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We address the problem of diagnosing complex discrete-cvent systems such as telecommunication
networks. Given a flow of obscrvations from the system, the goal is to explain thosc obscrvations by
identifying and localizing possible faults. Several model-based diagnosis approaches deal with this
problem but they need the computation of a global model which is not feasible for complex systems
like tclecommunication networks. Our contribution is the proposal of a decentralized approach which
permits (o carry out an on-line diagnosis without computing the global model. This paper describes
the implementation of a tool based on this approach. Given a decentralized model of the system and
a flow of obscrvations, the program analyzes the flow and computes the diagnosis in a decentralized
way. The impact of the merging strategy on the global efficiency is demonstrated and illustrated by
cxperimental results on a real application.
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1. Introduction

The problem we deal with is the supervision of complex and large discrete-event systems
such as telecommunication networks. Given a supervisor continuously receiving observa-
tions (alarms) sent by the system components, our purpose is to help operators to iden-
tify failures. Two classical approaches in monitoring such systems arc knowledge-based
techniques that directly associate a diagnosis to a set of symptoms, for example expert
systems,! or chronicle recognition systems,?>® and model-based techniques which rely on
a behavioral model of the system.* The main weakness of the first approach is the lack of
genericity: as the network changes, a new expertise has to be acquired. We therefore de-
cided to use model-based techniques which are recognized to be more adapted to evolutive
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systems than expertise-based approaches are and we focus in the following on these ones.

In the literature, more and more approaches are proposed for diagnosing discrete-event
systems, in both Al and control cngineering domain. It concerns continuous-variable sys-
tems which, after quantization, are represented as discrete systems,® as well as “discrete by
nature” systems such as communicating processes which exchange messages and alarm-
s. The majority of these approaches are centralized approaches. %7 The diagnoser ap-
proach consists in the compilation of diagnostic information in a data structure (called
diagnoser) which maps failures and observations for on-line diagnosis. & As telecommuni-
cation networks are concerned, an extension of this approach has been proposed, which is
well-adapted for on-line diagnosis.”™® Nevertheless, a centralized approach needs to have
a global information about the system which is unrealistic for complex and large systems
like telecommunication networks. Moreover, such systems are naturally distributed so it is
easier to model those systems in a decentralized way. An approach for diagnosing discrete-
event systems using decentralized diagnosers has been proposed, '° but the computation of
each decentralized diagnoser is based on a global model which is a major drawback of this
method. On an other hand,there exist methods relying on a decentralized model, ''-'? but
these methods are used off-line to solve a diagnosis problem a posteriori.

Our contribution is to propose an approach which relies on a decentralized model and
provides on-line diagnosis of large discrete-event systems such as telecommunication net-
works. The idea is to split the flow of observations into temporal windows. For each
temporal window, we compute a diagnosis for cach component of the system (local diag-
nosis) and then we build a diagnosis of the whole system (global diagnosis) by merging
these local diagnoses and the diagnosis of previous temporal windows. The challenge is
to preserve the efficiency of the global computation which depends mainly on the merging
operation of local diagnoses. ® In this paper, we consider the diagnostic task in a giv-
cn temporal window and focus on the merging operation. The way successive temporal
windows are incrementally taken into account is the subject of another paper.

In this paper, we present a tool which implements this approach and we analyse some
experimental results on a real application : a I'rench packet-switching network. The paper
is organized as follows. We first introduce what kind of systems are considered and the
problem of monitoring. Then, we present the formalism based on communicating automa-
ta, which is used to represent in a decentralized way the model of the system. Then, the
diagnostic task is explained by defining observations and diagnoses. Then, we focus on
the merging operation which allows to build step by step the global diagnosis and show
the importance of the merging strategy. We then present the application and the diagnostic
tool which implements the approach. Experimental results are given which demonstrate
the profit taken from the use of an adequate merging strategy.

2. Decentralized model of the system

2.1. The monitoring task

The systems we consider are distributed systems composed of components which in-
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teract each other (see figure 1). Typical components are switches, multiplexers, control
stations... Each component can emit some observations (also called alarms) when a prob-
lem occurs on the network. For most of the faults, there are some automatic recovery
procedures so that faults arc in general not permancnt. A supervision center is in charge
of monitoring the network by analyzing the received alarms in order to determine if an in-
tervention is needed or not. The main problem is the important number of received alarms
(thousands of alarms) which makes the monitoring task difficult without the help of auto-

matic diagnostic methods.
Supervision
center

alarms
Comp. Comp.
Comp. )
[~<—— Comp.

Fig. 1. Supervision of a tclecommunication network.

2.2. Modeling the system

As said in the introduction, we decided to use model-based approaches which are rec-
ognized to be more adapted for evolutive systems as telecommunication networks are. Due
to the great number of components, it is quite unrealistic to rely on a global model of such
systems. This section explains how the model of the system is described in a decentralized
way by means of local models, which describe the behaviors of each component of the
system and the interactions between them. The formalism chosen for such models is that
of communicating automata.

Each component reacts to failure events by changing of states and emitting observable
events to the supervisor. The components interact by exchanging messages (named internal
events) which occur for instance when failures propagate through the system. The super-
visor receives alarms from each component of the system via a communication channel.
Each alarm is labeled by the component which sent it. We suppose in the following that
the communication channels are FIFO data structures. However, communication channels
from different components are not synchronized (their propagation delays can be different).
Consequently, we have :
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Hypothesis 1 : Let 01 and o5 be observable events emitted by one component. We as-
sume that oy and oy are received by the supervisor in the order of their emission by the
component.

Hypothesis 2 :  Let 0, and oy be observable events emitted by two different components.
We assume that o, and o, may not be received by the supervisor in the order of their emis-
sion by the components.

A component s faced to two kinds of received events: failure events (E;}m- ;) and internal
events (Eﬁntmcmm 4)- A component emits two kinds of events: observable events (Ef] ps) Vid
. ;eee] . i
its communication channel and internal events (X%, ... ... ).

Definition 1 (Model of a component) A component behavior is described by a communi-
cating finite-state machine T; = (3%, 2%%0) Q;, E;) where

o Xt s the set of input events (X%, = E}ail U

intrecei‘ued)’

o Xt . is the set of output events (£, =S¢, UXL . )
e (); is the set of states of the component;
o E; C(Qix Xt x2%w) x Q,) is the set of transitions.

A model of component is depicted on Figure 2. Two kinds of failure events can happen
on this component: I/ and f2. For example, if f7 occurs on the component at state 1, then
the component emits the @/ alarm, propagates the failurc by the emission of the i2 cvent
towards another component and goes to state 2.

f2/{a2}

Fig. 2. A model of component: fI and f2 are failure events, i/ and i2 are events received from/emitted towards
another component, a/ and a2 arc alarms.

The model of the system is described in a decentralized way by the models of its com-
ponents.

Definition 2 (Model of a system) The model T of a system is given by the set of models

of its components {T'y, ..., Ty}, a set of failure events ( Ytait), a set of observable events
(Yobs) and a set of internal events (Yt ) such that:
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1 n . .. .
o {1, ..., Z%.}isapartition of ¥ ops;

1 n : . .
o {Zis > Shu} is a partition of Tgau;

1 n
b Eintreceived’ o Eintreceived} and

1 n s L.

{Emtemitted’ st Emtemitted} are partitions sz'mt)

Ve € Xint, 3Ty | ec E'zz:ntrece'i'ued A EI'FJ | ec Egntemitted Nt 7£ J-

‘We suppose that the system reacts to one exogenous event at the same time (two exoge-
nous events cannot occur at the same time). This reaction is represented in the model by
the triggering of a set of transitions from different models of components. The occurrence
of an exogenous event in the system is represented by the triggering of a transition labeled
with this event. If this transition emits internal events, it activates the triggering of transi-
tions labeled as input with such internal events: such activations represent the propagation
of the failure. The global model of the system which expresses this behavior, could be
explicitly built by composing the automata of its components (via a classical operation of
synchronization on the internal events, 1®) but it is exactly what we want to avoid due to
the important size of such a model for large systems.

3. Decentralized diagnosis task

The diagnostic task consists of inferring information on the faulty state of the system com-
ponents and/or on the occurrence of faulty events from the sequence of observations (in

our case the sequence of alarms received by the supervisor). As many authors, 1:16-17

, We
consider that the diagnostic task consists, for dynamical systems, in finding the trajectorics
(sequences of states and transitions) explaining the observations. From these trajectories,
it is in general easy to extract the diagnosis itself. A simple case is when you are only
interested in the set of possible faulty components but in a monitoring context, the operator
is often interested in getting a more thorough explanation of what happened, as at least
the sequences of exogenous failure events explaining the set of received alarms and the
possible current states of the system.

The idea is to use a decentralized diagnosis approach by firstly computing a diagnosis
for each component (local diagnosis) and then building a diagnosis of the whole system
(global diagnosis) from these local diagnoses. In the following, we formally define these
notions and explain how the global diagnosis is computed by composing the local ones.

In the following, the set of observation sequences is noted : O = {Or,,...,Or,}
with Or; € (Z¢,,)*. Each Or, is the sequence of observations received from the com-
ponent T'; during a temporal window A,;!. At the beginning of the temporal window, the
initial states XJ,;, of T are known and described by the initial states of each component

27

(XL, . XY

nit? "

1As said in the introduction, we consider the diagnotic task in a given temporal window. The way successive
temporal windows arc incrementally taken into account the subject of another paper.14
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3.1. Local diagnosis

Given the model of the component I'; and a sct of initial states X zl;m , alocal diagnosis Ar,

describes the subset of trajectories from I'; starting from elements of X zl;m and explaining
the sequence of local observations Or,. In other words, if the diagnosed component follows
one of those trajectories then the sequence of emitted observable events according to the
model T'; is exactly Or,.

So we propose to represent a local diagnosis as a communicating finite-state machine
Ar, (X irrjz.t, Or,), shortly Ar,. Compared to the automaton I';, the main syntactical d-
ifference is that each state Qa, of this automaton is associated to a pair (sr,,&;) where
sr,; € (Q; is a state of the component and &; is the prefix subsequence of Or, explained in

this state (see figure 3).

SR S S
@f1/{i2,a1} YT al ) tonan) ataz

.

Fig. 3. A local diagnosis of the component presented in figure 2. This diagnosis explains the scquence of alarms
ala2 from the state 1. It contains onc trajectory.

The initial states of Ar, are those corresponding to er,fit, in other words, the initial
states are (sr,,&;) where sy, € X% and & = e. The final states are those such that
& = Or,. So the final states represent the current states of the component explaining the
whole scquence of local obscrvations. As in [';, the transitions arc labeled with failures
or internal received events as input and with observed or internal emitted events as out-
put. These internal events describes the interactions between the component I'; and the
other components of the system. The local diagnosis of I'; describes the trajectories of I';
which explains the local observations Or, under the hypothesis that these interactions can
exist. This hypothesis which correspond to the synchronization of the components will be

checked by the merging operation described below.

Definition 3 (Local diagnosis) The local diagnosis A (X zsfz'w Or,) of Ty according to the
sequence Or, is a finite-state machine: (Qa,,%%,, X% s In; s Fa;, Ea,) where

e ¢ is the set of input events (X%, = ;}m-l u st

z'ntrecei'ned)’

X% e IS the set of output events (X%, = X%, UX? . roaks

QA is the set of states (Qa; C Qi % (X,,)*);

In, C QAa, is the set of initial states;

Fa, CQa, is the set of final states;

Ea, C(Qa, X 2T x 2Tou x QA,) is the set of transitions.
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Thus, a local diagnosis Ar, is computed, given the local model I';, a set of initial
states X¢,;, of ['; and a sequence of local observations. There exist several algorithms for
computing such a diagnosis. Basically, they are based on a transition path search algorithm
(depth-first scarch, breadth-first scarch...) from the states of X7 ;, in thc model Ty. The
solution is the set of paths such that the sequence of observable events emitted by one path
corresponds exactly to the sequence Or,. In our tool, the algorithm of the local diagnosis
computation is based on a diagnoser approach which is not detailed in this paper (see :1%).
In brief, a local diagnoser is a data structure which is efficient to compute local diagnoses:
it results from a compilation of the model of a component and dircctly maps the local

observable events with the local trajectories which explain them.

3.2. Merging local diagnoses to get the global diagnosis

Once the local diagnoses are computed, the second phase is to merge the local results in or-
der to obtain the global diagnosis. The basic operation is thus the merging operation which
proceeds components two by two and is applied until the global diagnosis is obtained.

3.2.1. The merging operation

The merging operation takes as input two subsystems Z and 7 and their diagnoses Az
and A 7; it builds the diagnosis of the subsystem ZU J by composing the inputs, checking
whether the interactions can be satisfied and eliminating all the invalid transitions. Initially,
the subsystems are the components themselves. Step by step, the diagnosis for the global
system is built by merging the diagnoses for bigger and bigger subsystems.

The merging operation consists thus in composing the finite-state machines represent-
ing diagnoses in order to obtain another finite-state machine in which only trajectories with
valid interactions are represented. This merging operation is a classical synchronized prod-
uct of two machines, 1513 and is defined below.

Definition 4 (Merging operation) Given A; = (Qz, 25,25 w I, Fy, Ex) the diag-
nosis of a subsystem T and A7 = (Q 7, Al , 25t ,17,F7,E7) the diagnosis of a sub-

system J, the merging of A1 and A 7 is the finite-state machine :
A T z A
AI ® AJ = (QI X QJ, 2273"U2i",22‘”“uz"“t,_[1' X IJ,FI X Fj, EIJ)

where Ez 7 C (Q1 X Q) X OELUET 5 950 VB, (Q1 x Q) is the set of transitions
such that :

() ((z1,22), 11,01, (2, 22)) € Er 7 if:
(21,1;,01,2)) E Ezand L NS, =OANO1 NES = ;

(ll) (('T17'T2)7I27 ()2,(371,.1',2)) c EIJ U“
(22,12,02,25) E Ezand L,NEL, =0A0sNEL = 0;

(iii) ((z1,72), 11U I2,01 U Os, (x7,73)) € Ez g if:
(21, HUI7,00 UOz,2})) € BEr A(22, b UI7,0.UQ7,2%) € Ez and
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OiNSL =0AN0:NEL =0ALNES, =0ALNEL, =0and
||(I1UI2)ﬂEfm'l” < ]./\OI:IJ/\OJ—II.

Transitions characterized by () and (44) result from transitions of Az or A 7 which do
not specify exchanged events between Az and A 7. Transitions characterized by (#4¢) are
synchronized. They result from the synchronisation of one transition of Az and one of A 7
which exchange events (It = Oz A I7 = Oz). The condition (||(I; U L) N X seu| < 1)
expresses the fact that only one exogenous event of the system can occur at a given time as
it is assumed in the model.

The result of merging the two diagnoses Ar, (X},%;;, O;) and Ar, (X, zmt, 1, ;) is a finite-
state machine which describes all the trajectories of I'; and I'; and such that the interactions
between I'; and T'; are valid. Such a machine (Qa,; X Qa,, 2TinUSh, 980w Us Ia, %
In;, Fa, X Fp;, E) describes exactly the diagnosis of T'; and T';. This diagnosis is noted
by Ar,r; (le;“’f’ ,{0i,0;}), shortly Ar,r;. In the figure 4, the composition Ar, ® Ar,,

represents the set of all the trajectories of I'; and Ty, explaining the observations from I’y
and I, (under the hypothesis that the interactions with other components are satisfied).

A
I« ”
Orra©)
P f1/(i2, a1} o 4 4
u\ LN } ) S
(1,1 (2.2) (2,3)
” e o o€ fi/{at} w f3/{a3} atad
Q i2/f} f3/(a3} b . *
AN AN N Al—; o Al_r,n

Fig. 4. Principle of the composition of two diagnoscs: synchronization on the internal cvents. Here, Ar, claims
that 42 is cxchanged between Ty and T'm. Ar,, confirms this interaction. Ar, ® Ar,, is the diagnosis of the
system composed by {T';, T'm }.

3.2.2. The global diagnosis

By applying the & composition on the local diagnoses, we finally obtain the diagnosis
of the global system I'. Tt is called the global diagnosis.

Definition 5 (Global diagnosis) Given T' = {T,...,T',} the model of the system, X\,

init

a set of initial states of the system, and O = {(’)pl, ..., Or, } a set of observation, the
global diagnosis is defined as :

A ( szv OAF znzt’ )

where X1 4 IS the set of initial states of I'; extracted from xr

nt init*
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The global diagnosis is a communicating finite-state machine Ap (X} .., ), shortly
Ar. The states Qa are n-plets of the type ((sr,,&1),-- ., (s1,,,En)) where sp; € Q; and
where &; is the prefix of the sequence Or, explained in this state. In other words, a state
of the global diagnosis is defined by a state of the system (sry, ..., sr,) associated with
the set of observed sequences explained in this state. The initial states of Ar are those
corresponding to X ., and the final states are such that Vi € {1,...,n},& = O;. So
the final states represent the current states of the system explaining the whole sequence of
observations O. The transitions are labeled with one failure exogenous event (from X ¢44)
as input : this is duc to the fact that ® climinates internal cvents (from X;,;) and only
accepts one failure event per transition. As the output events are concerned, the transitions
are labeled only with a set of observed events (3, = Xops) for the same reason.
The data structure representing the global diagnosis contains all the needed information
for the supervisor.

(i) Each transition path from an initial state to a final state is an explanation of the
alarms by a sequence of failure occurrences in the system which permits a good
interpretation of what has happened in the system.

(ii) The set of final states of the global diagnosis gives information about the state of the
system after the obscrved alarms which is an interesting information from a moni-
toring point of view.

The interesting point in the diagnosis definition given above is that the ¢ operation is
commutative and associative. Thus, the global diagnosis can be computed in several ways
according to the order in which the diagnoscs arc progressively merged. The cfficiency
of the global computation depends directly on this key point which is detailed in the next
section.

3.3. Strategy for the merging operation

In this section, we consider the problem of efficiently computing the global diagnosis by
selecting the best order in which the merging operations are performed.

3.3.1. Basic idea

The strategy we proposed is based on the interactions between components claimed by
their diagnoses. 1® Each diagnosis Ar, contains trajectories which claim that the diag-
nosed component I'; has interacted with other components by sending or receiving internal
events. Suppose that Ar, claims that I'; emits an event e;_.; towards I';. If Arj does
not contain any trajectories which claim the reception of e;_; then trajectories from Ar,
claiming the emission of e;_, ; are inconsistent - they cannot participate to a global trajecto-
ry of the system. The merging of diagnoses consists in detecting such inconsistencies and
eliminating the corresponding trajectories.

We focus in the following on the merging strategy and propose to base it on the inter-
actions existing between the diagnoses.
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3.3.2. Definitions

Each local diagnosis Ar, contains trajectories which claim that the diagnosed compo-
nent ['; has interacted with other components by sending or receiving events belonging to
Yint- We note by Z, Ar, (T';) the set of events of I'; supposed to have been sent to or received
from the component I'; according to the local diagnosis Ar,.

Definition 6 (Inconsistent trajectories) A trajectory in a diagnosis Ar, is inconsistent iff
there exists a transition in this trajectory which assumes the emission or the reception of
anevent e € Inr, (U';) such that e & Iap ().

A diagnosis Ar, may claim that an event e belongs t0 Zar., (T';) whereas Ar; may claim
that e is not in IAF]_ (T;). Trajectories of Ar, that claim the occurrence of e are said to
be inconsistent: they will not participate to the global diagnosis and can be immediately
discarded from the diagnosis.

In the following, we call purged diagnosis of I';, the set of trajectories of Ap, from
which inconsistent trajectorics have been climinated and note it by AL . 2

Definition 7 (Matchable components) I'; and I'; are matchable components iff
IAri (FJ) N IAI‘j (F’l) 7£ 0.

From this definition, it can be deduced that I'; and I'; are matchable iff their purged di-
agnoses are such that IA{E: ) = IA;j (L) = Iar, (L) N Tar, (T;) # 0. In the
following, we will say that I'; and I'; are k-matchable components iff they are match-
able and | IA%i Ty 1=l IA;j (La) 1=l Zar, (T N Tar, (T';) |= k. By extension
of the definition, we say that two distinct sets of components 7y;, ¥ are k-matchable iff
Z(Fi,Fj),r,»e«ﬂ,rj@2 | IA;i (L) =k, k> 0.

3.3.3. Principles and algorithm

To improve the efficiency of the merging phase, we apply the two following principles
(see the algorithm in figure 5 ).

1. Detecting and eliminating inconsistent trajectories. Inconsistent trajectories use-
lessly increase the cost of the composition operation. The first principle consists in
detecting and eliminating them before any composition operation is performed.

2. Giving priority to the most matchable components. The merging of two diagnoses
allows to eliminate some trajectories by checking the interactions which are claimed
by them. Thus, merging two diagnoses which do not claim any interaction between
their respective components is not really interesting: the second principle consists
in avoiding this unuseful computation and in giving priority to the most matchable
components.

The merging strategy builds partition of diagnoses such that:

e a partition element has two diagnoses at the most;

2The model is supposed to be complete so that such a diagnosis always cxists.
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Input :{Ar,,i € {1,...,n}}
Input {Za,, (I'),i,5 € {1,...,n},j #1i}
1 — Incompatible trajectory elimination
for: «+ 1ton do
Atmp — AFi
for j « 1ton,j # i do
badEvnt < Ia. (I') — Tar, (T;)
{badEvnt: events responsible of incompatible trajectories in Ar,
according to Ar, }
Tar (L) < Zar,(Tj) — badEvnt
At,,:p + ElimImposTraj(Aimp, badEvnt)
{A¢mp has no impossible trajectories more according to Arj
end
Aiﬂz — Atmp
end
2 — Looking for matchable components
fori + 1tondo
kInter(Ts) < {(T3,Zar, (T3)),Zay, (Ty) # 0}
end
3 — Composition strategy in parallel
D+ {Afr,,i€{1,...,n}}
M« {kInter(T;),i € {1,...,n}}
while M # () do
mp  ChoosePartitionWithInter(D, M)
D « ComposeInParallel(mp)
M « UpdateInter(M, D)
end
{The set D represents the global diagnosis}

Fig. 5. Global diagnosis computation algorithm.
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e sclected diagnoses are such that the set of exchanged events claimed by those
diagnoses is as big as possible.

Once a partition of diagnoses is chosen, the diagnoses of each element of the partition
are composed in a parallel way. A new set of diagnoses is obtained where one diag-
nosis is associated to each element of the partition. The set of possible exchanged
events is updated according to the new diagnoses set. Then, a new stage proceed-
s by building the best new partition of diagnoses and composing it. The last stage
produces a set of diagnoses which claim that there is no possible exchanged events
between them. Each diagnosis of the resulting set corresponds to a distinct group of
components in the system and implicitly represents the global diagnosis. Because
those diagnoses suppose that there are no exchanged events between components
of two different groups, the composition is unnecessary : the diagnoses obtained in
this last stage arc said to be independant. The trajectorics of cvery diagnosis of the
resulted set participate to a global trajectory.

4. Application to telecommunication networks

The purpose of our diagnosis system is to deal with telecommunication networks. In this
section, we present a subpart of a real packet-switching telecommunication network (see
figure 6). It is composed of eight switches (Sw) which are managed by two different tech-
nical centers (7c). Each switch is associated with four computer stations. There are two
kind of stations: operation stations and managing stations. The operating stations are used
to run basic applications of the switch: each switch is composed of two operating stations
(primary station Os/, secondary station Os2). When no failure occurs on the stations, only
the primary station works, the secondary station being in passive mode. If a failure occurs
on this station, a mechanism swaps the stations (the secondary station begins to work) in
order to always have an operationnal switch. The managing stations are used to control the
links between the different switches (routing). For the same reason as the operating station-
s, each switch is composed of two managing stations (primary and secondary Ms/l,Ms2).
The described network is then composed of 42 components.

In this architecture, alarms from stations arc cmitted via the associated switch which
means that if the switch is down, the alarms emitted by the stations are lost: this phe-
nomenon is called masking phenomenon.

A technical center may emit two kinds of alarms: cvhs and cves. cvhs is emitted when
the technical center goes down, due to a rebooting or a connection cut. cves is emitted
when the technical center begins to work well again. A switch may also emit two kinds of
alarms : n003 and n004. n003 is duc to a blocking of the switch or a booting ordered by
its technical center and n0O04 is emitted when the switch begins to work well again. As the
stations are concerned, they emit several alarms of type p089. These alarms are emitted
when the stations are rebooting, stopping or when there is a swap between two stations of
the same type.

In figure 7, the model of a primary managing station (Ms/) is presented. A primary
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Msl1 Msl2 Osll Os12 Ms21 Ms22 Os21 Os22 Ms51 Ms52 Os51 Os52  Ms6l Ms62 Os61 Os62

Swo

ESEE BEEBE

Ms31 Ms32 Os31 Os32  Msdl Msd2 Osd4l Osd2 Ms71 Ms72 Os71 0s72  Ms8l Ms82 Os81 0s82

Fig. 6. Topology of the studicd network.

station can be active, rebooting, stopping, moreover it can be independently masked or
not, so six states are distinguished in its behavior. The failure events that can occur on the
station are blkMs1 (the station begins to stop), rebootMsl (the station begins to reboot).
These failure events are associated with back events, respectively backMs! and enrbtMs],
which model the fact that failures are not permanent. Ms/ can interact with the associated
switch (Sw) and the secondary station (Ms2) (see figure 8). In the case of a blkMs/ event,
there is a swap of the primary and secondary stations which is modeled by the swpMs2
event emitted by the model of Ms/ and received by the model of Ms2. When Ms/ begins to
work well again (backMsT), Ms2 becomes passive which corresponds to the event swpMs/.
The masking phenomenon is modeled with the help of the mskMs/! and unMskMsI events
which are taken into account by the station when the associated switch masks or unmasks
the station.

The difficulty of diagnosing this system is that one alarm is not sufficient to identify
a failure (for example, nOO3 corresponds to a rebooting or a blocking). Discrimination
requires to look at the occurrence of other alarms.

5. D-Dyp: a telecommunication diagnosis tool

This tool implements all the tasks needed for the on-line diagnosis computation of sys-
tems like telecommunication networks given a model description. The diagnosis task is
composed of two steps:

(i) an off-line step which consists in the acquisition of the model and the compilation of
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Active

unMskMs1/{}
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Fig. 7. Modecl of a managing station (Ms/).
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the local diagnosers from a model description file;
(ii) an on-line step which consists in the acquisition of the alarms and the computation
of the global diagnosis.

5.1. Modeling

The model is described with a language of description derived from the ESTELLE lan-
guage. '8 This language permits to express the behavior of the different components of the
system. For exemple, the skeleton of the primary station behavior is depicted below.

MODULE Ms1;
/* primary station model */

Ip
INPUT Swi : (reboot,masque,demasque);
OUTPUT obs : (p089_st_hs,p089_ro_hs,p089_st_es);
INPUT exo : (blkMsl,backMsl,endrbtMsl);
OUTPUT secondary : (swpMsl, swpMs2);
END;

BEHAVIOR body_Msl FOR Msl;
STATE Active, Stopping,Rebooting, ActiveM, StoppingM, RebootingM;

TRANS
FROM Active TO Stopping
WHEN exo.blkMsl
OUTPUT secondary.swpMs?2

OUTPUT obs.p089_st_hs
OUTPUT obs.p089_ro_hs

END;
END;

The structural model describing the interactions between several components are ex-
pressed with the help of connections between modules. For example, the connection be-
tween an Ms/ and an Ms2 is given below:

CONNECT Msl.secondary TO Ms2.primary;

This model description file can be obtained by the use of a graphical model editor
which has been implemented for this task. Another way to obtain this description is to
automatically acquire it from a model in another equivalent formalism like SDL or UML.

5.2. Diagnosis computation

The diagnosis platform we used for on-line diagnosing is a distributed application. Giv-
cn the local diagnosers computed in the off-line step, we instanciate the diagnosis platform
as a set of CORBA objects using the client/server paradigm (see figure 9).

This platform is composed of four kinds of objects :

e Local diagnoser i. This CORBA object implements the local diagnoser. The pur-
pose of this CORBA object is to look at the network, to capture the alarms emitted
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operatcr

2 give
D

Alarms Alarms Alarms Alarms

Fig. 9. Distributed diagnosis platform.

by the associated component I'; and and to update its local diagnosis.

o Coordinator. The coordinator task is to compute the strategy of merging by taking
into account the current interactions claimed by each local diagnoser. Then, it calls
the composer objects which apply the strategy.

o Composer. The task of a composer object is to apply the & composition operation.
According to the coordinator, it gets the diagnoses from the local diagnosers or from
other composers and applies the composition.

o Interface. This object is the interface of the tool. It permits to visualize the current
diagnoses of the system and to display them to the operator.

There are several advantages of using a distributed architecture. Firstly, we can deploy
each local diagnoser on a machine well-adapted for the observation of a given set of com-
ponents (machine close to these components...). Secondly, the use of several composers
permits to compose the diagnoses in a real parallel way (one composer per processor) and
increascs the cfficiency of the merging operation.

6. Results

In this experiment, we have computed the global diagnosis in a temporal window contain-
ing 56 alarms (see table 1) emitted by 20 components of the network presented in section
4.
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Table 1. The sct of alarm sequences obscerved during one temporal window.

Osl] Osl2 Ms2] Ms22
p089_2_st_hs p089_2_ro_es p089_ro_hs p089_sec_st_hs
p089_2_st es p089_1_ro_es p089_st_hs pO89_nom_st_es
p089_2_ro_es p089_2_st_hs p0O89_st_es p089_nom_ro_rope
p089 2 ro_hs p089_nom_st_hs
p089_1I1_ro_es p0O89_nom_ro_nop

p089_sec_st_es
pO89_sec_st_hs
p089_sec_ro_hs

Sw4 Ms41 Ms42 Os41

n003 pO89_st_es p089_sec_st_hs p089 1 _ro_es

n004 pO89_sec_ro_hs

Os42 Sw3 0s51 0s52
p089_2_st es n003 p089_2_st_hs p089_2_ro_hs

n004 p089_2_st_es p089_1_ro_es
p0O89_2 ro_es p0O89 2 st hs
p089 2 ro_hs
p089_I_ro_es

Swo Ms6l Ms62 Sw8

n003 p089_st_hs pO89_sec_st_hs n003

n004 p089_ro_hs p089_nom_st_es n004

pO89_st_es p0O89_nom_ro_rope
p089_nom_st_hs
p089_nom_ro_nop
p089_sec_st_es
p089_sec_st_hs
p089_sec_ro_hs

Ms81 Ms82 Os81 0582

p089 st _es p089_sec_st_hs p089_1 _ro_es p089 2 st es
p089_sec_ro_hs

6.1. Analyses of the result

For this experiment, the diagnosis platform uses three composer objects in order to paral-
lelize some computations. The number of composers to instantiate depends of course of
the complexity of the diagnosed systems and on the number of processors we can use for
the diagnosis computation.

As the local diagnoses computation is concerned, dealing with this set of observationsis
very cfficient. In fact, the time of computation is inferior to 100ms for cach local diagnosis.
This efficiency is due to the diagnoser approach implemented in the tool.

According to the received alarms, no interaction is possible between the technical cen-
ters Tcl, Tc2 and their switches Swi. However, the local diagnoses of the switches claim
such an interaction (they suppose that a masking phenomenon has occurred). After the
elimination of these incompatible trajectories, the local purged diagnoses of the switches
become independant of the diagnoses of the technical centers and no merging is needed
(Tcl and Tc2 are independant). For the same reason Aprs71, Anrsra, Aosri, Aosra are
independant from Ag,7 and are not merged. The result of the diagnosis computation is
then a set of eleven independant diagnoses.
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{ATcly AS’wl,Msl1,M312,Osll,0312 s ASwZ,Mle,MsZZ: A03217
AS’w3,Ms31,M332,0331,0332 ) AS’w4,Ms41,Ms42,Os41,Os42 ) ATc2 ) AS’wE,MsE")l,Msi")2,Os£")1,Os£32 )
AS’u}6,M361 ,M362,0561,0862 ASuﬂ: AMs71 5 AMs72 5 AOs71 5 AOs72 s
AS’wS,MsSl,MsSQ,OsSl,0382 }

The result has been computed in 8 seconds (real time).

6.2. Comparisons with other strategies

Tn order to show the efficiency of our strategy, we have compared it to other strategies of
computations. This comparison is established by the computation of the global diagnosis
relative to a subpart of the presented network using only one composer object (no paral-
lelism). The subpart of the network is composed of Tc2, Sw8, Ms81, Ms82, Os81, Os82.
Only the alarms emitted by this set of components and presented in the table 1 are consid-
ered in this experiment. Times of computations (CPU times) are presented in the figure 10.
For cach stage of merging (here 5 stages), the figure presents the cumulative time since the

first stage.

Strategies with local trajectories elimination

600

500 P——

W
£ 400
E _— r— —e— Strategy 1
g —=— Strategy 2
= 200

100 —

0 -M .
0 1 2 3 4 5

Fig. 10. Comparisons of the performance of two different strategics of merging.

Strategy 1 is the strategy used by the diagnostic tool when one composer is available.
For a better comparison with other strategies, strategy 1 also computes the merging of inde-
pendant diagnoses (at stage 5) in order to explicitly obtain the global diagnosis. Strategy 2
eliminates inconsistent trajectories but do not apply any merging strategy based on interact-
ing diagnoses. We have also experimented strategies which do not apply any inconsistent
trajectory elimination, in this case, the computation requires several hours !

7. Conclusion

This paper describes a model-based diagnostic tool especially adapted to large and evo-
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lutive discrete-event systems such as telecommunication networks. Dealing with global
models is clearly impossible with such systems. The idea is to compute local diagnoses
from component models and to build the global diagnosis by merging these local results.
The challenge is to preserve the cfficieney of this global on-line computation. One key
point is considering with this respect: the order in which the successive merging operations
are performed. Our tool implements a strategy favoring the diagnoses corresponding to
interacting components. This strategy can be compared to the reconstruction plan.'' The
main advantage of our proposal is that the interactions are looked for by an on-line analysis
of diagnoscs making this stratcgy dynamic and adaptable.

Several improvements are currently studied in order to use the diagnostic on larger
systems. An incremental algorithm able to take into account observations on successive
temporal windows has been designed. ' It is currently experimented with satisfying re-
sults. An important point is the choice of the size of the temporal window in which the
strategy of merging is applied. The optimal size of the temporal windows has still to be
determined, knowing that it clearly depends on the application requirements.
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