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Abstract

Diagnosability of component-based systems is a prop-
erty that characterises the ability to diagnose fault events
given a flow of observations. In this paper, we use model-
based reasoning techniques and we propose a theoretical
framework to analyse diagnosability in a decentralised way.
We then introduce an algorithm that performs diagnosabil-
ity analyses and provides useful information for the design
of a diagnosable component-based system.

1. Introduction

Monitoring and diagnosing large systems like telecom-
munication networks, web services, business processes are
challenging tasks. Such systems are component-based, each
component communicating with other components of the
system. When a system operates, some critical events or
faults may occur. The system supervisor has to detect them
and to make decisions to keep the system working, so an
automatic monitoring is required. This problem has been
studied for many years in both AI community [4, 9, 11]
and Control community [6]. In these previous works, the
objective is to model the system and to apply monitoring
algorithms on it but they all share the same weakness: none
of them takes into account any diagnosablility issue about
the system. If a diagnosability analysis is performed on the
system, then the diagnosis algorithm is more efficient and
less costly because new information is taken into account
before implementing it.

In this paper, we adopt the following point of view. Since
diagnosability is a key issue for system monitoring, diag-
nosability analysis has to be performed during the system
design. Analysing the diagnosability at the design stage has
two consequences. Firstly, it guarantees that observation
protocols have been specified so that any critical events or
faults can be diagnosed with certainty after the deployment
of the system. Secondly, such an analysis provides informa-
tion for the design of the application in charge of monitoring

the specified system.
Designing a component-based system is a difficult task

because of the architectural and distributed nature of such a
system. As a consequence, component-based systems can-
not be designed without the use of assistant tools that per-
form automatic analyses like, for instance, model-checking
tools [2] or testing tools [7]. In this paper, we present such
an assistant to incorporate a diagnosability analysis at the
design stage.

The paper is organised as follows. The first section
presents the general architecture of the design assistant.
Section 3 describes the kind of systems we tackle with and
how they are specified; then the diagnosability problem on
that kind of systems is introduced. Section 4 describes the
theoretical framework of the decentralised diagnosability
analysis and the notion of undiagnosable scenarios. Sec-
tion 5 explains the diagnosability algorithm implemented in
the design assistant and experimental results are provided in
Section 6. The set of related works is presented in Section 7.

2. General architecture of the design assistant

The purpose of the diagnosability assistant is to provide
an interactive design architecture of component-based sys-
tems which allows the specification of a diagnosable system
(see Figure 1).

The Designer is a human agent who is responsible for
the design of a component-based system. This Designer
provides a description of the system (also called a speci-
fication) as a set of components. Each component has an
event-driven behaviour and can interact with other compo-
nents. For the sake of simplicity, we will consider in the
following that the specification formalism is based on clas-
sical automata. This assumption is not restrictive because
any high level specification language for component-based
discrete event systems can be translated to automata and
vice-versa.

Once the Designer has produced a specification of its
system, the assistant operates as follows. The Designer pro-
vides the specification and queries about the diagnosability
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assistant

analysis of a given event F described in the specification.
If the assistant provides the answer Yes, then it means that
the event F is diagnosable in a given subsystem and the as-
sistant is able to provide some sufficient requirements for
the monitoring and the diagnosis of this fault event. If the
event F is not diagnosable, then the assistant provides a set
of scenarios that could happen in the system and that are the
reasons why the event F is not diagnosable. The objective
of the Designer is then to modify the specification in order
to eliminate these scenarios.

3. Background

3.1. System model

We study systems that evolve with the occurrence of
events. The model a component-based system is based on
classical automata: one automaton represents the behaviour
(also called the local model) of one component [13]. This
formalism is aimed at modelling any discrete event systems
with multiple and permanent faults [11]. A fault occurs
in one component and its consequences may propagate in
other components.

Definition 1 (Local model) A local model Γi is an au-
tomaton Γi = (Qi,Σi, Ti, q0i) where:

• Qi is a finite set of states; q0i is the initial state;

• Σi is the set of events and Ti ⊆ Qi × Ei × Qi is the
set of transitions.

The set of events is divided in four disjoint subsets (Σi =

Σobs
i ⊕ Σcom

i ⊕ Σnorm
i ⊕ Σflt

i ): Σobs
i the set of observable

events, Σcom
i the set of communication events, Σflt

i the set
of fault events and Σnorm

i the set of normal events. We
also consider that the empty event ε as a label of a transition
s

ε
−→ s for each state s of the local model. Such a transition

expresses asynchronism between two local models.
Figure 2 presents a system composed of three local mod-

els defined as above. The eventsfi are the fault events, the
events ci are the communication events and the events oi are
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Figure 2. Component-based system modelled
with three automata

the observable events.1 In this example, f1 and then o1 can
occur on Γ1. Then, a communication event c1 can occur,
this event being shared by all the components. After the oc-
currence of this sequence of events, Γ1 is in state x6, Γ2 is
in state y6 and Γ3 is in state z2. The behaviour of the global
system is formally described by the set of local models and
the composition operator ‖com (see appendix A).

We call a subsystem γ any non-empty set {Γi1 . . .Γim
}

of components of the system. The global model of γ (de-
noted ‖γ‖) is the automaton: ‖γ‖ = Γi1‖com . . . ‖comΓim

.
The global model of the system Γ is: ‖Γ‖ =
Γ1‖com . . . ‖comΓN . If γ contains one component, the
global model ‖γ‖ is the local model of the component.

3.2. Diagnosability

Diagnosability of discrete-event systems is a crucial
problem. Diagnosability is a property that measures the
ability of a monitoring application to diagnose faults in-
side the supervised system. The deployment of a monitor-
ing application (algorithms, sensor placements, integration)
strongly depends on how diagnosable the system is. Before
the definition of diagnosability, we introduce the notion of
scenario.

Definition 2 (Scenario) A scenario in a subsystem γ is a
transition path of ‖γ‖ whose initial state is the initial state
of ‖γ‖.

There are several definitions for diagnosability, we focus
on the classical and general definition from [13].2

1For the sake of simplicity, normal events are not considered in this
example. Empty events are not shown on the figures.

2Another definition is also given in [3] or in [1], the second definition
is too much restrictive for the kind of systems we study.



Definition 3 (Diagnosability) A fault F occurring in a
subsystem γ is diagnosable in γ iff, after the occurrence of
F , a finite sequence of events from γ is sufficient to diagnose
F with certainty.

Formally, let pF sF be a scenario of the global model ‖Γ‖
such that pF ends with the occurrence of F to the state xF

and sF is a transition path from xF , let Σobs
γ be the set of

observable events from γ, F is diagnosable in γ iff:

∀ scenario pF sF ,∃l ∈ IN : |sF | ≥ l⇒ (∀s ∈ ‖Γ‖ such that

PΣobs
γ

(s) = PΣobs
γ

(pF sF ), F occurs in scenario s).

This diagnosability definition is equivalent to the one of
[13] when the considered subsystem γ is the system Γ itself.

4. Diagnosability analysis: theory

We now turn to the description of the theoretical model-
based reasoning framework for solving the diagnosability
problem in a subsystem γ for a given fault F . This rea-
soning is based on the computation of a special finite-state
machine called the twin diagnoser. Before introducing this
machine, we present another machine called the interactive
diagnoser.

4.1. Interactive diagnoser

We consider the global model of a subsystem γ. The in-
teractive diagnoser ∆γ(F ) is an abstraction of ‖γ‖ based
on the observable events and the communication events of
‖γ‖ which is able to detect the potential occurrence of the
event F relying on the observable events and the commu-
nication events. The interactive diagnoser is formally de-
fined as follows. The global model ofγ is denoted ‖γ‖ =
(Qγ ,Σγ , Tγ , x0) with Σγ = Σcom

γ ⊕Σobs
γ ⊕Σflt

γ ⊕Σnorm
γ .

Definition 4 (Interactive diagnoser) The interactive F-
diagnoser ∆γ(F ) is a finite-state machine ∆γ(F ) =
(Q∆,Σ∆, T∆, x∆

0 ) where:

• Q∆ ⊆ Qγ × {F,¬F}; x∆
0 = (x0,¬F );

• Σ∆ = Σcom
γ ∪ Σobs

γ ; T∆ ⊆ Q∆ × Σ∆ ×Q∆.

The transition t = (x, f)
e
−→ (x′, f ′) belongs to the diag-

noser iff:

1. (x, f) is reachable from x∆
0 , and

2. there exists a path x
uo1−→ x1 . . . xn

e
−→ x′ in

‖γ‖ with {uo1, . . . , uon} ⊆ Σflt
γ ⊕ Σnorm

γ such
that: (F ∈ {uo1, . . . , uon} ⇒ f ′ = F ) ∧ (F 6∈
{uo1, . . . , uon} ⇒ f ′ = f).

Each state of the diagnoser contains a diagnosis informa-
tion about the occurrence of the fault event F . This automa-
ton represents all the possible behaviours (communication
and observable behaviours) of a subsystem. Figure 3 shows
the interactive diagnoser computed from the local model Γ1

for the fault f1 (see Figure 2), the diagnoser state (xi, f1)
denotes the fact that Γ1 in state xi and f1 has occurred and
the diagnoser state (xi,¬f1) denotes the fact that Γ1 in state
xi and f1 has not occurred.
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Figure 3. Interactive diagnoser ∆Γ1
(F ) based

on the local model of the component Γ1 for
the fault f1.

4.2. Twin diagnoser

Given one unique sequence of events (communication
events and observable events), the interactive diagnoser pro-
vides a set of diagnoser states (a belief state)3 and informs
if the fault F has not happened, may have happened or has
definitely happened. If the event sequence produces a belief
state where F may have happened, then this sequence can-
not provide a diagnosis about F with certainty. The com-
putation of the twin diagnoser for the diagnosability anal-
ysis is based on this property of the interactive diagnoser.
Formally, the twin diagnoser is obtained by composing this
interactive diagnoser with itself.

Definition 5 (Twin diagnoser) The twin F-diagnoser of γ

is Θγ(F ) = ∆γ(F )‖obs∆γ(F ).

Intuitively, the twin diagnoser is obtained by cloning the
interactive diagnoser ∆γ(F ) (clone 1 and clone 2) and by
using the composition operator ‖obs (see appendix ?? for
details) to synchronise the observable events of these two
automata. Each state x of the twin diagnoser is then com-
posed of two diagnoser states (x1, f1) and (x2, f2) having
their own diagnosis information about F (see Figure 4).

3The interactive diagnoser is non-deterministic.



This computation is a way to check if two different event
sequences from the interactive diagnoser (communication
events and observable events), having the same observable
signature (i.e the projection of those sequences on the ob-
servable events are identical), provide the same diagnosis
information about the occurrence of F .
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Figure 4. Part of ΘΓ1
(f1) = ∆Γ1

(f1)‖obs∆Γ1
(f1).

Communication event ci from clone j ∈ {1, 2}
is denoted ci, j.

Definition 6 (Ambiguity) A state x of Θγ(F ) is ambigu-
ous iff x = ((x1, f1), (x2, f2)) and f1∧f2 is not satisfiable.

Figure 4 shows ambiguous states in bold. Every transi-
tion path from the initial state of Θγ(F ) to an ambiguous
state represents two possible scenarios from γ that have the
same observable behaviour. Only one of these scenarios
contains the fault F , the other one can be either normal (no
fault event at all) or faulty (but in this case, fault events of
this behaviour are not F ).

4.3. Undiagnosable scenarios

When a model of a system (or specification) is not di-
agnosable, the purpose of the assistant is to provide the rea-
sons of the non-diagnosability. The purpose of our approach
is then to provide the scenarios that are the causes of the di-
agnosability problem.

Considering two scenarios with the same observable be-
haviour, if a fault only occurs in one of the scenarios then
the observable behaviour from the scenarios is not sufficient
to diagnose the fault with certainty. Two scenarios that have
these characteristics are said to be undiagnosable. Undiag-
nosable scenarios are formally defined as follows, with help
of a projection operation (see appendix A for details).

Definition 7 (Undiagnosable scenarios) A couple of sce-
narios σ1, σ2 in a subsystem γ are undiagnosable iff:
obs1 = PΣobs

γ
(σ1) and obs2 = PΣobs

γ
(σ2) are such that

obs1 = obs2 and F ∈ σ1 ∪ σ2 ∧ F 6∈ σ1 ∩ σ2.

Figure 5 presents such scenarios. These undiagnosable
scenarios are strongly linked to the twin diagnoser. This
link is given by the following property.

f1
x2

o1 c1

x4 x6 x7

c1

o2

c1
x1

x1

x7

c1

o2
x6

c1
x5

o1
x3

Figure 5. Two undiagnosable scenarios of Γ1.

Theorem 1 Two infinite scenariosσ1, σ2 in a subsystem
γ are undiagnosable iff there exists a transition path τ in
Θγ(F ) containing an infinite set of ambiguous states and
such that PΣcom

γ ∪Σobs
γ

(σ1) = P1(τ) and PΣcom
γ ∪Σobs

γ
(σ2) =

P2(τ) where Pi(τ) is the projection of τ on the events of the
clone i in Θγ(F ).

Proof:

(⇒) σ1, σ2 are undiagnosable so PΣobs
γ

(σ1) = PΣobs
γ

(σ2).
By definition of the twin diagnoserΘγ(F ), there exists
a transition path τ such that PΣcom

γ ∪Σobs
γ

(σ1) = P1(τ)

and PΣcom
γ ∪Σobs

γ
(σ2) = P2(τ). F ∈ σ1∪σ2∧F 6∈ σ1∩

σ2 therefore τ contains an infinite set of ambiguous
states.

(⇐) Let τ be a transition path of Θγ(F ) contain-
ing an infinite set of ambiguous states. Let
S1 = {σ, PΣcom

γ ∪Σobs
γ

(σ) = P1(τ)} and S2 =

{σ, PΣcom
γ ∪Σobs

γ
(σ) = P2(τ)}. Let σ1 ∈ S1 and σ2 ∈

S2, σ1 and σ2 are infinite and we have PΣobs
γ

(σ1) =

PΣobs
γ

(σ2). Moreover, the infinite set of ambiguous
states in τ guarantees that F ∈ σ1∪σ2∧F 6∈ σ1∩σ2,
so σ1 and σ2 are undiagnosable. �

Theorem 1 means that, given a subsystem γ, the twin di-
agnoser Θγ(F ) is a way to detect the infinite undiagnosable
scenarios for F in the subsystem γ. Figures 4 and 5 illus-
trate the relationship between the undiagnosable scenarios
and the twin diagnoser. The scenarios of Figure 5 are both
represented by a transition path in the twin diagnoser of Fig-
ure 4. This path contains an infinite set of ambiguous states.

If two scenarios σ1, σ2 in γ are undiagnosable in γ, it
does not mean yet, that F is not diagnosable inside the



subsystem γ. Those two scenarios are based on the lo-
cal behaviours, they are locally admissible. The reason
comes from the fact that behaviours in Θγ(F ) are actu-
ally local and do not take into account the interactions with
the neighbourhood (the components that communicate with
this subsystem). Some behaviours described in the interac-
tive diagnoser may not happen because the communication
events cannot be synchronised with the neighbourhood. For
this reason, behaviours involved in ambiguous cycles, may
never globally happen.

Proposition 1 Every scenario represented in Θγ(F ) is lo-
cally admissible.

The existence of σ1, σ2 in γ is based on the fact that
the communication events between γ and its neighbourhood
(i.e. the components that communicate with γ) in σ1, σ2

effectively occur. Those scenarios σ1 and σ2 exist only if
each of them is globally admissible.

Definition 8 (Globally admissible scenario) A scenario σ

in a subsystem γ is globally admissible iff there exists σglob

a scenario of the global model ‖Γ‖ such that

σ = PΣγ
(σglob).

Intuitively, if there exists a scenario σglob from ‖Γ‖
whose projection on the subsystem γ is σ, it means that all
the communication events from σ can be globally synchro-
nised, the existence of σ is consistent with the system.

If we prove that there exists at least two infinite undiag-
nosable scenarios in γ that are globally admissible, then we
prove that F is not diagnosable in γ.

Theorem 2 F is diagnosable in the subsystem γ iff there is
no couple of infinite undiagnosable scenarios inγ that are
globally admissible.

The result is a direct consequence of the definitions 2, 7
and 8.

4.4. Feedbacks from the diagnosability analysis

From this theoretical framework, we can deduce some
results that the assistant can provide to the Designer.

1. If, inside the component-based model, we are able to
find a subsystemγ in which every existing undiagnos-
able scenario is not globally admissible, then the assis-
tant can provide the fact that F is diagnosable on that
subsystem γ. From a design point of view, it means
that for the given specification, F is diagnosable and
there exists a subsystem γ whose monitoring is suffi-
cient to diagnose any occurrence of F . From a moni-
toring point of view, it is very interesting because the
smaller the subsystem is, the less costly the monitoring
is.

2. If, for a given subsystem γ, we detect undiagnosable
scenarios that are globally admissible, in order to make
F diagnosable on that subsystem, the Designer has to
respecify only part of this subsystem in order to elim-
inate the undiagnosable scenarios from the specifica-
tion.

5. Algorithm

The design assistant algorithm performs the diagnosabil-
ity analysis in a decentralised way (see Algorithm 1).

5.1. Decentralised algorithm

The algorithm takes as input the current component-
based specification, a faultF and a set of components γN .
The subsystem γN is given as an input for two main rea-
sons.

1. The Designer may specify a particular subsystem on
which the analysis of the diagnosability of F has to be
checked.

2. It is a way to limit the computation in case that the
system is large. If the diagnosability analysis is not
complete after the analysis of γN , the algorithm pro-
vides an approximation of the result that is useful for
the Designer.

The main idea of the algorithm is to firstly check the
diagnosability of F locally (in Γ1) (lines 4-6). For this
purpose, the twin diagnoser of Γ1 is computed and we ex-
tract from it only the states and transitions that are involved
in infinite undiagnosable scenarios (line 5), soUdsΓ1

be-
comes just a subpart of ΘΓ1

(F ). Inside UdsΓ1
, there are

maybe couples of infinite undiagnosable scenarios that have
no communication events at all, in that case, we already
know they are globally admissible since no further synchro-
nisation operations can remove them: those scenarios are
thus removed from UdsΓ1

and put in GaudsΓ1
(line 6). In

GaudsΓ1
is empty and UdsΓ1

is not, then we cannot decide
yet that F is not diagnosable in Γ1. UdsΓ1

then contains in-
finite undiagnosable scenarios whose global admissibility is
not certain yet, a checking is required. To check the global
admissibility of the scenarios UdsΓ1

, the algorithm is based
on the following result.

Theorem 3 Let γ1 and γ2 be two disjoint subsystems,
Θγ1∪γ2

(F ) = Θγ1
(F )‖comΘγ2

(F ).

Proof idea: This result is based on the fact that ‖ is an
associative and commutative operation.

Theorem 3 allows the computation of a twin diagnoser
based on two other twin diagnosers. The consequence is



that, if we select a component Γi (line 9) and we compute
the twin diagnoser of Γi, then ΘΓi

(F )||comUdsΓ1
is a part

of Θ{Γ1,Γi}(F ) that is generally smaller than Θ{Γ1,Γi}(F )
so its computation is more efficient. All the undiagnos-
able scenarios of UdsΓ1

are checked with Γi because of
the synchronisation. Moreover, by construction, all the in-
finite undiagnosable scenarios that are locally admissible in
Θ{Γ1,Γi}(F ) are included in ΘΓi

(F )||comUdsΓ1
.

Once ΘΓi
(F )||comUdsΓ1

is computed (line 11), the al-
gorithm proceeds as before by extracting the scenarios (line
12) that can be automatically detected as globally admis-
sible in ΘΓi

(F )||comUdsΓ1
(such scenarios do not con-

tain communication events that are shared with components
other that Γ1 and Γi).

The algorithm stops for several reasons:

1. Gaudsγ 6= ∅: in that case, the algorithm founds out
that F is not diagnosable in γ ⊆ γN because of the
presence of globally admissible scenarios described in
Gaudsγ . In that situation, we know that F is not diag-
nosable in any subsystem that contains γ.

2. Gaudsγ = ∅ ∧ Udsγ = ∅: in that case, the algorithm
founds out that F is diagnosable in γ. Every occur-
rence of F can be diagnosed after a finite sequence of
events from γ.

3. γ = γN ∧ Udsγ 6= ∅ ∧ Gaudsγ = ∅: in that case,
the algorithm is incompletely conclusive. F may be
diagnosable because no global admissible scenario has
been found yet. Other components, not included in
γN , have to be taken into account.

5.2. Complexity discussion

Computing the twin diagnoser Θγ(F ) of a subsystem γ

is exponential to the number of components in γ in the worst
case.In [8], the diagnosability analysis consists in comput-
ing ΘΓ(F ) so it is O(2N ) where N is the number of com-
ponents in the system.In Algorithm 1, the complexity is the
worst case is O(2M ) where M is the number of compo-
nents in γN . So computing the undiagnosable scenarios is
still, in the worst case, an exponential task in the number
of components. Nevertheless, our approach is more effi-
cient in practice. In the case where F is diagnosable, only a
few components in the neighbourhood make F diagnosable.
Then, with the neighbourhood selection (line 9), it is likely
that the algorithm will find such a neighbourhood ifγN is
big enough. Moreover, the algorithm uses a decentralised
approach, therefore, in practice, it computes only parts of
Θγ(F ) (the undiagnosable parts). Another advantage of our
algorithm is its incrementality. Even if we cannot compute
a subsystem for which F is diagnosable, we are still able
to provide for smaller subsystems a set of undiagnosable
scenarios that are locally admissible.

Algorithm 1 Undiagnosable scenarios of fault F

1: Input: Component-based specification{Γ1, . . . ,ΓN}
2: Input: F a fault event occurring in the component Γ1

3: Input: Neighbourhood γN
4: Compute the twin diagnoser ΘΓ1

(F )
5: UdsΓ1

← UndiagScenarios(ΘΓ1
(F ))

6: GaudsΓ1
←RemoveGlobAdmissibleScenarios(UdsΓ1

)
7: γ ← {Γ1}
8: while Gaudsγ = ∅ ∧ Udsγ 6= ∅ ∧ γ 6= γN do
9: Γi ← SelectComponent(γ, γN )

10: Compute the twin diagnoser ΘΓi
(F )

11: Udsγ∪{Γi} ← UndiagScenarios(ΘΓi
(F )‖comUdsγ)

12: Gaudsγ∪{Γi} ←
RemoveGlobAdmissibleScenarios(Udsγ∪{Γi})

13: γ ← γ ∪ {Γi}
14: end while
15: if Udsγ = ∅ then
16: if Gaudsγ 6= ∅ then
17: Print “F is not diagnosable in any subsystem in-

cluding γ. See Gaudsγ .”
18: else
19: Print “F is diagnosable in γ.”
20: end if
21: else
22: if Gaudsγ 6= ∅ then
23: Print “F is not diagnosable in any subsystem in-

cluding γN . See Gaudsγ and Udsγ”
24: else
25: Print “F may be diagnosable in γN . See Udsγ .

Other computation required”
26: end if
27: end if

6. Results

6.1. Running example

In the running example (see Figure 2), two faults can oc-
cur: f1 and f2. f2 is not diagnosable in the subsystem {Γ2}
because every infinite scenario inΓ2 has the same observ-
able behaviour. However, f2 is diagnosable in {Γ2,Γ3} be-
cause Γ3 discriminates the occurrence of the events c1 and
c2 of Γ2. The observation of the sequences o3, o5 or o5, o3
in the subsystem γ = {Γ2,Γ3} is sufficient to diagnose the
occurrence of f2 with certainty, whatever the observations
of Γ1 are. As far as the fault f1 is concerned, there is no
subsystem in which it is diagnosable. The scenarios of Fig-
ure 5 are undiagnosable and globally admissible in Γ1, they
can be extracted from GaudsΓ generated by Algorithm 1.
The main problem of the non-diagnosability of f1 is that the
future of f1 is exactly the same as the future of c1 (see Fig-
ure 5). In order to make f1 diagnosable, it is sufficient to
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Figure 6. Example of component-based sys-
tem: telecommunication network

change this fact in the new specification so that this couple
of undiagnosable scenarios do not happen any more.

6.2. Experimental evaluation

We have implemented a prototype to evaluate the im-
provement of our decentralised algorithm compared to the
centralised method of [8]. We have run it on an example ex-
tracted from a telecommunication network model (see [12]
for details). This model is an extract from a real-world sys-
tem. It defines communication protocols between station
controls CS and switches SW in order to manage flows of
data between switches. Only the switches are observable.
A topology of this network is presented in Figure 6.

This example contains 4 types of faults (each compo-
nent of the same type has the same types of fault) and is
modelled with 9 components (2 components are required
to model a switch). The global model ‖Γ‖ of this system
contains 124128 states and 532748 transitions. Even if the
system is simple, computing the diagnosability of a fault
with a centralised approach has not been possible with our
computational resources4 due to the lack of memory and
time. The interactive diagnoser for one fault contains on
average 300000 states and 1000000 transitions, so the state
space of the corresponding twin diagnoser is 9 × 1010 in
the worst case. With our approach, we were able to find out
that three of the four fault types are diagnosable. This result
has only been obtained by computing only 1701 states and
4212 transitions. The small number of states and transitions
comes from the fact that the subsystem in which each fault
is diagnosable, is at the most composed of 3 components (a
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CSi components and the 2 components of a switch SWi).
Another consequence of this analysis is the fact that, to di-
agnose this type of fault, the observations from one switch
are sufficient so the monitoring of the observations from the
other switches are not required. As far as the undiagnosable
fault is concerned, we were able to compute the undiagnos-
able scenarios for a γN containing 6 components in a few
seconds which is an excellent response time for a design
assistant. This result has been obtained by only computing
only 22734 states and 115278 transitions. From the result-
ing undiagnosable scenarios that are all just locally admis-
sible, we have noticed that, in that particular case, only two
components of the neighbourhood bring diagnosability in-
formation. The other ones do not remove undiagnosable
scenarios at all in the component where the fault occur. As
a consequence, it is very likely that the scenarios we have
computed are actually globally admissible.

7. Related work

Diagnosability of discrete event systems has been stud-
ied for ten years and there is a significant amount of work
dealing with this issue, both in the AI community [3], [1],
[10] and in the Control community [13], [8], [5], [14].
In most of the previous works, the diagnosability analy-
sis share the same weaknesses. First, they just detect if
a system is diagnosable or not, no other informative feed-
back, like undiagnosable scenarios, is provided. The second
weakness of the previous works comes from the fact that the
diagnosability analysis is performed globally without taking
into account the distributed nature of component-based sys-
tem. The first diagnosability method is based on the classi-
cal diagnoser approach [13]. This diagnoser is a finite-state
machine based on the global model of the system which is
able to efficiently perform on-line diagnosis. The diagnos-
ability checking problem is then equivalent to the detection
of ambiguous paths in this diagnoser. The main problem of
this approach is that, given the global model ‖Γ‖, the com-
putation of the diagnoser has an exponential complexity. [8]
and [14] propose to improve the classical approach by the
use of a global twin-plant method (also called global veri-
fier) whose computation is only polynomial but still based
on the global model. [1] proposes an identical technique
to check a more restrictive diagnosability property on dy-
namical systems that is implemented with a symbolic model
checker. In [3], the diagnosability problem is defined as a
consistency problem between relevant observations and the
global system description using process algebra.

8. Conclusion and Perspectives

Diagnosability analysis cannot be reduced to find ayes-
or-no answer. The systems become larger and larger and



we need to get more information from the diagnosability
analysis of those systems: this is the motivation of this ap-
proach. To our knowledge, this method is the first attempt
to solve this crucial problem by providing granular infor-
mation about the reasons why a system specification is not
diagnosable. Since the algorithm is decentralised, the di-
agnosability analysis takes into account the fault location
first and can detect undiagnosable scenarios faster than any
centralised approaches. The algorithm is incremental and
can be used interactively during the design process to build
a diagnosable system. In order to reduce the cost of fault
diagnosis, the Designer has to specify a system so that the
fault can be diagnosed in a small subsystem. This specifi-
cation depends on sensor placements (what is observable?
what is the sensor cost?) and on communication protocols
between components.

The main perspective of this approach is to extend this
assistant to provide more accurate requirements for the
system monitoring in order to automatically generate an
optimal fault diagnosis algorithm for a particular system.
Firstly, if the fault is diagnosable in a subsystem, we can
use this information to implement a specialised and light
diagnosis algorithm for that particular fault based on that
particular subsystem. Secondly, in case of a specification
where faults are not diagnosable, it is still possible to im-
plement a diagnosis algorithm that takes into account this
fact. If a fault is not diagnosable, then there exist some situ-
ations when the fault will never be diagnosed with certainty
and the diagnosis process will detect it and will have the
possibility to stop definitely. The second perspective is to
use this assistant to provide an active monitoring system.
Active monitoring means that, given a fault diagnosis at a
given time that is not certain yet, the monitoring system will
be able to automatically activate tests on the system (if the
system allows such actions) in order to remove any ambi-
guity. Activating tests is a way to control the system so that
undiagnosable scenarios do not occur.

A. Composition/Projection operators

Composition: Let {Ai}i∈{1,...,m} be m automata on the
m set of events {Ei} and E a set of events (s.t. ε 6∈ E)
from the automata. The composition ‖E is such that the au-
tomatonA = A1‖E . . . ‖EAm is the subpart of the cartesian
product containing the synchronised transitions. A transi-
tion t = (x1

e1−→ x′
1, . . . , xm

em−→ x′
m) is synchronised

according to E iff

(∃j ∈ {1, . . . ,m} : ej 6∈ E ∧ ∀i ∈ {1, . . . ,m} \ {j} : ei = ε)

∨((∃j ∈ {1, . . . ,m} : ej ∈ E) ∧ (∀i ∈ {1, . . . ,m} :

(ej ∈ Ei ⇒ ei = ej) ∧ (ej 6∈ Ei ⇒ ei = ε))).

A represents the behaviour of {Ai}i∈{1,...,m} where
only the events of E are synchronised. By definition, ‖E

is an associative and commutative operator. We denote by
‖com (resp. ‖obs ) the composition operator synchronised
on the communication events (resp. observable events) in-
volved in the automata to compose.

Projection: Let A be an automaton based on the set of
events Σ and Σ′ be another set of events. A represents the
prefix-closed languageL. The projection PΣ′(L) of L on
Σ′ is defined as follows. ∀w ∈ L : PΣ′(w) = ε if w ∈
Σ \ Σ′, w if w ∈ Σ′PΣ′(u)PΣ′(v) if w = uv ∧ u ∈ Σ. We
denote by PΣ′(A) an automaton which represents PΣ′(L).
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