébornépour le réseaude Petri sous-jacent
[KAR 69].

Figure 8: Classes: marking and firable domain from [Berthomieu et al., 2004]

transition t is enabled for the last time in the state s = (m, I) at the date α. t
cannot be fired from the state s before the date (α + earliest firing date of t)
and must be fired before the date (α + latest firing date of t). The firing of t
leads to a new state of the TPN . As transitions in a TPN can be fired at any
date in their time interval each state in a TPN may have an infinite number of
successors. The state space abstraction is obtained by the grouping of the TPN
states in terms of State Classes. Several kinds of grouping have been defined
according to the properties of the state space they preserve and according to the
considered type of TPN (with priorities or not).

Figure 7 and Figure 8 directly issued from [Berthomieu et al., 2004] give an
example of a TPN and its associated State Class Graph. The State Class Graph
allows to abstract the time from the behavior of a Time Petri Nets, therefore
the transitions are not labeled with time information.

5.3 Computation of the proposed exclusiveness test

The computation of the exclusiveness test, that is proposed in this paper, is then
based on several steps:

– Generation of the chronicles descriptions and of the workflow. This
step is of main importance and the acquisition and the update of the set of
chronicles is not trivial. Currently several researches address this problem us-
ing notably learning techniques [Mayer, 1998] [Quiniou et al., 2001]. In this
article the set of chronicles is supposed to be available and described accord-
ing to the formalism presented in Section 2.2. Moreover, this set is composed
of chronicles associated to faults that can occur during the workflow execu-
tion but it also includes chronicles that describe the normal behavior of
the workflow, that means the normal behavior of the Web Service that is
described by the workflow.

– Chronicle modeling with TPN. This step aims at modeling the behaviors
associated to chronicle descriptions by Time Petri Nets. The events of a
chronicle are associated to the transitions of the TPN , delays are assigned
to the transitions if necessary. Precedence constraints are implicitly modeled
through the chaining place/transition/place. As said previously an interval
[0,∞[is the way to represent an unconstrained occurrence date of an event.
The initial marking is a waiting state and final places can be defined as the
chronicle is recognized. The other places represent intermediate stages during
the chronicle recognition and can be interpreted as the chronicle is partially
recognized.

Figure 9 shows the model of two chronicles c1 and c2 by Time Petri nets. The
description of c1 and c2 is as follows: (S1 = {♠,♣,♦} and T1 = {(♦−♣) ≤
4,♠ < ♣ < ♦}) and (S2 = {♣,♦} and T2 = {(♦−♣) ≤ 7,♣ < ♦}).
For some chronicles a final place defined as the chronicle is dead can be
added. This place is marked when the chronicle cannot be recognized what-
ever the next events are. This is the case for instance when the chronicle
description explicitly forbids an event. The description of the chronicle is
then done using a no-event clause [D4.2, 2006]. For example, let us sup-
pose that a new constraint is added to the chronicle c2 specifying that no
event ♦ must occur in addition of the event ♦ expected after the event ♣
in the interval [0, 7]. The corresponding Time Petri Net model is shown in
Figure 10. In this case, the model is obtained by Time Petri Nets with Prior-
ities PrTPN [Berthomieu et al., 2006]. PrTPN is an extension of TPN in
which a priority relation on transitions is defined. Indeed, in Time Petri Nets
the fact that the time elapse can only increase the number of firable transi-
tions. Note that this is one important difference between Timed Automata

Time PetriNet M odel

P0

P1

P2

P3 : c1 recognized

P7: c2 recognized

P5

P4

T1

T2

T3

T4

T5

♠ [0,∞[

♣ [0,∞[

◊ [0,4]

♣ [0,∞[

◊ [0,7]

Chronicle c2Chronicle c1

Figure 9: Time Petri Net of chronicles descriptionsTime PetriNet M odel

P7: c2 recognized

P5

P4

T4

T5

♣ [0,∞[

◊ [0,∞[

Chronicle c2

◊]7, ∞[

P8: c2 dead

T6

Figure 10: Time Petri Nets with Priorities for no-event modeling

and Time Petri Nets. That is the firing of a transition cannot be forbidden
by the time elapse. Then priorities are used to complete firing conditions of
a transition. In PrTPN a transition t may fire from a state s = (m, I) if
t is enabled by the marking m, firable instantly and if no transition with
higher priority satisfies these conditions. Let us consider the example shown
in Figure 10. Transition T6 is silent and firable at any time greater than 7.
Transition T5 may fire at any time less than or equal to 7, but no later since
transition T6 has priority over T5, which is modeled by a directed arrow
from T6 to T5.

Time PetriNet M odel

P7: C2 recognized

♣

◊

[0,∞[

[0,∞[]7, ∞[

P8: C2 dead

◊

[0,∞[

♠ or ◊

♠ or ♣

[0,∞[

♠ or ♣ or ◊ ♠ or ♣ or ◊[0,∞[[0,∞[

Figure 11: Generator of the chronicle language

For a given chronicle, it is important to say that the aim of this modeling step
is to model the chronicle description only and not the recognition language of
the chronicle [Bertrand et al., 2007] [Boufaied et al., 2002] [Dousson, 1996].
To illustrate this, let us come back to the example of the chronicle c2: event
♣ followed by ♦ and no-event ♦ in [0, 7] after the event ♣. Let us suppose
the set of possible event types E={♣, ♦, ♠}. Figure 11 gives the Time Petri
Net with Priorities (TPN) of what is classically called a generator G. The
generator is the Petri net model from which the chronicle language can be
obtained. Indeed, the set of all the recognized instances corresponds to the
Petri Net Language Lm(G) where Lm(G) is the marked behavior (or terminal
language) defined as the set of words generated by firing sequences that reach
to a final marking [Jantzen, 1987]. All the recognized instances of a chronicle
are then given by all the marked behaviors of the Petri Net and represented
by the reachability tree (if it exists) associated to the Petri net. Currently,
these modeling issues are addressed by several works. Chronicle recognition
techniques rely on multiple types of modeling tools such as colored Petri
nets, or Petri nets with counters [Bertrand et al., 2007].

Figure 12 finally gives a last example of TPN corresponding to the chronicles
of Figure 3.

By modeling the chronicle description, the purpose is to only model the rele-
vant abstraction of the recognised language that is useful for the diagnosabil-
ity analysis. Indeed, the chronicle description gives the most discriminative
part of the words belonging to the recognition language that are considered

Time PetriNet M odel

P8: c(f): recognized

P7

P6

T5: [0,∞[

T6:]5,100]

splitOrder-

checkAvail&Reserve-

Chronicle c(f)

P0

P1

P2

P5: c(f0) recognized

T1: [0,∞[

T2: [0,∞[

receivedOrder-

T4: [0, ∞[

Chronicle c(f0)

checkAvail&Reserve-

allAvail-

checkAvail-T3: [0,∞[

P5

P3

P4

Figure 12: Time Petri Net model for the chronicles of Figure 3

as a fault manifestation. The modeling of these relevant parts is sufficient for
exclusiveness analysis between chronicles. If the set of available chronicles
covers the set of faults, then if a fault occurs at least one of these chronicles
must be recognized.

– Time abstraction generation: from the Time Petri Net models, it is pos-
sible to generate the time abstraction using State Class techniques. The
result is given by a State Class Graph. In order to point out the intersec-
tion of chronicles, the solution is to work on the synchronized product of
the TPN models to generate the time abstraction. By considering the syn-
chronized product, the size of the State Class Graph (SCG) is limited. The
product construction for labeled Petri nets is quite similar to the product of
automata [Hack, 1976][Berthomieu et al., 2006]. For Petri nets, the product
is compositional i.e. the behavior of the PN product (noted ℵ1‖ℵ2) is the
product of those noted ℵ1 and ℵ2. For Time Petri nets this property holds
under the condition that all synchronized transitions have interval [0,∞[.
This aspect must be taken into account during the modeling step of the
chronicles. In the case, the chronicle descriptions only include precedence
constraints ([0,∞[) between events, the modeling by Time Petri Nets of the
chronicle descriptions and the generation of the synchronized product can be
easily performed as previously presented. In other cases, to ensure the com-

splitOrder-

9

s9

CheckAvail-

allAvail

5

s5

checkAvail&Reserve-

CheckAvail-

checkAvail&Reserve-

4

s4

checkAvail&Reserve-

8

s8

splitOrder-ROrder

6

s6

0

s0

7

s7

splitOrder-

3

s3

CheckAvail-

2

s2

ROrder

1

s1

Figure 13: State Class Graph from synchronized TPN

positionnality some additional model transformations must be performed. It
is possible for this to consider Time Petri Nets with priorities (PrTPN). The
use of priorities allows to put the time constraints in the local parts of the
nets and to have all the synchronized transitions with intervals [0,∞[. The
Product of PrTPN is defined in [Berthomieu et al., 2006]. Another solution
is to generate the product without taking into account time intervals and
to put the time constraints on the synchronized transitions after the prod-
uct construction. This part of the work presented in this article is currently
under research.

Figure 13 gives the State Class Graph (10 classes and 12 transitions) gener-
ated from the synchronized part of the TPN model issued from Figure 12.

– Checking non exclusiveness: the test may involve two chronicles asso-
ciated to faults or one chronicle associated to a fault and another one as-
sociated to nominal behaviors of the workflow. The idea of this step is to
verify that there exists in the State Class Graph describing the synchro-

Time PetriNet M odel
class 0

marking
p0 p6

domain
0 <= t1
0 <= t5

class 1
marking

p1 p3 p6
domain

0 <= t2
0 <= t5

class 2
marking

p2 p3 p6
domain

0 <= t5

class 4
marking

p2 p4 p8
domain

0 <= t4

class 5
marking

p5 p8
domain

class 6
marking

p1 p3 p7
domain

0 <= t2
5 < t8 <= 100

class 8
marking

p1 p4 p8
domain

0 <= t2

class 9
marking

p0 p7
domain

0 <= t1

Figure 14: Extract of the classes associated to the synchronized behavior

nized behavior at least one path leading both to the recognition of several
chronicles of faults or leading to the recognition of the chronicles and of the
workflow. This path represents the possibility to associate a same instance
of events with more than one chronicle and corresponds to the fact that the
two chronicles can be recognized by the same flow of events with the same
Time Support. It may also exist independent transitions in the Petri Nets
associated to the chronicles, thus it may also exist in the SCG some paths
leading to the recognition of both chronicles but in a sequential way. The
instances of events associated to each chronicle are simply ordered so that
both chronicles are partially recognized during a specific time interval.

For the previous example, the path defined by the sequence of classes C0, C1,
C6, C8, C4, and C5 corresponds to a synchronized behavior (see Figure 14).
This path represents an intersection of the Time supports of c(f) and c(f0):
the two chronicles can have some instances that are recognized from a shared
instance of events, so they are not exclusive. As f0 stands for the absence of
fault, it means that in this example, the fault f is actually not detectable
(see Section 5.1 for details).

For example σ is a partial observed flow of instances corresponding to such a
path: σ = {(receivedOrder−, 3), (splitOrder−, 8), (checkAvail&reserve−, 15),
(checkAvail−, 25), (allAvail−, 30)}.

6 A diagnosability checker Tool

This section presents a diagnosability checker Tool that demonstrates what is
presented in the previous sections in the context of the WS-DIAMOND project.
The development of this checker is motivated by the need of an automatic tool
to check the diagnosability of the workflows relying on monitoring approach
for diagnosis [D4.2, 2006]. Moreover, this software partly relies on the use of

I/O Module

Parser

Discriminability Module

Chronicles
descriptions

Chronicle-Based
Diagnosability Checker

Fault Model 1

Nominal
Behavior
model

Fault Model n

Nominal
Workflow

ExTool TINA

Figure 15: Diagnosability checker description

off-the-shelf techniques with their associated tools. Therefore, the developed
tool is based on TINA (TIme Petri Net Analyzer, (http://www.laas.fr/tina))
[Berthomieu et al., 2004]. TINA not only proposes common graphical editing
facilities but also construction of representation behavior of PN and TPN .
Currently several investigations on TPN are grouped in the software TINA.
Figure 15 illustrates the description of the diagnosability tool. The checker is
mainly composed by an input/output parser and a discriminability module. The
input/output parser allows to transform textual descriptions and workflow model
to Time Petri Nets. The discriminability analysis module performs the test of
exclusiveness. The Extool analyses also the State Class Graphs Generated by
TINA to conclude on the exclusiveness of chronicles. Finally, TINA allows the
graphical edition of the chronicles descriptions under the Time Petri Net formal-
ism and generates the State Class Graph.

Seven tabs appear. The purpose of each onglet is to present one view of the
demonstration.

– Workflow tab: this tab displays the considered workflow of Web Services
(Figure 16). The benchmark chosen is a Web Service of a foodshop. The
following description of the foodshop is directly issued from [Team, 2008].
When a customer places an order, the Shop service selects the Warehouse
that is closest to the customers address, and that will thus take part in
process execution. Ordered items are split into two categories: perishable

Figure 16: Workflow of the foodshop example of the WS-DIAMOND project

(they cannot be stocked, so the warehouse will have to order them directly)
and nonperishable (the warehouse should have them in stock). Perishable
items are handled directly by the Shop, exploiting the services of a Supplier,
whereas nonperishable items are handled by the Warehouse; all of them are
eventually collected by the Warehouse in order to prepare the parcel for the
customer. The Shop checks whether the ordered items are available, either
in the Warehouse or from the Supplier. If they are, they are temporarily
reserved in order to avoid conflicts between orders. Once the Shop receives
all the information on item availability, it can decide whether to give up on
the order (to simplify, this happens whenever there is at least one unavailable
item) or to proceed. In the former case, all item reservations are canceled
and the business process ends. If the order proceeds, the Shop computes
the total cost (items plus shipping) with the aid of the Warehouse, which
provides the shipping costs, depending on its distance from the customer
location and the size of the order. Then it sends the bill to the customer,
who can decide whether to pay or not. If the customer does not pay, all item
reservations are canceled and, again, the business process terminates. If the

customer pays, then all item reservations are confirmed and all the Suppliers
(in the cases of perishable and out-of-stock items) are asked to send their
goods to the Warehouse. The Warehouse will then assemble a package and
send it to the customer.

By clicking on Model Analysis by TINA, the Petri Net representing the
nominal model of this workflow is loaded in TINA. TINA can then be used
to perform several analyses on the nominal model (simulation, computation
of the marking graph,..).

Figure 17: Chronicles for the Customer

– Service tab: the foodshop example contains four services: Customer, Shop,
Supplier and Warehouse. To each service is associated a tab. This tab presents
the chronicles that are available in the service. Figure 17 shows the exclu-
siveness tests of the chronicle ’CustAddressAcquisitionError’ in the service
’Customer’ with all the available chronicles of the service ’Customer’. In
this example, ’CustAddressAcquisitionError’ and ’CustTimeOutPackageRe-
ception’ shares common runs in the service ’Customer’. So, there is a lo-
cal ambiguity between the occurrence of the fault ’AddressError’ and the
fault ’TimeOutPackageReception’ in the service customer. Note that, for

Figure 18: Diagnosability results

this example 49 chronicles have been defined (customer(11) warehouse(11),
shop(20), supplier(7)) associated to the normal behavior of the foodshop and
to 13 faults.

– Diagnosability tab: this is the main tab of the software. It presents the global
view and the diagnosability analysis of the workflow. On the left are listed
the set of faults prefixed with the service in which the fault occurs. ’Cus-
tomer.AddressError’ means that the customer provided a wrong address,
’Customer.itemError’ means that the customer provided a wrong item to
order. ’errorDB’ are database errors in different services. Figure 18 shows
the diagnosability analysis applied to the fault ’Customer.AddressError’:
Exclusiveness tests that answer ’No’ are printed on the screen, they provide
the reason why two faults are not discriminable. In this example, the fault
’Customer.AddressError’ is discriminable from the nominal behavior of the
Web Services but not from the fault ’TimeOutpackageReception’.

7 Conclusion

This paper fully addresses the problem of analyzing the diagnosability of Web
Services workflow by analyzing the performance of a preexisting diagnostic ap-
proach based on chronicle recognitions. The first contribution of this paper is a

complete characterization of the diagnosability problems induced by this diag-
nostic algorithm. The main idea consists in translating the chronicle recognition
problem into an event-based diagnosability analysis. We then propose to reduce
the diagnosability problem to a set of exclusiveness tests. As opposed to a clas-
sical diagnosability problems on discrete-event system, one main difficulty here
is to deal with the delays between events defined in the chronicle models. Thus
a second contribution of the paper in order to solve this issue is on the modeling
aspects of the chronicles. We propose to translate chronicle models into Time
Petri nets to benefit of the time analysis capabilities. The use of Time Petri nets
allows to generate a time abstraction to obtain a finite representation of the
chronicle behaviors. A diagnosability checker has been derived from this study
and tested in the framework of the European project WS-DIAMOND. We pro-
pose to extend this work in the following manner: currently, the approach only
deals with simple fault, it is necessary to consider the case when multiple and
independent faults can occur during on one run of the workflow. The modeling
aspects could also be extended by the use of Time Petri nets with priority for
a simpler generation of synchronized behaviors. Finally, the challenge is to ex-
tend this analysis to help in the design of workflow by pointing out where the
discriminability problems are.

References

[Alur and Dill, 1994] Alur, R. and Dill, D. (1994). A theory of timed automata. The-
oretical Computer Sciences, 126:183–235.

[Basseville, 2001] Basseville, M. (2001). On fault detectability and isolability. Euro-
pean Journal of Control, 7(8):625–637.

[Berthomieu and Diaz, 1991] Berthomieu, B. and Diaz, M. (1991). Modeling and ver-
ification of time dependent systems using time Petri nets. IEEE Transactions on
Software Engineering, 17(3):259–273.

[Berthomieu and Menasche, 1983] Berthomieu, B. and Menasche, M. (1983). An enu-
merative approach for analyzing time Petri nets. In IFIP Congress Series, volume 9,
pages 41–46. Elsevier Science Publ. Comp.

[Berthomieu et al., 2006] Berthomieu, B., Peres, F., and Vernadat, F. (2006). Bridging
the gap between timed automata and bounded time Petri nets. In Proceedings of
Formal Modeling and Analysis of Timed Systems (FORMATS’06), LCNS 4202.

[Berthomieu et al., 2004] Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The
tool TINA – construction of abstract state spaces for Petri nets and time Petri nets.
International Journal of Production Research, 42(14).

[Bertrand et al., 2007] Bertrand, O., Carle, P., and Choppy, C. (2007). Chronicle mod-
elling using automata and colored Petri nets. In 18th Internation Workshop on
Principles of Diagnosis (DX’07), pages 243–248, Nashville, TN, USA.

[Boufaied et al., 2002] Boufaied, A., Subias, A., and Combacau, M. (2002). Chronicle
modeling by Petri nets for distributed detection of process failures. In IEEE In-
ternational conference on systems, man and cybernetics (SMC’02), pages 243–248,
Hammamet, Tunisia.

[Chen and Patton, 1994] Chen, J. and Patton, R. (1994). A re-examination of fault
detectability and isolability in linear dynamic systems. In Proceedings of the 2nd
Safeprocess Symposium.

[Contant et al., 2004] Contant, O., Lafortune, S., and Teneketsis, D. (2004). Diagnosis
of intermittent faults. Journal of Discrete Event Dynamic Systems: Theory and
Applications, 14:171–202.

[Cordier et al., 2007] Cordier, M.-O., Guillou, X. L., Robin, S., Rozé, L., and Vidal,
T. (2007). Distributed chronicles for on-line diagnosis of web services. In Biswas,
G., Koutsoukos, X., and Abdelwahed, S., editors, 18th International Workshop on
Principles of Diagnosis, pages 37–44.

[Cordier et al., 2006] Cordier, M.-O., Travé-Massuyès, L., and Pucel, X. (2006). Com-
paring diagnosability in continous and discrete-event systems. In González, C., Es-
cobet, T., and Pulido, B., editors, 17th International Workshop on Principles of
Diagnosis, pages 55–60.

[D4.2, 2006] D4.2 (2006). Specification of diagnosis algorithms for web-services - phase
1. Technical report, WS-DIAMOND European project.

[D5.1, 2007] D5.1 (2007). Characterization of diagnosability and repairability for self-
healing web services. Technical report, WS-DIAMOND European project.

[Dousson, 1996] Dousson, C. (1996). Alarm driven supervision for telecommunication
networks: ii- on line chronicle rcognition. Annales des Télécommunications, 51 (9-
10):501–508.

[Eder et al., 2007] Eder, J., Lehmann, M., and Tahamtan, A. (2007). Conformance
test of federated choreographies. In Proc. of the 3rd International Conference on
Interoperability for Enterprise Software and Applications.

[Hack, 1976] Hack, M. (1976). Petri net languages. Technical report, MIT, Cambridge,
Massuchets, USA.

[Jantzen, 1987] Jantzen, M. (1987). Language theory of Petri nets. lecture notes in
computer Sciences, 254-I:397–412.

[Jéron et al., 2006] Jéron, T., Marchand, H., Pinchinat, S., and Cordier, M.-O. (2006).
Supervision patterns in discrete event systems diagnosis. In WODES06: Workshop
on Discrete Event Systems.

[Mayer, 1998] Mayer, E. (1998). Inductive learning of chronicles. In ECAI’98: Pro-
ceedings of European Conference on Artificial Intelligence, pages 471–472.

[Merlin and Farber, 1976] Merlin, P. and Farber, D. (1976). Recoverability of com-
munication protocols: Implication of a theoretical study. IEEE Trans. Comm.,
24(9):1036–1043.

[Pencolé, 2004] Pencolé, Y. (2004). Diagnosability analysis of distributed discrete
event systems. In ECAI04: Proceedings of European Conference on Artificial In-
telligence, pages 43–47.

[Quiniou et al., 2001] Quiniou, R., Cordier, M.-O., Carrault, G., and Wang, F. (2001).
Application of ilp to cardiac arrhythmia characterization for chronicle recognition.
Lecture Notes in Computer Science, (2157):220–227.

[Sampath et al., 1995] Sampath, M., Sengputa, R., Lafortune, S., Sinnamohideen, K.,
and Teneketsis, D. (1995). Diagnosability of discrete-event systems. IEEE Transac-
tions on Automatic Control, 40:1555–1575.

[Staroswiecki and Comtet-Varga, 1999] Staroswiecki, M. and Comtet-Varga, G.
(1999). Fault detectability and isolability in algebraic dynamic systems. In Pro-
ceedings of the European Control Conference.

[Team, 2008] Team, W.-D. (2008). Ws-diamond web services - diagnosability, moni-
toring and diagnosis. Technical Report 08005, LAAS-CNRS.

[Travé-Massuyès et al., 2001] Travé-Massuyès, L., Escobet, T., and Milne, R. (2001).
Model-based diagnosability and sensor placement application to a frame 6 gas turbine
subsystem. In IJCAI01: Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence, volume 1, pages 551–556.

