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Abstract

This paper extends the decentralized approach
proposed in [5] for diagnosing discrete-event
systems. It considers the incrementality issue
which is a major one in the context of on-line
diagnosis and proposes two solutions.

1 Introduction

The problem we deal with is the supervision of complex and
large discrete-event systems such as telecommunication net-
works. Our purpose is to help operators of such systems
to diagnose failures in the system according to observed
events (alarms). For such complex and large systems, it
is mandatory to use a decentralized approach. [3] proposes
an approach for diagnosing discrete-event systems using de-
centralized and coordinated diagnosers. But the computa-
tion of each decentralized diagnoser needs a global model
which is too large to be built with our applications. [1] and
[2] propose methods based on a model-simulation approach
which only needs a decentralized model, but these methods
are used off-line to solve a diagnosis problema posteriori.

Our motivation is to propose an approach which only needs
decentralized information and can provide on-line diagno-
sis of a large discrete-event system (telecommunication net-
work). In [5, 6], we have already defined a decentralized di-
agnosis approach that respects the constraints we are faced
with. Nevertheless, in order to use this approach on-line, in-
crementality becomes a crucial issue in order to efficiently
update already computed diagnoses by taking into account
new observations received by the supervision center. The
paper is organized as follows. We first describe a simple ex-
ample of a telecommunication network that will be used as
a running example throughout the paper. We then recall the
decentralized approach Two solutions are then presented

2 Running example

We introduce a very simple telecommunication system (see
Figure 1) that we shall use as a running example through-�
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Figure 1: Running example of a simplified telecommunication
network.

out the paper. It is formed by two switches (� �� and
� �	 ) which send and receive data, a control station
�
which is in charge of managing the switches and a supervi-
sion center� 
 which is in charge of monitoring the system
by receiving alarms from� �� , � �	 and 
� . For rea-
sons of simplicity of the example, the connections between
the components are considered as safe. A failure is defined
by two events: the beginning of the failure and the end of
the failure. In this example, the failures are repaired with-
out an operator intervention.� �� and � �	 can boot or
be blocked. Those failures are defined by their start-event
(� ���
� , � ���� where � � ��� ��) and their end-event
(� ������ , � �������). When the switch� �� begins to
block, it emits an alarm� ������ . Concerning the boot-
ing, the behaviors of the switches are different: when� ��
begins to boot then it emits� ������ ; when � �	 begins
to boot then� �	 emits � �	����. When the switch� ��
begins to work well again, it emits the alarm� ��� �. Nev-
ertheless, when� �� is blocked, then it does not emit any
alarm when it begins to boot. As� �� and� �	 , 
� has
two kinds of failures (blocked and booting) defined by the
events (
��
� , 
����� , 
���, 
������). When
� begins
to block, it emits
����� . When
� begins to boot, it also
emits a
����� alarm and sends to� �� a message� ����
for the rebooting of the� �� switches. Nevertheless, when

� begins to boot whereas
� is blocked, it only sends a
message to the� �� switches (no alarm is sent). When
�
begins to work well again, it emits the alarm
�� � .

3 Overview of the decentralized approach

3.1 Model in a decentralized approach
This section explains how the model of the system is de-
scribed in a decentralized way by means of local models,
which describe the behaviors of each component of the sys-



tem and the interactions between them. Each component
can react to exogenous events such as failures by chang-
ing of states, emitting observable events and exchanging
events with other components (namedinternal events). We
make the hypothesis that no delays exist on the messages
exchanged by the components. Acomponentis faced to
two kinds of received events: exogenous events (���� �) such
as failure events and internal events (���� ��	
 ). A component
emits two kinds of events: observable events via its commu-
nication channel (����� ) and internal events (���� ��
 � ).
Definition 1 (Model of a component) A component be-
havior is described by a communicating finite-state machine�� � ����� � � �� ���� � ��� ���

�
where���� is the set of input

events (���� � ���� � � ���� ��	
 ) ���� � is the set of output
events (����� � ����� � ���� ��
 � ); �� is the set of states of
the component;� � � �� � � ���� � � �� ���� � � � �

�
is the set

of transitions.

The model of the system is described in a decentralized way
by the models of its components.

Definition 2 (Model of a system) The model
�

of a sys-
tem is given by the set of models of its compo-
nents �� � � � � � � � �, a set of exogenous events (� ���),
a set of observable events (� ��� ) and a set of in-
ternal events (��� �) such that: ������ � � � � � � ��� � is a
partition of � ��� ; ����� � � � � � �� �� �� is a partition of� ���; ����� ��	
 � � � � �� �� ��	
 � and ����� ��
 � � � � � �� �� ��
 � �
are partitions of�� ! ; "# $ �� ! � % &� �

'# $ ��� !()*)�+ ), -
% &�. '# $ �

.�� ��
 � - � /� 0 .

Figure 2 presents the model of our example. The observ-
able events model the alarm emission (
����� , 
�� � ,
� ������ , � � �) (the alarms are received by local sensors,
one sensor per component in this example). The exogenous
events are the failure events which can occur on the system
(
��
� , 
����� , � ���
� , � � �). The internal events model
the propagation of the booting from the control station to
the switches (� ����, � �	��).

3.2 Diagnosis in a decentralized approach
The idea is to compute a diagnosis for each component (lo-
cal diagnosis) and compute the diagnosis of the whole sys-
tem (global diagnosis) by composing the local diagnoses.

3.2.1 Local diagnosis: Let denote12� the sequence
of local observations, i.e the events locally observed by
a sensor plugged in the component

��. We have12� $���345 �6 . We suppose that, at the beginning of the task, the
component is in one of the initial states7 2�� �! .
Given the model of the component

��, alocal diagnosis82�describes the subset of trajectories from
�� starting from el-

ements of7 2�� �! which explains the sequence oflocal ob-
servations12� , i.e such that their projections on observable
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Figure 2: Model of the system.

events correspond exactly to12� . We propose to represent
a local diagnosis as a communicating finite-state machine82� �7

2�� �! �12�
�
, shortly 82� . Compared to the automa-

ton
��, the main syntactical difference is that each state�9� of this automaton is associated to a pair (:2� � ;�) where:2� $ � � is a state of the component and;� is the prefix sub-

sequence of12� explained in this state. The initial states of82� are those corresponding to7 2�� �! . The final states are
those such that;� � 12� (states explaining the whole se-
quence of local observations). As in

��, the transitions are
labeled with exogenous or internal received events as input
and with observed or internal emitted events as output.

Definition 3 (Local diagnosis) The local diagnosis82� �7
2�� �! �12�

�
of

�� according to the sequence12�is a finite-state machine:����� � � �� ���� � ��9� ��9�
�

where���� are the input events (���� � ���� � � ���� ��	
 );���� � are the output events (����� � ����� � ���� ��
 �);�9� is the set of states��9� � � � � ���345 �6 �;
�9� � ��9� � ���� � � �� ���� � � �9�

�
is the set of

transitions.

Figure 3 gives the local diagnosis of the control station when7 <=� �! � �> �� and1 <= � ?
����� @. The way it is com-
puted is not the subject of this paper. See [5] for details.
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Figure 3: Local diagnosis:8 <= ��> �� � ?
����� @�.
3.2.2 Global diagnosis: The global observation1

corresponds to what is observed by the supervisor which
collects all the sequences of observable events (alarms) sent



by each of the components through their own communi-
cation channels. It is described by�1 '��345 � � � � �1 '� 345 �
where1 '��345 $ ���� 45 �� is the sequence of observations
received from

��.
Given a set of initial states7 2� �! , a global diagnosis de-
scribes all the trajectories starting from elements of7 2� �!
which explain the global observation1 , i.e such that their
projections on the observable events correspond to1 . The
global diagnosis is thus represented as a communicating
finite-state machine82 �7 2� �! �1

�
, shortly82 . The states�9 of this automaton are pairs�:2 � ; �

where:2 $ � � �� � � � � 
is a state of the system and; � �; � � � � � � ; �

where;� is the prefix of the sequence1 '��345 explained in
this state. The initial states of82 are those correspond-
ing to 7 2� �! and the final states are such that; � 1 , i.e" � ;� � 1 '��345 (states explaining the whole sequence of
observations). The transitions are labeled with exogenous
events as input��)�3 � and with observed events as output��345 �.
Definition 4 (Global diagnosis) The global di-
agnosis 82 �7 2� �! �1

�
is a finite-state machine:�� �� � � �� ��� � ��9 ��9 �

where ��� is the set of input
events (��� � � �� �); � ��� is the set of output events
(� �� � � � ��� ); �9 is the set of states of the diagnosis;�9 � ��9 � ��� � � �� ��� � � �9 �

is the set of transitions.

3.2.3 Computing global diag from local diags: In
a decentralized approach, the idea is to compute the global
diagnosis from the local diagnoses. As local diagnoses are
represented by automata, the global diagnosis is built by
composing the local diagnoses.

Let us first define a property which expresses that the se-
quence of observations received by the supervisor from
each component

�� (1 '��345) corresponds exactly to the se-
quence of local observations emitted by

�� (12� ).
Definition 5 (Property �) The observed system is said to
satisfy Property� iff 1 '��345 � 12� .
It can be proved that, on the condition that the observed sys-
tem satisfies Property�, the global diagnosis can be com-
puted by using the following equation where� is the clas-
sical composition operation between two communicating
finite-state machines synchronized on the internal events ex-
changed between the local diagnoses:

82 �7 2� �! �1
� �

 
�
�� �

82� �7
2�� �! �1

'��345 � (1)

Figure 4 gives the global diagnosis of the model shown in
Figure 2 for the initial state7 2� �! � � �> �� � �� � ��� and
the global observation1 � � ?
����� @ � ?� ������ @ � ?@�. It
was obtained by the operation:8 <= ��> �� � ?
����� @� �8=�	 ��� ��� ?� ������ @� � 8 
� � ��� �� � ?@�.
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Figure 4: Global diagnosis of the system:
� �� �� �� � �� � ��� � � ������� � � ��  !���� � � ����
.

3.2.4 Discussing Property�: As shown before, the
computation of the global diagnosis from local diagnoses
requires that the observed system satisfies Property�. Prop-
erty � expresses that what is received by the supervisor
corresponds exactly to what is emitted by each component
(1 '��345 � 12� ). This property is clearly satisfied when
the local sensors are directly observable, or when the mes-
sages they sent are received without delay to the supervisor.
In most of the cases however, such local sensors are not
directly observable, and the messages are sent to the super-
visor via communication channels.

To fulfil Property �, communication channels have to be-
have in such a way that i) the order in which messages are
sent is the same as the one in which they are received (be-
having as FIFO files) ii) all the sent messages are received.
In the following, we suppose that i) is true and that there are
no loss of messages.

4 Incremental diagnosis

Let us now turn to the problem of the incremental on-line
computing of a diagnosis. The main difference is that the
observations are considered on successive temporal win-
dows. Having computed a global diagnosis for a given tem-
poral window, the problem is thus to update it by taking into
account the observations of the next temporal window. To
keep the same computation way as before, Property� has
clearly to be satisfied for each temporal windows and we
show below that it is a central issue to preserve the correct-
ness and the efficiency of an incremental algorithm.

Let us use the following notations :1.
described by

�1. '��345 � � � � �1. '� 345 � represents all the observations
that have been received from the beginning at time0 . 8.
is the diagnosis explaining1.

. " .
denotes a temporal win-

dow. 1#$ described by�1#$ '� �345 � � � � �1#$ '� 345 � is the
set of observations received during the temporal window
" .

. We have" � �1. '��345 � ?1. %� '��345 �1#$ '� �345 @. 8#$
is the diagnosis on the temporal window" .

.

4.1 Problem of incremental diagnosis
The main problem is that, by randomly splitting the se-
quence of observations in temporal windows,there is no
guarantee to have them satisfying Property�.

Let us see what happens on the example of Figure 5 ( sub-



part of the running example) with three components� � as��
, �� � as

� � and�� � as
� �

. Each component has only
two states and one transition. The initial states of the com-
ponents are respectively> �, � � and� �.

CSstopCSbt/{             ,SW1bt,SW2bt}
x1 x3

y1 y3 z1 z3
SW1bt/{              }SW1stop SW2bt/{               }SW2boot

Figure 5: Simplified model of the system.

Let us first take a single temporal window" with 1# �
� ?� � :��� @ � ?�� �:��� @ � ?�� �����@�. The global diagno-
sis, computed as described before, is given by Figure 6.

x1,y1,z1
{[],[],[]}

x3,y3,z3
CSbt/{CSstop,SW1stop,SW2boot}

{[CSstop],[SW1stop],[SW2boot]}

Figure 6: Global diagnosis for�	 with the simplified model.

Let us now consider two successive temporal win-
dows 1# 
 � � ?� � :��� @ � ?@ � ?@� and 1# � �
� ?@ � ?�� �:��� @ � ?�� �����@�. The local diagnosis
(see Figure 7)8# 
 �2 
 explains � � :��� but requires
synchronizations on�� ��� and�� ��� with 8# 
 �2 � and8# 
 �2 
 . They are not satisfied and no global diagnosis is
then found. The problem is that, during" �

, �� �:��� and
�� ����� have been emitted by the component but are still
not received by the supervision center. Both alarms will be
received during"� . Property� is not satisfied on" �

.
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∆
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Figure 7: Local diagnoses for�	 
 with the simplified model.

This example illustrates that the choice of temporal win-
dows is very important. We firstly examine the case where,
by choosing appropriate breakpoints, it is possible to ensure
that each temporal window satisfies Property�. An algo-
rithm, based on the concatenation of automata, is proposed
and allows us to compute efficiently a diagnosis on succes-
sive temporal windows. We then examine the general case
and show how, by extending the definition of diagnosis, it is
still possible to use the same algorithm.

4.2 Incremental algorithm for sound temporal windows
A first solution is to carefully choose the breakpoints in or-
der to ensure that the temporal windows satisfy Property�.

Definition 6 A temporal window" .
is soundwrt a se-

quence of observations1. %�
iff " �� $ 1#$ �"� � $ 1. %�

,

�� has been emitted after� � has been received. Two succes-
sive sound temporal windows meet at a sound breakpoint.

When the windows are sound, the global diagnosis8.
re-

sults from the concatenation of the diagnosis8. %�
with the

diagnosis8#$ . The only condition is that the final states
of 8. %�

, noted7� � �� , are considered as the initial states
for 8#$ . 8#$ is computed as before (eq 1) by8#$ �
82 �7� � �� �1#$ � � �

 
�� � 82� �7

2�� � �� �1#$ '� �345 �. The
global diagnosis8.

is computed by the application of a
refinement operator (noted�) defined by the incremental
algorithm 1. We have8. � 8. %� � 8#$ .
Algorithm 1 Refinement operation:8. � 8. %� � 8#$

input: Past and current window diagnoses:8. %� �8#$8!�� � ��� #�� �8. %� �8#$ �
�Eliminating trajectories that do not explain all the observations�� �
for all > � �:2 � �; � � � � � � ; �� $ � ��
 ������ �8 !�� �

do
if %;� such that;� /� 1. '��345 then

�� is not a final state in the new diagnosis.�8!�� � � ����  !0 �8 !�� � >�
end if

end for
output: 8#$ � 8!��

��� #�� is an operation based on the classical concatena-
tion of finite-state machines [4].� ����  !0 eliminates the
states> from which we cannot find a diagnosis for the ob-
servations of" .

. It also eliminates the states that are pre-
decessors of> and have no other successors .

Figure 8 presents the update of the diagnosis of Figure
4. Observations of the new window" .

are 1�$ �
� ?
�� � @ � ?@ � ?� �	���� @�. In Figure 4, there is one final
state��>� � � � � � �� � � ?� � :��� @ � ?�� �:��� @ � ?@��. The global
diagnosis8 "<= �=�	 �=�# $ ��>� � � � � � �

� �1#$ � of " .
is

appended to the final state of Figure 4. Here, there is no
elimination because each previous final state is followed
by an explanation of1#$ . The resulting diagnosis does
not contain any trajectory explaining� � :��� by the occur-
rence of� � ��. In fact, by assuming the window soundness,
� � :��� has been necessarily observed before the�� �����
emission:� � �� cannot explain the� � :��� observation.

4.3 Incremental algorithm in the general case
It is not always possible to select sound breakpoints. In the
general case, the temporal windows cannot be guaranteed
to be sound. To comply with Property�, the incremental
diagnostic algorithm must deal with two kind of observable
events: i) the observations received by the supervisor in the
current temporal window; ii) the events emitted by the com-
ponents which have not yet been received by the supervisor
in the current temporal window. They are still in the com-
munication channels.

The idea is thus to complete the set of received observa-
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Figure 8: Update of the global diagnosis8.
.

tions by a set of potentially emitted (but not yet received)
events. Therefore, we propose to compute, for each tempo-
ral window" .

, anextendeddiagnosis8)�!
#$ which summa-

rizes trajectories that explain the events observed in" .
and

a set of hypothetical unreceived events during" .
. 8)�!

#$
is computed (see algorithm 2) by composingextendedlocal
diagnoses8)�!

2 � �" . �
in a similar way as seen above.

4.3.1 Extended local diagnosis: Theextendedlocal
diagnosis8)�!

2 � �" . �
on the window" .

depends on the
states of

�� described in the final states of the extended di-
agnosis8)�!. %�

(extended diagnosis of1. %�
). In such a state>, > � ��> � � � � � � > � � �; � � � � � � ; ��, some observations of�� may have been supposed to be emitted and unreceived

before" .
, we have;� � ?1. %� '��345 � � ��� �:#�� �:� @.

Looking to1#$ '� �� 45, it can be checked whether this sup-
position is satisfied or not; if it is, we have two cases:

1. 1#$ '� �345 is a prefix of���� �:#�� �:� . This means
that 1#$ '� �� 45 was totally explained in the previ-
ous temporal window. Thus,� ��� �:#�� �:� �?1#$ '� �� 45 � ��� �:� @ where��� �:� is a sequence
of observations of

�� potentially emitted before" .
and not yet observed during" .

.

2. ���� �:#�� �:� is a prefix of 1#$ '� �345. This
means that 1#$ '� �� 45 was partially explained
in the previous temporal window. Thus,1#$ '� �� 45 � ?���� �:#�� �:� � � �� >� �!��� �:� @
where � �� >� �!��� �:� is the sequence that
terminates1#$ '� �� 45 which is not yet explained.

In the first case,> is a state resulting from trajectories which
already explain the observations1#$ '� �� 45. We only need
to determine local trajectories from>� which explain hy-
pothetical unreceived events which can follow the events of
��� �:� . In the second case, we have to determine local tra-
jectories from>� which explain� �� >� �!��� �:� followed
by hypothetical unreceived events. Therefore, in both cases,
we have to determine hypothetical unreceived events. If we
do the hypothesis that there is a bounded number� of local
observations at the same time in the communication chan-
nel associated to

��, then the sequence of hypothetical un-
received events of

�� is finite and belongs to:

Definition 7 (� ����� �:� ��
�
) Let � be a positive integer.

We note by� ����� �:� ��
�

the sequences of observable
events:� such that:� $ ���345 �6 � ':� ' � �.

Thus from the state>, we have to compute the local trajec-
tories of

�� which explain the sequences of� ��� � �> � �
�

where� ��� � �> � �
�

is a set of observation sequences. In
the case 1, each sequence��:� #� of � ��� � �> � �

�
is such

that ��:� #� $ � ����� �:� �� 	 '��� �:� '�. In the case 2,
��:� #� � ?� �� >� �!��� �:� � � ����� �:@, � ����� �: $
� ����� �:� ��

� � The extended diagnosis8)�!
2 � �" . �

is the
set of local trajectories computed from each final state>
of 8)�!. %�

that explain� ��� � �> � �
�
. Because we make hy-

potheses about the set of unreceived events during" .
, each

state resulting of a trajectory that explains such events is
possible, so we mark it as a final state.

Algorithm 2 Extended diagnosis of" .
: 8)�!
#$

input: 1. %� � 1#$
input: 7

.
� �! �Final states of the diagnosis8)�!. %� �

for all � $ ��� � � � �� � do8!�� � 


for all > $ 7
.
� �! do

�> � ��> � � � � � � > � � �; � � � � � � ; ���
�Local observation sequences to explain�
for all ��:� #� $ � ��� � �> � �

�
do8!�� � 8!�� � 82� ��>� �� ��:� #� �

end for
end for8)�!

2 � �" . � � 8!��
end for
output: 8)�!

#$ � �
 
�� � 8

)�!
2 � �" . �

4.3.2 Update of the global diagnosis: The global
diagnosis8.

is computed, as before, by the application of
the refinement operation (noted�) (see algorithm 1). We
have8)�!. � 8)�!. %� � 8)�!

#$ . The current diagnosis8)�!.
de-

scribes trajectories that all explain1.
and some of them ex-

plain a set of complementary events supposed to have been
emitted but not yet observed by the supervisor at" .

. It is
then clear that we have:82 �7 � �! �1. � � 8 )�!.

. Finally, if
we consider1�

as “complete”, meaning that no more ob-
servation is expected ("�

is the last window), the extended
diagnosis8)�! �"� �

is computed with� � � (no expected



at j−1Global diagnosis
O ={[CSstop],[],[]}

j−1

Temporal window j:  O   ={[],[SW1stop,SW1run],[SW2boot,SW2run]}
wj

x2,y2,z1
{[              ],CSstop

[SW1stop],[]}

x3,y3,z3
{[              ],CSstop
[SW1stop],
[SW2boot]}

x2,y2,z2
{[              ],CSstop
[SW1stop],
[SW2stop]}

x2,y2,z1
{[              ],  CSstop

SW1stop[                ],[]}

CSbt/{SW2boot}

x3,y3,z3

CSstop{[                ],
     [                 ],SW1stop

SW2boot[                ]}

SW1back/{SW1run} x3,y1,z1

CSstop{[                ],

SW1stop[                              ],SW1run
[]}

SW2endbt/{SW2run}

x3,y3,z1

CSstop{[                ],
SW1stop[               ], [ SW2boot

SW2run]}

x3,y3,z1
{[              ],CSstop

[                             ],SW1stop SW1run
[                              ]} SW2boot SW2run

x1,y1,z1
{[                ],CSstop

SW1stop SW1run[                              ],

[                              ]}SW2boot SW2run

CSstop{[               CSrun],
SW1run[ SW1stop               SW1stop],

SW2boot[   SW2runSW2stop]}

x1,y2,z2

Eliminated

Figure 9: Update of the extended global diagnosis8)�!.
.

event). Thus, potential wrong assumptions made during the
computation of the successive extended diagnoses are elim-
inated with help of the diagnosis of the last window. We
get: 82 �7 � �! �1� � � 8)�!�

.

4.3.3 Example: Figure 9 presents the scheme of the8)�!.
computation. The extended diagnosis8)�!. %�

explains�. %� � � ?� � :��� @ � ?@ � ?@�. Some final states of8)�!. %�
not

only contain the occurrence of
�. %�

(in bold) but also
other potentially unreceived alarms (here, each communi-
cation channel conveys at the most� � � observation at
the same time). Given" .

and its observations1#$ �
� ?@ � ?�� �:��� � �� � �� @ � ?�� ����� � �� � �� @�, 8)�!

#$ is
computed by considering the final states of8)�!. %�

. 8)�!
#$

summarizes the trajectories explaining1#$ . We also com-
plete the diagnosis by supposing the emission of other
alarms. In8)�!

#$ , we suppose in particular the occurrence of
� �  ��, �� �:��� or �� �:��� . Once8)�!

#$ is computed,
we apply the refinement algorithm. We append the initial
states of8)�!

#$ to the corresponding final states of8)�!. %�
.

Some final states of8)�!. %�
are eliminated because they do

not permit to find an explanation of1#$ (in Figure 9,
the eliminated state considers the observation of�� �:���
whereas we observed�� �����).

5 Conclusion

Our motivation was to extend the decentralized diagnosis
approach initially presented by [5, 6] in order to be able to
analyze,on-line, a flow of incoming observations. In an
on-line context, the observations are considered on succes-
sive temporal windows. A crucial issue is to incrementally
update the current diagnosis by taking into account the ob-
servations of the next temporal window.

Two solutions have been examined. The first one consists
in carefully selecting the breakpoints which determine the
temporal windows. We define a property (the:�����#::)
which, when satisfied by the windows, allows us to use an
easy and efficient refinement algorithm based on the con-

catenation of automata. It is not however always possible
to determine such sound breakpoints. In the general case,
we propose to complete the observations by guessing what
is lacking and we consequently define extended local diag-
noses. The refinement algorithm can still be used for the
incremental computation of the global diagnosis.

In the first case, the issue is to use domain knowledge, and
especially knowledge on the properties of the communica-
tion channels, in order to split the flow of observations in
sound windows. For instance, when you know the maximal
delay of transmission, the absence of any alarms received
by the supervisor during a delay greater than this thresh-
old determines a sound breakpoint. In the second case, an
important issue to be studied is the optimal size of the win-
dow. Small windows mean small local diagnoses but fre-
quent computations of the current global diagnosis whereas
large windows mean space-consuming local diagnoses but
less computations. This point is currently investigated.
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