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Abstract. This paper addresses the problem of diagnosing the occur-
rence of time shift failures in systems like automated production lines.
The model of the system is represented as a Timed Event Graph (TEG)
that is characterized as a (max,+)-linear system. The proposed method
aims at detecting and localizing the source of time shift failures by the
design of a set of indicators. These indicators rely on the residuation the-
ory on (max,+)-linear systems and a (max,+) observer that estimates
the internal state of the observed system.
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1 Introduction

Discrete Event Systems (DES) can be used to model and solve fault diagnosis
problems in automated production lines. In systems like production lines, failures
can be not only caused by complete equipment breakdowns but also by the
occurrence of time shifts so that the production line can dramatically slow down
and not be able to comply with the specified production objectives. This paper
addresses the problem of how to automatically detect and localize the source
of such time shifts based on a subclass of time Petri Nets, called Timed Event
Graph (TEG). In TEGs, places are associated with a punctual duration and
they can be modeled by (max,+) algebra as introduced in [1, 6]. The history
of DES with the use of (max,+) algebra is presented in [5]. For example, [4]
uses (max,+) algebra to control wafer delays in cluster tools for semiconductor
production. The problem of failure diagnosis by the use of (max,+) algebra
has been introduced in [7] where the proposed detection method relies on the
residuation theory and compares observable outputs with expected ones to detect
output time shifts (Section 3). Failure localisation is then performed by an ad hoc
structural analysis of the underlying TEG that does not use (max,+) algebra.
The objective of this paper is to design a new set of time shift failure indicators
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(Section 5) that are not based on the observable outputs of the system only
but on the estimation of the internal state of the system (Section 4) so that
the failure localisation problem is also solved in an algebraic way. To do so, the
proposed failure indicator will rely on an observer that is proposed in [2] and
aims at rebuilding system states based on the observations.
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Fig. 1. Fault free model (left) and a graphical representation of the inputs u1 (=u2)
in the proposed scenario (right).

2 Motivation

The problem that we address is motivated by a real production line that is at
STMicroelectronics Crolles300 plant. Semiconductor manufacturing is complex
and one of its most important challenges is to succeed in detecting production
drifts before they have real impact on production plan. STMicroelectronics has
complex production lines of wafer batches with many pieces of equipment run-
ning in parallel. One of the objectives is to detect as soon as possible that an
equipment is late to ensure that products (wafer batches) are delivered on time
or at least with minimal delays. Figure 1 presents a fault-free behavioural model
of such a production line defined by a TEG. This production line corresponds to
three pieces of equipment (namely Eq1, Eq2, Eq3). Eq1 is modeled with a couple
of places p3, p4: it is available (i.e. no current processing) if a token is in place
p3 while it is processing its input if a token is in place p4. The process of Eq1 is
carried out in 3 hours. Similarly Eq2 and Eq3 are respectively modeled by the
couple of places p6, p5 (processing time: 4 hours) and p9, p10 (processing time 4
hours). Places p7, p8 model wafer batch transportation between Eq1, Eq2 and
Eq3. For i = {1, 2}, a trigger of an input transition ui represents the occurrence
of an event from sensors on the production line that indicates the arrival of un-
processed wafer batches in front of Eqi. The output to the production line is a
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stream of fully processed wafer batches modeled by firing transition y1. Outputs
y2 and y3 provide observable information about the end of the process of Eq1
and Eq2. Suppose a scenario where a stream of 7 wafer batches arrive at Eq1
(input u1) respectively at time t ∈ {1, 2, 3, 4, 5, 6, 7} and suppose it is similar
for u2. As detailed later, this sequence of events can graphically be represented
as a set of points (event of index γ = 0 arrives at time δ = 1...), see Fig-
ure 1. Then, suppose that processed wafer batches are successively available at
time {12, 17, 22, 27, 32, 37, 42} (output y1), and process information is available
at time {5, 8, 11, 14, 17, 20, 23} for output y2 and at time {7, 12, 17, 22, 27, 32, 37}
for output y3. Then, the question is: based on the fault-free model of Figure 1,
can we detect and localize a time shift failure in the underlying production line?
This paper aims at designing a model-based (max,+)-algebraic decision method
for the detection of such time shifts relying on the use of the dioid Max

in [[γ, δ]].

3 Mathematical background

About dioid theory The dioid theory is used to describe the inputs and the
behavior of a system.

Definition 1. A dioid D is a set composed of two internal operations ⊕ and ⊗.4

The addition ⊕ is associative, commutative, idempotent (i.e. ∀a ∈ D, a⊕ a = a)
and has a neutral element ε. The multiplication ⊗ is associative, distributive on
the right and the left over the addition ⊕ and has a neutral element e. Element
ε is absorbing by ⊗ (i.e. ∀a ∈ D, a⊗ ε = ε = ε⊗ a).

For instance, let Zmax be the set (Z∪{−∞}) associated with the max operation
denoted ⊕ (2⊕ 3 = 3...) with neutral element ε = −∞ and the integer addition
denoted ⊗ (2⊗ 3 = 5...) with neutral element e = 0, then Zmax is a dioid.

Definition 2. A dioid is complete if it is closed for infinite sums and if ⊗ is
distributive over infinite sums.

Zmax is not complete as +∞ does not belong to Zmax. Let Zmax = Zmax ∪
{+∞}, Zmax defines a complete dioid where (−∞) ⊗ (+∞) = (−∞). By
construction, a dioid D is partially ordered with respect to � with: ∀a, b ∈
D, a � b⇔ a⊕b = b. The exponential term ai, a ∈ D, i ∈ N is defined as follows:
a0 = e and ∀i > 0, ai+1 = a ⊗ ai. Finally, in a complete dioid, the Kleene star
operator is a∗ =

⊕
i≥0

ai. From this, it follows a fundamental result (Theorem 1):

Theorem 1. Let D be a complete dioid, x = a∗b is the solution of x = ax⊕ b.

4 When there is no ambiguity, the symbol ⊗ is omitted.
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About dioid Max
in [[γ, δ]] The complete dioid B[[γ, δ]] is the set of formal series

sJ =
⊕

(n,t)∈J
γnδt with J ⊆ Z2 where γnδt is a monomial composed of two

commutative variables γ and δ. Neutral elements are ε =
⊕

(n,t)∈∅
γnδt and e =

γ0δ0. Graphically, the series sJ of B[[γ, δ]] represents any collection J of point
of coordinates (n, t) in Z2 with γ as horizontal axis and δ as vertical axis (see
Figure 1). The dioid Max

in [[γ, δ]] is defined as the quotient of the dioid B[[γ, δ]]
by the modulo γ∗(δ−1)∗. The internal operations are the same as in B[[γ, δ]] and
neutral elements ε and e are identical to those of B[[γ, δ]] and Max

in [[γ, δ]] is also
complete. By construction, any series of Max

in [[γ, δ]] represents a non-decreasing

function over γ and its canonical form is s =
⊕K

k=0 γ
nkδtk with K ∈ N∪ {+∞}

with n0 < n1 < . . . , t0 < t1 < . . . . Throughout this paper, we will use series of
Max

in [[γ, δ]] to represent the occurrence of an event type over time. For instance,
Figure 1 shows such a series u1 = u2 = γ0δ1⊕γ1δ2⊕γ2δ3⊕γ3δ4⊕γ4δ5⊕γ5δ6⊕
γ6δ7 ⊕ γ7δ+∞ as described in the scenario of Section 2.

Definition 3. Let s ∈ Max
in [[γ, δ]] be a series, the dater function of s is the

non-decreasing function Ds(n) from Z 7→ Z∪ {+∞} such that s =
⊕
n∈Z

γnδDs(n).

Series u1 (similarly for u2) has for dater function Du1(0) = 1, Du1(1) = 2,
Du1

(2) = 3, Du1
(3) = 4, Du1

(4) = 5, Du1
(5) = 6, Du1

(6) = 7 and Du1
(7) =

+∞. This dater function lists all the dates of the event occurrences.

About time comparison in series: residuation theory Let D and C denote
two complete dioids. IdC and IdD are the identity mappings on C and D.

Definition 4. Let Π : D 7→ C be an isotone mapping5, Π is residuated if for
all c ∈ C there exists a greatest solution of Π(x) = c. Moreover this solution is
Π](c) where Π] : C → D is the unique isotone mapping such that Π ◦Π] � IdC
and Π] ◦Π � IdD. Π] is called the residual of Π.

Consider the isotone mapping Ly : D → D : x 7→ y ⊗ x, it is residuated and
its residual is L]

y(z) also denoted y ◦\z. That is y ◦\z is the greatest solution on x
of y ⊗ x = z,∀z ∈ D. Similarly, for the residuated isotone mapping Ry : D →
D : x 7→ x⊗ y, R]

y(z) = z◦/y. Intuitively speaking, y ◦\z and z◦/y provide a way to
formally compare z and y in a complete dioid.

Theorem 2. Let A ∈ Dn×m be a matrix of series. Then, A ◦\A = (A ◦\A)∗.

Time comparison between series of Max
in [[γ, δ]] can be defined with residuals.

Definition 5. Let a, b ∈Max
in [[γ, δ]] and their respective dater functions Da and

Db. The time shift function representing the time shift between a and b for each
n ∈ Z is defined by Ta,b(n) = Da −Db.

5 Recall that dioids are ordered sets. Let Π : S 7→ S ′ be an application defined on
ordered sets, Π is isotone if ∀x, x′ ∈ S, x � x′ ⇒ Π(x) � Π(x′).
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Theorem 3 ([6]). Let a, b ∈ Max
in [[γ, δ]], the time shift function Ta,b(n) can be

bounded by:
∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0),

where Db◦/a(0) is obtained from monomial γ0δ
D

b◦/a
(0)

of series b◦/a and Da◦/b(0)

is obtained from γ0δ
D

a◦/b
(0)

of series a◦/b.

Definition 6. Let a, b ∈Max
in [[γ, δ]], the time shift between series a and b is

∆(a, b) = [Db◦/a(0);−Da◦/b(0)], (1)

where γ0δ
D

b◦/a
(0) ∈ b◦/a and γ0δ

D
a◦/b

(0) ∈ a◦/b. In this interval, the series from
which the time offset is measured is the series a. It is called the reference series
of the interval.

From this definition, if the time shift interval needs to be defined with series
b as the reference series, the interval will be ∆(b, a) = [Da◦/b(0);−Db◦/a(0)].

Example 1. Let us consider series a = γ0δ12⊕γ1δ15⊕γ2δ18⊕γ3δ21⊕γ4δ+∞ and
b = γ0δ12⊕γ1δ15⊕γ2δ19⊕γ3δ23⊕γ4δ+∞. The minimal time shift between a and
b is Db◦/a(0) = 0 (found in γ0δ0 in b◦/a = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞).
The maximal time shift is −Da◦/b(0) = 2 (found in γ0δ−2 from a◦/b = γ0δ−2 ⊕
γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞). Therefore ∆(a, b) = [0, 2]: series b is later than a
with a minimum of 0 and a maximum of 2 hours.

Models of (max,+)-linear systems The elements of the TEG are represented
by equations in Max

in [[γ, δ]]. The equations can be grouped into a set of matrices
A, B and C that contain information about the structure of the TEG. The state
representation defines relations between any set of input event flows u and the
state x, and the relations between the state x and the output event flows y. Let
u ∈ Max

in [[γ, δ]]p×1 be the input vector of size p, x ∈ Max
in [[γ, δ]]n×1 be the state

vector of size n and y ∈ Max
in [[γ, δ]]q×1 be the output vector of size q. The state

representation is: {
x = Ax ⊕ Bu,

y = Cx,

where A ∈ Max
in [[γ, δ]]n×n, B ∈ Max

in [[γ, δ]]n×p and C ∈ Max
in [[γ, δ]]q×n. Equality

x = Ax⊕Bu can be transformed to x = A∗Bu thanks to Theorem 1 so we have

y = CA∗Bu.

Matrix H = CA∗B represents the transfer function of the TEG, that is the dy-
namic of the system between the inputs and the outputs. For the system of Fig-
ure 1 the matrices A ∈Max

in [[γ, δ]]6×6, B ∈Max
in [[γ, δ]]6×2 and C ∈Max

in [[γ, δ]]3×6

of the state representation are:



6 Claire Paya et al.

A :


. γ1δ0 . . . .

γ0δ3 . . . . .
. . . γ1δ0 . .
. . γ0δ4 . . .
. γ0δ2 . γ0δ1 . γ1δ0

. . . . γ0δ4 .

 B :


γ0δ1 .
. .
. γ0δ1

. .

. .

. .

 C :

. . . . . γ0δ0

. γ0δ0 . . . .

. . . γ0δ0 . .

.

The exponent n of γ represents the backward event shift between transitions
(the n + 1th firing of x1 depends on the nth firing of x2) and the exponent of
δ represents the backward time shift between transition (the firing date of x2
depends on the firing date of x1 and time between 2 and 5).

4 How can a (max,+) observer be sensitive to time shift
failures?

The objective of the paper is to propose a method that detects time shift failures
as proposed in Section 2 and that uses an observer as introduced in [2] and [3].
As later detailed in Section 4.2, this observer aims at computing a reconstructed
state from the observation of the inputs and outputs of the system that is sen-
sitive to a specific type of disturbance. These disturbances are characterized as
new inputs w that slow down the system. The system will then be assumed to
behave with respect to the following state representation:

x = Ax ⊕ Bu ⊕ Rw, y = Cx. (2)

4.1 Time shift failures as input disturbances

Throughout this paper, we consider that time shift failures are permanent phe-
nomena that can occur at any step of the production. Formally speaking, a time
shift failure is characterized by an unexpected and unknown delay d > 0 that
is added to the normal duration time t of a place p. As shown in Figure 2, this
place is characterized by a transition upstream xi−1, a duration t, a number of

tokens o and a transition downstream xi. Let xi−1 =
K⊕

n=0
γsnδhn , where sn is

the transition firing number, hn is the firing date and K the number of firing

events. The normal downstream transition is xi =
K⊕

n=0
γsn+oδhn+t. When a time

shift failure d > 0 holds in a place, the downstream transition then becomes:

xi =
K⊕

n=0
γsn+oδhn+t+d. To characterize the same time shift failure over the place

p by a disturbance, we will first modify the TEG. We add to the downstream
transition xi an input wi, as shown in Figure 3, which slows down this transition.
This new input wi is not observed because it is related to a failure in an equip-
ment. To get the same effect of an offset d > 0 in the downstream transition,
input wi has to be defined as

wi =

k⊕
n=0

γsn+oδhn+t+d. (3)
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Back to Figure 1, to characterize a time shift failure of d = 1 on place
p5, a disturbance w4 is added to transition x4 as in Figure 3. Suppose that
x3 = γ0δ2⊕γ1δ6⊕γ2δ10⊕γ3δ14⊕γ4δ18⊕γ5δ22⊕γ6δ26⊕γ7δ+∞. Since an offset of
1 time unit is present on p5, x4 = γ0δ2+4+1⊕γ1δ6+4+1⊕γ2δ10+4+1⊕γ3δ14+4+1⊕
γ4δ18+4+1 ⊕ γ5δ22+4+1 ⊕ γ6δ26+4+1 ⊕ γ7δ+∞. By setting the disturbance w4 =
x4 = γ0δ7 ⊕ γ1δ12 ⊕ γ2δ17 ⊕ γ3δ22 ⊕ γ4δ27 ⊕ γ5δ32 ⊕ γ6δ37 ⊕ γ7δ+∞, the firing
of transition x4 is slowed down.

Based on this characterization, the faulty system that we consider will behave
based on Equation (2) and input disturbances as defined by Equation (3). Let
w ∈ Max

in [[γ, δ]]l×1 be the input vector of disturbances of size l. The input w
corresponds to the transition that will be disturbed. Matrix R ∈Max

in [[γ, δ]]n×l is
filled with γ0δ0 monomials that represent the connections between disturbances
and internal disturbed transitions. All the other entries are set to ε. Equality

t

p

xi−1 xi

o

Fig. 2. Representation of a place

t

p

xi−1 xi

wi

o

Fig. 3. Representation of a place with dis-
turbance

x = Ax⊕Bu⊕Rw can be transformed to x = A∗Bu⊕A∗Rw thanks to Theorem 1
so we have

y = CA∗Bu⊕ CA∗Rw.
In the example of Section 2, all the internal transitions in Figure 1 will be dis-

turbed so R is the matrix R ∈ Max
in [[γ, δ]]6×6 with ∀i, j{1, . . . , 6}i 6= j, R(i, j) =

ε,R(i, i) = e = γ0δ0.

4.2 Observer synthesis

In this paper we use the definition of an observer from the articles [3],[2]. Figure 4
shows the system with disturbances w and from which we can observe the outputs
yo. The observer is a new model obtained from the fault-free model and that
will estimate the states of the system xr in the presence of such disturbances.

From articles [3], [2] we get the following observer’s equations:{
xr = Axr ⊕Bu⊕ L(yr ⊕ yo) = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw,

yr = Cxr.
(4)

To obtain the estimated vector xr as close as possible to real state x, the observer
relies on the largest matrix L ∈Max

in [[γ, δ]]n×q such that:

xr � xo
(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕A∗Rw
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Fig. 4. Observer structure with disturbance (on the left) and the global architecture
of the detection method (on the right).

where L = (A∗B◦/CA∗B) ∧ (A∗R◦/CA∗R).
The observer matrix L of the TEG of Figure 1 is

L =


. γ1δ0(γ1δ3)∗ .
. γ0δ0(γ1δ3)∗ .
. . γ1δ0(γ1δ4)∗

. . γ0δ0(γ1δ4)∗

γ1δ0(γ1δ4)∗ γ0δ2(γ1δ4)∗ γ0δ1(γ1δ4)∗

γ0δ0(γ1δ4)∗ γ0δ6(γ1δ4)∗ γ0δ5(γ1δ4)∗


Suppose the system behaves with respect to the inputs u1 and u2 defined

in Section 3 but transition x4 is disturbed with w4 = γ0δ7 ⊕ γ1δ12 ⊕ γ2δ17 ⊕
γ3δ22 ⊕ γ4δ27 ⊕ γ5δ32 ⊕ γ6δ37 ⊕ γ7δ+∞ then the reconstructed state is xr =
(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw which is the vector xr = [xr1, . . . , xr6]T =

γ0δ2 ⊕ γ1δ5 ⊕ γ2δ8 ⊕ γ3δ11 ⊕ γ4δ14 ⊕ γ5δ17 ⊕ γ6δ20 ⊕ γ7δ+∞

γ0δ5 ⊕ γ1δ8 ⊕ γ2δ11 ⊕ γ3δ14 ⊕ γ4δ17 ⊕ γ5δ20 ⊕ γ6δ23 ⊕ γ7δ+∞

γ0δ2 ⊕ γ1δ7 ⊕ γ2δ12 ⊕ γ3δ17 ⊕ γ4δ22 ⊕ γ5δ27 ⊕ γ6δ32 ⊕ γ7δ+∞

γ0δ7 ⊕ γ1δ12 ⊕ γ2δ17 ⊕ γ3δ22 ⊕ γ4δ27 ⊕ γ5δ32 ⊕ γ6δ37 ⊕ γ7δ+∞

γ0δ8 ⊕ γ1δ13 ⊕ γ2δ18 ⊕ γ3δ23 ⊕ γ4δ28 ⊕ γ5δ33 ⊕ γ6δ38 ⊕ γ7δ+∞

γ0δ12 ⊕ γ1δ17 ⊕ γ2δ22 ⊕ γ3δ27 ⊕ γ4δ32 ⊕ γ5δ37 ⊕ γ6δ42 ⊕ γ7δ+∞


The reconstructed state xr takes into account the disturbance w4. If w4 were

not present, the monomial γ0δ7 in xr4 would be γ0δ6 (no time shift).

5 Time shift failure detection in (max,+)-linear systems

Figure 4 on the right shows how the proposed set of indicators is designed: the
system is ruled by the observable inputs u, the unobservable disturbances w and
produces the observable outputs yo; the observer estimates the states xr based
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on the observation of u and yo. States xs result from the simulation of the fault-
free model (as in Figure 1) based on u, the proposed indicator then relies on a
series comparison denoted ∆(xri, xsi) (see Definition 6) for every transition xi.

Definition 7. The indicator for state xi is Ixi
(u, yo) defined as the Boolean

function that returns true iff ∆(xri, xsi) = [0, 0] with xs = [xs1 . . . xsn]T =
A∗Bu, xr = [xr1 . . . xrn]T = Axr ⊕ Bu ⊕ LCxr ⊕ Lyo, and ∆(xri, xsi) =
[Dxri◦/xsi

(0),−Dxsi◦/xri
(0)].

Theorem 4. The indicator Ixi(u, yo) returns true only if a time shift failure
involving xi with ∆(xri, xsi) 6= [0, 0] has occurred in the system. A time shift
failure involves a transition xi if the time shift failure occurs in a place of the
TEG that is in the upstream6 of transition xi.

Proof: We show that, if the system has no failure in the upstream of xi, Ixi
(u, yo)

necessarily returns false. Suppose the system does not have such a time shift
failure, by definition of the observer, the reconstructed state xri is the same as
the fault-free model state xsi as no place in the upstream of xi is disturbed. If
xsi = xri, then we have xsi◦/xri = xri◦/xsi = xri◦/xri but xri◦/xri = (xri◦/xri)

∗

according to Theorem 2 and with Definition 1 of the Kleene star: (xri◦/xri)
∗ =

e⊕ · · · = γ0δ0 ⊕ . . . . So if xri = xsi, one has Dxri◦/xsi
(0) = −Dxsi◦/xri

(0) = 0. �
In the example of Section 2, based on the previous observer, suppose that

the system behaves with respect to the inputs u1 and u2 defined in Section 3.
Suppose that in reality there was an incident on Equipment 2: the operation lasts
longer with a processing time of 5 hours in p5 instead of 4 hours (see Figure 1).
The real system is then characterized by Equation (2) with the disturbance w4

that is defined in Section 4.1. The estimated state is the same as given at the
end of Section 4.2. In particular, xr3 is represented with plain line in Figure 5
(as well as series xs3 with dotted line). The expected state xs is the vector:
xs1
xs2
xs3
xs4
xs5
xs6

 =


γ0δ2 ⊕ γ1δ5 ⊕ γ2δ8 ⊕ γ3δ11 ⊕ γ4δ14 ⊕ γ5δ17 ⊕ γ6δ20 ⊕ γ7δ+∞

γ0δ5 ⊕ γ1δ8 ⊕ γ2δ11 ⊕ γ3δ14 ⊕ γ4δ17 ⊕ γ5δ20 ⊕ γ6δ23 ⊕ γ7δ+∞

γ0δ2 ⊕ γ1δ6 ⊕ γ2δ10 ⊕ γ3δ14 ⊕ γ4δ18 ⊕ γ5δ22 ⊕ γ6δ26 ⊕ γ7δ+∞

γ0δ6 ⊕ γ1δ10 ⊕ γ2δ14 ⊕ γ3δ18 ⊕ γ4δ22 ⊕ γ5δ26 ⊕ γ6δ30 ⊕ γ7δ+∞

γ0δ7 ⊕ γ1δ11 ⊕ γ2δ15 ⊕ γ3δ19 ⊕ γ4δ23 ⊕ γ5δ27 ⊕ γ6δ31 ⊕ γ7δ+∞

γ0δ11 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ27 ⊕ γ5δ31 ⊕ γ6δ35 ⊕ γ7δ+∞


and the computed intervals are in Figure 5. Indicators that return true are
associated with transitions x3, x4, x5, x6. Indicators for transitions x1, x2 return
false. Now, if we assume that there is only one type of time shift failure in the
system, Proposition 4 ensures that the time shift failure occurs in a place that is
in the upstream of every transition x3, x4, x5, x6. The time shift failure occurs in
Eq2, either in place p2 (transportation delay before the arrival in front of Eq2),
or in place p6 (processing start of Eq2 is delayed), or in place p5 (process of Eq2
longer than expected).

6 A place p is in the upstream of a transition x in a TEG if there is a path of arcs
from p to x.
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∆(xr1, xs1) = [D
xr1◦/xs1(0)

,−D
xs1◦/xr1

(0)] = [0, 0],

∆(xr2, xs2) = [D
xr2◦/xs2(0)

,−D
xs2◦/xr2

(0)] = [0, 0],

∆(xr3, xs3) = [D
xr3◦/xs3(0)

,−D
xs3◦/xr3

(0)] = [0, 6],

∆(xr4, xs4) = [D
xr4◦/xs4(0)

,−D
xs4◦/xr4

(0)] = [1, 7],

∆(xr5, xs5) = [D
xr5◦/xs5(0)

,−D
xs5◦/xr5

(0)] = [1, 7],

∆(xr6, xs6) = [D
xr6◦/xs6(0)

,−D
xs6◦/xr6

(0)] = [1, 7].
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Fig. 5. Computed intervals for the scenario and representation of xr3 and xs3.

6 Conclusion

This paper defines a method for detecting time shift failures in systems modeled
as Timed-Event Graphs using an observer that estimates the real states of the
system. The method defines a formal (max,+) algebraic indicator based on the
residuation theory. The proposed indicator is able to detect the presence of time
shift failures as soon as it returns true and provides first localisation results.
As a perspective, we aim at improving the accuracy of this indicator to better
exploit the quantitative information contained in the interval ∆(xri, xsi). We
expect that a further analysis about the bounds of the intervals may actually
provide more information about failure localization and identification.
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