
Diagnosability analysis of distributed discrete event
systems

Yannick Pencolé 1

Abstract. This paper addresses the diagnosability problem of
distributed discrete event systems. Until now, the problem of
diagnosability has always been solved by considering centralised
approaches, monolithic systems. These approaches do not use
the fact that real monitored systems are generally modelled in a
distributed manner. In this paper, we propose a framework for the
diagnosability analysis of such systems: we study the diagnosability
of the system using the fact that it is based on a set of communicating
components. In the case where the system is not diagnosable, we
also want to provide more accurate information in order to better
understand the causes.

1 INTRODUCTION

For many years, the problem of fault diagnosis in monitored dis-
crete event system has been receiving an increasing interest from
both the model-based diagnosis and the control communities. The re-
sults from the control community mainly consist of theoretical prop-
erties about diagnosability of such systems [7, 9, 5, 11] and in the
meantime, the Model-Based Diagnosis community focuses on the
feasibility of diagnosis approaches for discrete event systems in real
applications [1, 6, 12]. Until now, the diagnosability analysis has al-
ways been based on a central approach: the knowledge about the sys-
tem is assumed to be a monolithic transition system, an automaton.
Dealing with real applications of the field such as telecommunica-
tion networks, power distribution networks, the hypothesis is clearly
unrealistic because of the size of those applications. Moreover, the
diagnosability property is not studied by taking into account the fact
that such systems are distributed.

The objective of this paper is to fill two gaps. Firstly, it addresses
the problem of diagnosability by taking into account properties of
distributed discrete event systems. Secondly, it proposes a way to
analyse the diagnosability of the system in a decentralised way with-
out the use of a global model of the system. Moreover, in the case
where the system is not diagnosable, we want to provide accurate
reasons that make the system not diagnosable.

The paper is presented as follows. Section 2 describes the model
formalism used in the paper. Section 3 briefly introduces the diag-
nosability property we want to check. Section 4 describes the decen-
tralised framework which will serve to analyse the diagnosability of
any given system, followed by an algorithm using this framework in
section 5. The paper ends with the description of an example (section
6) and some related works (section 7).

1 The Australian National University, Canberra, Australia email: Yan-
nick.Pencole@anu.edu.au

2 MODEL OF THE SYSTEM

The kind of systems we consider is a set of components which evolve
by the occurrence of events. The components can communicate each
other by the exchange of events. Such a discrete event system can be
modelled as a set of automata [7], each automaton representing the
model of component, i.e. a local model.

Definition 1 A local model Γi is an automaton Γi =
(Qi, Ei, Ti, q0i) where:

• Qi is a finite set of states;
• Ei is the set of events occurring on Γi;
• Ti ⊆ Qi × Ei ×Qi is the set of transitions;
• q0i is the initial state.

The set Ei can be divided into four disjoint sets.

1. Ni are the normal events. If an event ni ∈ Ni occurs on the com-
ponent then the component can change its internal state. The event
ni can only occur on this component.

2. Fi are the faulty events. If an event fi ∈ Fi occurs on the compo-
nent then the component becomes faulty and the label of the fault
is fi. The fault fi can only occur on this component.

3. Oi are the observable events. If an event oi ∈ Oi occurs on the
component then this event is observed by a supervisor of the sys-
tem. The event oi can only occur on this component.

4. Ci are the communication events. If an event ci ∈ Ci occurs on
the component then this event occurs at least on another compo-
nent.

x1

x5

x6x7

x4

x2

x3

o1

f1

o1

o2

c1c1

c1

c1

c1

C1

y1

y2

f2

y3

c2

o3

y4

c1

y6

o3

y5

o3

c1

C2

z1c1 c2

o4 o5z2 z3

C3

Figure 1. Model of a system defined by three local models



Figure 1 presents a system composed of three local models de-
fined as above. The events fi are the fault events, the events ci are the
communication events and the events oi are the observable events.
For the sake of simplicity there are not normal events in this example.

We call a subsystem any non-empty set of components of the sys-
tem. The model of a subsystem is defined by the set of the local
models of its components and an operation based on the synchro-
nised product of the local models. Given the local models and the
synchronisation operation, it is possible to obtain a unique automa-
ton representing the whole subsystem: this automaton is called the
global model of the subsystem.

Before introducing the global model, we present a general pred-
icate for the synchronisation of a set of transitions. For the reason
of clarity in the synchronisation definition, we consider that for each
state s of each local model, the transition s

ε
−→ s exists where ε is

the null event. Such a transition allows the component to stay in its
state whereas other components may change their own internal state.
Given (t1, . . . , tm) a set of transitions and E a set of events such that
ε 6∈ E , the predicate Sync((t1, . . . , tm), E) defines the synchronised
conditions on (t1, . . . , tm) as follows:

Sync((t1, . . . , tm), E) ≡

(∃j ∈ {1, . . . , m} : tj 6∈ E ∧ ∀i ∈ {1, . . . , m} \ {j} : ti = ε)

∨((∃j ∈ {1, . . . , m} : tj ∈ E)∧

(∀i ∈ {1, . . . , m} : (ti ∈ E ⇒ ti = tj) ∧ (ti 6∈ E ⇒ ti = ε))).

Let n be the number of local models of the system, the global
model of any subsystem {Γi1 , . . . , Γik

} where {i1, . . . , ik} ⊆
{1, . . . , n}, k ≥ 1 is defined as follows.

Definition 2 The global model of the subsystem is the automaton
γ = (Q, E, T, q0) where:

• Q ⊆ Qi1 × . . .×Qik
is the set of states;

• E =
⋃ik

j=i1
Ej is the set of events;

• q0 = (q0i1 × . . .× q0ik
) is the initial state;

• T ⊆ Ti1 × . . .× Tik
is the set of transitions defined as follows:

(ti1 , . . . , tik
) ∈ T ≡ Sync((ti1 , . . . , tik

),

ik⋃

j=i1

Cj).

In the following, a transition t = (ti1 , . . . , tik
) of a global model

will be noted (qi1 , . . . , qik
)

e
−→ (q′i1 , . . . , q′ik

) where tij
= qij

eij
−→

q′ij
and e = ε if ∀j ∈ {1, . . . , k}, eij

= ε and e = eij
if ∃j ∈

{1, . . . , k} : eij
6= ε.

The global model of a subsystem containing only a component is
the local model of this component. The global model of the system
(noted Γ) corresponds to the global model of the biggest subsystem.

The global model Γ represents the behaviour of the whole system
upon the hypothesis that communication events that are shared by
a set of components, effectively occur on these components at the
same time. To end with the characteristics of the considered systems,
an assumption is introduced.

Assumption 1 All the components of the system are free of observa-
tion starvation.

This hypothesis means first that from any state of a component, it
will emit observations in the future (the observable language of the

component is live) and secondly the first observation will be emitted
in a finite delay (the number of events occurring in all the compo-
nents before the occurrence of this observation is supposed to be fi-
nite). This hypothesis has two purposes. Firstly, even if a component
is modelled with silent cycles (for compactness reasons), the hypoth-
esis states that the probability that during one execution the system
stays in such a silent cycle is null. Secondly, even if a component can
emit a infinite sequence of observable events, the hypothesis states
that the probability that during one execution of the system such a
sequence is emitted, is null.

3 DIAGNOSABILITY OF THE SYSTEM

There are several definitions of diagnosability depending on the kind
of systems and the diagnosis approach [7], [3], [2]. The model pre-
sented above is for monitored dynamical systems and the methods
used to diagnose those systems are on-line diagnosis approaches. In
that case, the well-suited diagnosability property to analyse is the
one of [7] which states that a system is diagnosable if, given a flow
of observations, it will be possible in a finite delay to diagnose all the
faults that have occurred on the monitored system.

3.1 Definitions

The diagnosability property we want to check is closer from the one
of [7] and can be informally described as follows.2

Definition 3 A fault f is diagnosable iff there is a finite number l of
observations after the occurrence of f , so that we are sure that f has
effectively occurred.

More formally, let pf be a path of transitions in Γ from q0 ending
with the occurrence of f to the state qf and let sf be a path of transi-
tions in Γ from qf . Let Obs(p) be the observable sequence produced
by any transition path p from q0 and let Obs−1(p) be the set of paths
p′ from q0 in Γ such that Obs(p′) = Obs(p). f is diagnosable iff:

∀pf , sf , ∃l ∈ IN : |Obs(sf )| ≥ l⇒

(∀p ∈ Obs
−1(pfsf ), f occurs in p).

Definition 4 A system is diagnosable iff every fault event f is diag-
nosable.

3.2 Diagnosability for distributed DES

This section presents the diagnosability property of a system taking
into a account the fact that the system is modelled as a set of au-
tomata.

Definition 5 A fault f occurring on a subsystem is locally diagnos-
able iff there is a finite number l of observations from the subsystem
after the occurrence of f , so that we are sure that f has effectively
occurred on the subsystem.

This diagnosability definition is similar to the one presented
above. The difference is that only the observations from the subsys-
tem are considered. Let γ be a subsystem, let Obsγ(p) be the ob-
servable sequence obtained by the projection of Obs(p) (see above)
to the observable events of γ and let Obs−1

γ (p) be the set of paths p′

2 The definition is not exactly the same as in [7] because the given hypotheses
on the model are not exactly the same. Nevertheless, the main idea is kept.

2



in Γ such that Obsγ(p′) = Obsγ(p), then f is locally diagnosable
iff:

∀pf , sf , ∃l ∈ IN : |Obsγ(sf )| ≥ l⇒

(∀p ∈ Obs
−1

γ (pfsf ), f occurs in p).

Definition 6 A subsystem is locally diagnosable iff every fault oc-
curring on that subsystem is locally diagnosable in the subsystem.

By definition, if the subsystem γ is the system itself, the local di-
agnosability definition is equivalent to the diagnosability definition.

Proposition 1 Under the assumption 1, if f is locally diagnosable
on a subsystem then f is diagnosable.

Proof: f is locally diagnosable in the subsystem γ, so there is a finite
number l of observations from the subsystem γ after the occurrence
of f so that the occurrence of f is sure. Because of the hypothesis 1,
each of the l observations from the subsystem γ occurs after a finite
number of observations from the other components. It follows that
the number of observations after the occurrence of the lth local one
is finite: f is diagnosable.

4 DECENTRALISED FRAMEWORK

On this section, we present a framework for checking the diagnos-
ability of a fault F occurring on a component i. The framework is
decentralised in the sense that the computation of the global model Γ
of the system is not needed.

Definition 7 The non-deterministic local F-diagnoser ∆F
i is a finite-

state machine ∆F
i = (Q

∆F
i

, E
∆F

i
, T

∆F
i

, q0
∆F

i

) where:

• Q
∆F

i
⊆ Qi × {{F}, ∅} is the finite set of states;

• E
∆F

i
= Oi ∪ Ci;

• T
∆F

i
⊆ Q

∆F
i
× E

∆F
i
×Q

∆F
i

is the set of transitions;

• q0
∆F

i

= (q0i, ∅) is the initial state.

The transitions of T
∆F

i
are the transitions (q, f)

e
−→ (q′, f ′)

reachable from the initial state q0
∆F

i

= (q0i, ∅) such that: there

exists a transition path q
uo1−→ q1 . . . qm−1

uom−→ qm
e
−→ q′ in

the model Γi with uoj 6∈ Oi ∪ Ci, ∀j ∈ {1, . . . , m} and f ′ =
f ∪ ({F} ∩ {uo1, . . . , uom}).

This local F -diagnoser is inspired from the non-deterministic
global diagnoser from [5]. This diagnoser is able to diagnose the fault
F given the sequence of observable and communication events pro-
duced by the component. Figure 2 shows the f1-diagnoser computed
from the local model of the component C1 (see Figure 1).

The purpose of the F -diagnoser is to be synchronised with itself
to obtain the F -verifier as follows.

Definition 8 The local F -verifier VF
i is the automaton

(Q
VF

i
, E

VF
i

, T
VF

i
, q0

VF
i

)

• Q
VF

i
⊆ Q

∆F
i
×Q

∆F
i

is the finite set of states;

• E
VF

i
= Oi ∪ (Ci × {left, right});

• q
0F
Vi

= (q0
∆F

i

, q0
∆F

i

) is the initial state;

• T
VF

i
⊆ T

∆F
i
× T

∆F
i

is the set of transitions defined as follows:

(tl, tr) ∈ T ≡ Sync((tl, tr), Oi).

x1,{}

x3,{}

c1

x5,{}

o1

c1 x6,{}

c1

o1

x7,{}

x4,{f1}

c1

x6,{f1}

x7,{f1}o2

o2

c1

c1

Figure 2. f1-diagnoser based on the local model of the component C1.

The F -verifier is obtained by synchronising the observable events
of two identical F -diagnoser (a left one and a right one). It follows
that the F -verifier contains non-synchronised communication events
from both diagnosers. A communication event c from the left diag-
noser is noted (c, left) and a communication event c from the right
diagnoser is noted (c, right). Figure 3 shows a part of the f1-verifier
based on the f1-diagnoser from Figure 2. In the figure, a communi-
cation event (c, left) is abbreviated by (c, l) and (c, right) is abbre-
viated by (c, r).

x1,{}
x1,{}

c1,l
x3,{}
x1,{}

o1

x5,{}
x4,{f1}

x3,{}
x3,{}

c1,r

o1
x5,{}
x5,{}

c1,r
x5,{}

x6,{f1}
x6,{}

x4,{f1}

c1,l

c1,r c1,l

x6,{f1}
x6,{}

o2
x7,{}

x7,{f1}

x7,{} x6,{}
x7,{f1}x6,{f1}

c1,r c1,l

c1,l c1,r

Figure 3. Part of the f1-verifier based on the f1-diagnoser.

A transition path of the F -verifier represents the parallel execution
(communicating events) of two identical components which produce
the same observable sequence regarding the potential occurrence of
the fault F . A state ((x1, f1), (x2, f2)) of the F -verifier such that
f1 6= f2 is said to be F -ambiguous. Such a state means that there
exists at least two different executions of the same component which
produce the same observable sequence, one is faulty and the other is
not.

Proposition 2 If the F -verifier VF
i has no cycle of F -ambiguous

states containing at least an observable event, then F is locally di-
agnosable with respect to the component where F occurs.

3



Proof: This result derives from [5]. If the F -verifier has no cycle
of F -ambiguous states with an observable inside, it means that the
occurrence of F becomes certain after the occurrence of a finite set
of observable events from the component.

If there is such a cycle of F -ambiguous states in the F -verifier,
it does not mean that F is not locally diagnosable. Indeed, such a
cycle may exist in VF

i based on the hypothesis that every commu-
nication event in the component Γi can effectively occur. In order
to be sure that a fault is not locally diagnosable, we need to check
if those communication events are valid with respect to the compo-
nents which share the events. Moreover, a communication event in a
component can be the cause of observable events from other compo-
nents, so such an event can be discriminating and F can be locally
diagnosable in a bigger subsystem containing the component where
it might occur.

In the following, we present new data structures which help to
detect if F is effectively locally diagnosable on a bigger subsystem.
We consider Γj a component different from Γi, where F does not
occur (F can only occur on Γi).

Definition 9 The local diagnoser ∆j of the component Γj is a finite-
state machine ∆j = (Q∆j

, E∆j
, T∆j

, q0∆j
) where:

• Q∆j
⊆ Qj is the finite set of states;

• E∆j
= Oj ∪ Cj;

• T∆j
⊆ Q∆j

× E∆j
×Q∆j

is the set of transitions;
• q0∆j

= q0j is the initial state.

The transitions of T∆j
are the transitions q

e
−→ q′ reachable from

the initial state q0∆j
= q0i such that: there exists a transition path

q
uo1−→ q1 . . . qm−1

uom−→ qn
e
−→ q′ in the model Γj with uoj 6∈

Oj ∪ Cj , ∀j ∈ {1, . . . , m}.
This diagnoser is able to follow the state of a component given the

sequence of observable and communication events produced by this
component. The only difference in the building of ∆j and ∆F

i is that
∆j does not contain any failure information.3

As for the F -diagnoser, we use ∆j to compute the local verifier
Vj defined as follows.

Definition 10 The local verifier Vj is the automaton
(QVj

, EVj
, TVj

, q0Vj
)

• QVj
⊆ Q∆j

×Q∆j
is the finite set of states;

• EVj
= Oj ∪ (Cj × {left, right});

• q0Vj
= (q0∆j

, q0∆j
) is the initial state;

• TVj
⊆ T∆j

× T∆j
is the set of transitions defined as follows:

(tl, tr) ∈ T ≡ Sync((tl, tr), Oj).

The computation of Vj based on ∆j is strictly identical to the com-
putation of VF

i given ∆F
i . A transition path of a local verifier repre-

sents the parallel execution (communicating events) of two identical
components which produce the same observable sequence.

3 The presented structure is the minimal one. If we need to have a deeper
analysis of the F diagnosability by comparing with the occurrence of other
faults and detecting if F is not diagnosable because of another fault, we
can compute the diagnoser with fault information. This will result as an
increasing of the complexity.

Merge of the verifiers In order to check the diagnosability of F ,
the idea basically consists in merging the verifier VF

i with the ver-
ifiers Vj , j ∈ {1, . . . , n} \ i. The merge operation of two verifiers
is based on a synchronised product where the synchronisations are
on the communication events (the left communication events of VF

i

with the left ones of Vj and the right communication events of VF
i

with the right ones of Vj). Given a path of VF
i and a path of Vj , the

result is a set of paths: each path represents the parallel execution of
the subsystem {Γi, Γj} with itself which produces an identical ob-
servable sequence from the subsystem {Γi, Γj}. The result of this
merging is a verifier for F in the subsystem {Γi, Γj}. To detect if F

is locally diagnosable in this new verifier, it suffices to detect if there
is no cycle of ambiguous states which contains at least an observ-
able event from Γi and an observable event from Γj . If such a cycle
does not exist, it means that after a finite number of observations
from {Γi, Γj} (necessarily coming from both Γi and Γj because of
the assumption 1) the verifier is in a non-ambiguous state, so F is
locally diagnosable in {Γi, Γj}. We can reiterate the same kind of
reasoning to merge another verifier Vk with the one of {Γi, Γj} until
we get the F verifier for the whole system.

The next section describes an algorithm for checking the local di-
agnosability of F using this framework. The main idea of the algo-
rithm is to detect if F is locally diagnosable as soon as possible.

5 ALGORITHM

Given the F -verifier of the component Γi where F might occur, the
first operation is to delete the states and the transitions that are not
the cause of a diagnosability problem. The deletion is done with the
procedure DeleteNonAmbiguity . This procedure consists in keep-
ing only the paths from the initial state of the verifier to cycles of
ambiguous states which contain at least an observable event. Then,
the algorithm proceeds as follows. We need to check if those cy-
cles are valid or not according to the other components, so we need
to validate or invalidate communication events. Given Γj a com-
ponent which communicates with the component Γi, its local veri-
fier Vj is computed. By synchronisation on communicating events
(Synchronise(V,Vj , Sync((t, tj), C)) (see the above section) be-
tween V and Vj , a new verifier is obtained. The next operation con-
sists in deleting from this new verifier the communication events that
are only shared between components inside this new verifier, they are
not useful any more because they cannot invalidate more paths in the
future, this operation is interesting because it increases the efficiency
of future merging by compacting the current verifier. We apply then
the deletion of the states and the transitions that are not the cause of a
diagnosability problem. This procedure consists here in keeping only
the paths from the initial state of the verifier to cycles of ambiguous
states which contain at least an observable event from each com-
ponent from componentsOf (V). The process is reiterate until V is
empty or there is at least a path in V with only observable events that
contains a cycle of ambiguous states (notDiagnosable predicate).
Finally, if V is empty, it means that there is no cycle of ambiguous
states (the last call to DeleteNonAmbiguity has deleted every state,
no cycle has been found) that show the fault is locally diagnosable
inside the subsystem represented by V . If V is not empty, then V con-
tains paths with only observable events. In that case F is not locally
diagnosable in the current subsystem, and because there is no more
way to invalidate those paths, it means that F is not diagnosable in
the whole system.

4



Algorithm 1 Diagnosability analysis

Input: {Γ1, . . . , Γn} the decentralised model of the system
Input: F a fault event occurring on the component Γi

Compute the F-verifier Vi

V ← DeleteNonAmbiguity(Vi)
C ← {Γ1, . . . , Γn} \ {Γi}
while V 6= ∅ ∧ C 6= ∅ ∧ notDiagnosable(V) do

Take Γj from C such that Γj shares communication events with
componentsOf (V)
Compute Vj ; Let C be the set of communication events (e, s) with
s ∈ {left, right} shared by V and Vj

V ← Synchronise(V,Vj , Sync((t, tj), C))
V ← AbstractCommunicationEvents(V)
V ← DeleteNonAmbiguity(V)

end while
if V = ∅ then

return “F is diagnosable on componentsOf (V)”
else

DeletePathsContainingCommunicationEvents(V)
return “F is not diagnosable. Every time a diagnoser will see an
observable sequence from componentsOf (V) which is in V , F
will not be diagnosable”.

end if

6 EXAMPLE RESULTS

This section presents the diagnosability analysis of the model pre-
sented in Figure 1.

6.1 Analysis of the fault f1

The fault f1 occurs on the component C1. According to the f1-verifier
(see Figure 3), there are cycles of ambiguous states containing an ob-
servable event. As a consequence, a merge of the verifiers is needed.
After the merge of the three verifiers, the result is that f1 is not diag-
nosable. The algorithm returns the observable language represented
in Figure 4 (the doubled circles are the acceptor states of an automa-
ton representing a language). The considered subsystem is the sys-
tem itself. If the system produces a sequence observation part of this
language then f1 will not be diagnosed as sure, there is an ambiguity.

o3

o1

o5

o5

o3

o1

o4

o4o3

o3

o4 o3
o3

o2
o3 o4

o2

o4 o3

Figure 4. Ambiguous observable language for f1.

6.2 Analysis of the fault f2

The fault f2 occurs on the component C2. According to the f2-
verifier, there are cycles of ambiguous states containing the observ-
able event o3. The reason is that the component C2 produces one
kind of observable events and f2 cannot be diagnosed with the only
occurrences of o3. By merging the f2-verifier with the local verifier
of C3, the ambiguous cycles disappear. The main reason is that the

occurrence of f2 is detected by the communication event c2. In the
component C3, c2 is detected by the occurrence of o5. As a conse-
quence f2 is diagnosed when o5 occurs. f2 is therefore locally diag-
nosable on the subsystem {C2, C3}, so f2 is diagnosable.

6.3 Comparison with a centralised approach

This section presents a comparison of the search spaces between the
decentralised approach we propose and the centralised approach of
[5] for that simple example. In the centralised approach of [5], the
global model is needed (it contains 43 states and 76 transitions).
Then, the f1-diagnoser is computed (without communication events
because they are not useful in a centralised approach) which con-
tains 53 states and 100 transitions. And finally, a cycle of ambiguous
states is searched in the state space of the f1-verifier which contains
99 states and 151 transitions.

Whereas the studied example is very simple, the search spaces of
the decentralised approach are clearly smaller. The f1-verifier only
contains 19 states and 23 transitions and the successive mergings of
the f1-verifier and the other local verifiers produce transition systems
with 25 states and 30 transitions for the first merge and 26 states and
33 transitions for the second one. Due to the fact that we successively
merge the verifiers and delete information that are not necessary for
the diagnosability checking, our search spaces are smaller than the
global model of the system that is the first requirement of any cen-
tralised approaches.

This comparison needs to be extended to bigger examples but we
think that the decentralised approach will provide promising results
and extend the capability for the diagnosability analysis of bigger
systems. In particular, we can notice that if a fault is diagnosable,
the centralised approach explores the complete F -verifier to detect
the diagnosability of the fault whereas the decentralised approach
generally finds out a subsystem smaller than the system itself where
the fault is diagnosable.

7 RELATED WORKS

The diagnosability definition used in this paper has been introduced
in [7]. In order to check the diagnosability of a system, the au-
thors propose a centralised approach based on a global diagnoser.
Checking the diagnosability consists in detecting cycles of ambigu-
ous states in this diagnoser. The main problem of this approach is its
computation complexity. Firstly, the knowledge of the global model
is needed and secondly, the diagnoser computation is exponential to
the number of states in the global model.

In [5] and in [11], new algorithms for checking the diagnosabil-
ity of a system are proposed. These algorithms are based on non-
deterministic global diagnosers which allow to make the diagnosabil-
ity checking with a complexity polynomial in the number of states in
the global model of the system (see above).

In [9], the diagnosability is discussed on a system observed by a set
of sites. In that framework, a site still knows the global model of the
system and is able to only observe a certain type of observable events
and is in charge of diagnosing a subset of failure events. A site can
exchange messages with the other sites. In this framework, a system
is said to be decentrally diagnosable if, for every fault, there is at
least a site which is able to diagnose this fault without the exchange
of messages with the other sites. In our point of view, this notion has a
strong relationship with our notion of local diagnosability. In fact, if a
site observes a subsystem on which a fault is locally diagnosable then
the fault is said to be decentrally diagnosable by the authors of [9].

5



As a consequence, if we detect for each fault a subsystem on which
the fault is locally diagnosable, we can design a set of observation
sites that makes the system decentrally diagnosable.

In [3], another diagnosability property is specified: the system is
said to be diagnosable if for all relevant observation sequences there
is at least one minimal diagnosis [4]. This diagnosability property is
checked by the resolution of a process algebra equation. In [10], the
same diagnosability property is also analysed by exploiting a set of
relations on the system and by analysing their redundancies in order
to compute the diagnosability degree of the system and to give a way
to improve it and to effectiveley get the full diagnosability property.
This diagnosability property is more restrictive than the one of [7], it
supposes that the set of observations is completely known when the
diagnosis reasoning is applied and is not well-suited for monitored
systems that are diagnosed on-line.

In [2], another diagnosability property, similar to the one of [3], is
written as a problem of model-checking. In this approach, the system
is not diagnosable if there exist two behaviours with the same observ-
able signature such that the system is not in the same behavioural
mode (a fault occurs in one behaviour but not in the other one) at the
end of the execution of each behaviour separately. The main idea of
this paper is to use the efficiency of symbolic model-checking tools
to check diagnosability properties. This is a possible way for us to
symbolically implement our algorithm, by mixing the efficiency of a
decentralised approach and the efficiency of model-checking tools.

8 CONCLUSION

This paper presents a framework for the diagnosability analysis of
distributed discrete event systems. Based on the diagnosability def-
inition of [7], the diagnosability checking is done thanks to a set of
local verifiers and without the need of a global model of the system.
The main purpose of this framework is to allow the analysis of bigger
systems whose global model is not implementable due to the huge
number of states in it. Secondly, in practice, it is very unprobable
that a system is diagnosable if it has been developed without the help
of a diagnosability analysis. The proposed approach focuses then on
the result to provide in the case that the system is not diagnosable.
Our diagnosability analysis provides more concise information about
why the system is not diagnosable by giving an observation language
for which a fault is not diagnosable. This concision is due to the fact
that we analyse the diagnosability of a fault in a local manner and ex-
tend the analysis to its neighbourhood until we find a set of scenarios
that are not diagnosable.

In that framework, we introduce the notion of local diagnosabil-
ity. This diagnosability is based on the fact that the system respects
the hypothesis 1. Nevertheless, the proposed framework still works
to check diagnosability on a system which does not respect this hy-
pothesis. The difference is that we cannot stop the search if we find
a verifier where F is considered as locally diagnosable because the
local diagnosability of F does not imply the diagnosability of F in
that case. The diagnosability check can still be done by merging local
verifiers, only the criteria to stop the search are different.

The efficiency of the method has not been developed yet. When
dealing with decentralised approach, one main key point is to apply a
merging strategy, a reconstruction plan. This can be done in the same
way it is done in some diagnosis methods as proposed in [1] [12].
Another way to improve the efficiency of the approach is to use sym-
bolic techniques [8] or symbolic off-the-shelf model-checkers [2].

Two main perspectives could extend this work. The first one is the
use of such an approach to help in the synthesis of a diagnosable dis-

tributed DES. Given local non diagnosable scenarios, it is easier to
modify the system such that the non diagnosable scenario does not
occur. Moreover, we think that it is possible to provide an automatic
information to fix the diagnosability problem for one given found
scenario. The second perspective is about the diagnosis of the DES
itself. Given a language of observations which is considered as am-
biguous for the diagnosis of one failure, we know that if we observe,
at a given time, a sequence of observations that belongs to the lan-
guage, we have the guarantee that the failure cannot be discriminated
and an on-line abstraction of the model is then possible, abstraction
which increases the efficiency of the on-line diagnosis of the DES.

REFERENCES
[1] P. Baroni, G. Lamperti, and P. Pogliano, ‘Diagnosis of large active sys-

tems’, Artificial Intelligence, 110, 135–183, (1999).
[2] A. Cimatti, C. Pecheur, and R. Cavada, ‘Formal verification of diag-

nosability via symbolic model checking’, in Proceedings of the 18th
International Joint Conference on Artificial Intelligence IJCAI’03.

[3] L. Console, C. Picardi, and M. Ribaudo, ‘Diagnosis and diagnosibil-
ity analysis using pepa’, in Proceedings of the European Conference
on Artificial Intelligence (ECAI’2000), pp. 131–135, Berlin, Germany,
(2000).

[4] L. Console and P. Torasso, ‘A spectrum of logical definitions of model-
based diagnosis’, Computational Intelligence, 7(3), 133–141, (1991).

[5] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, ‘A polynomial time
algorithm for diagnosability of discrete event systems’, IEEE Transac-
tions on Automatic Control, 46(8), 1318–1321, (2001).

[6] L. Rozé and M.-O. Cordier, ‘Diagnosing discrete-event systems: ex-
tending the “diagnoser approach” to deal with telecommunication net-
works’, Journal on Discrete-Event Dynamic Systems, 12(1), 43–81,
(2002).

[7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, ‘Diagnosability of discrete event system’, IEEE Trans-
actions on Automatic Control, 40(9), 1555–1575, (1995).

[8] A. Schumann, Is symbolic technology applicable to the diagnosis of dis-
crete event systems?, Master’s thesis, Faculty of Business, Administra-
tion, Economics and Social Sciences, University of Rostock, Germany,
2003.

[9] R. Sengupta, ‘Diagnosis and communication in distributed systems’, in
Proceedings of the Workshop on Discrete Event Systems (WODES’98),
pp. 144–151, Cagliari, Italy, (August 1998).

[10] L. Travé-Massuyès, T. Escobet, and R. Milne, ‘Model-based diagnos-
ability and sensor placement application to a frame 6 gas turbine sub-
system’, in Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, IJCAI’01, volume 1, pp. 551–556,
(2001).

[11] T. Yoo and S. Lafortune, ‘Polynomial-time verification of diagnosabil-
ity of partially-observed discrete-event systems’, IEEE Transactions of
Automatic Control, 47(9), 1491–1495, (2002).

[12] Y.Pencolé, M.-O. Cordier, and L. Rozé, ‘A decentralized model-based
diagnostic tool for complex systems’, International Journal on Artifi-
cial Intelligence Tools, 11(3), 327–346, (2002).

6


