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Abstract—In this paper, we address the problem of failure
detection in assembly lines modeled as Timed Event Graphs
(TEG). The proposed method represents TEGs as (max,+)-linear
systems with time intervals and aims at detecting time shift
failures in the underlying assembly lines. To do so, we propose the
definition of a set of indicators relying on the residuation theory
on (max,+) linear systems that handle certain and uncertain
observable outputs.

Index Terms— (max,+)-linear system, assembly line, fault
detection, discrete event system, timed event graph

I. INTRODUCTION

In industrial systems such as assembly lines, fault diagnosis
is usually automatized by using Discrete Event System (DES).
Industry also requires that failures are rapidly identified, to
avoid systems unavailability for too long. The various system
failures on which we proposed to work can be loss of event
information, loss of time information. Among those failures,
timing issues can be a problem for instance, an assembly line
that slows down will put out fewer pieces. STMicroelectronics
is a company that develops, produces and commercializes
microchips for electronic system. The semiconductor manufac-
turing process is extremely complex and constantly innovating.
One of the challenges is the monitoring of time drifts for the
supervision of an instrumented production chain. This means
detecting as soon as possible the time differences between the
production plan and actual production performed in order to
be able to apply the corrections quickly to prevent too much
delay in the delivery of the product.

This problem is a subclass of the problems called fail-
ure diagnosis in timed discrete event systems. One of the
first diagnostic methods used to solve such problems is the
method extracted from [SSL+95] which is applied to timed
automata [Tri02]. This diagnostic method refines decisions on
the diagnosis by taking into account dated observations. In
[GTY09] the diagnostic method uses time Petri net that models
competition and/or system parallelism. Among the classes of
Petri Nets, Timed Event Graph is a good candidate to represent
assembly lines. TEGs are one of the subclasses of Petri nets
where places are associated with a punctual duration; they can

be modeled by (max,+) algebra as introduced in [BCOQ92],
[Max91]. More recently the survey [KLBvdB18] summarizes
the history of (max,+) algebra within the field of discrete
event systems. For example, [KL15] uses (max,+) algebra
to represent TEGs to control cluster tools in semiconductor
manufacturing.

Recently, in the article [SLCP17] the method uses (max,+)
algebra to model the normal behavior of the system in a linear
state representation and proposes a method to perform offline
failure diagnosis. This method performs diagnosis on a fixed
time (max,+)-linear systems. In this article, we extend the
diagnostic method of the article [SLCP17] by dealing with
time intervals in TEGs and by still using a representation with
(max,+) algebra. We first propose a method for detecting time
lags in system with certain outputs (i.e. we know exactly what
are the output events of the system) that is secondly extended
to deal with a method for detecting time lags in system with
uncertain outputs (i.e. the occurrence dates of the output events
are within a given time interval).

The paper is organized as follows. Section II presents a
motivation example inspired from the microchip industry. Sec-
tion III summarizes the necessary mathematical background
about (max,+)-linear systems. Section IV introduces the ac-
ceptable outputs in (max,+)-linear system with time intervals.
Section V then defines detection in (max,+)-linear systems
with time intervals with indicators for certain outputs and
indicators for uncertain outputs.

II. MOTIVATION EXAMPLE

In STMicroelectronics plants, several products are produced
at the same time. For the manufacturing of products there
are several different production plans for the same product
and variations in production time. Production performed may
change during manufacture depending on equipment avail-
ability. These changes may cause delays depending on the
delivery date of the product, the production performed have to
be corrected. The purpose of the proposed method is to detect
a posteriori when the delay becomes significant and that it is



absolutely necessary to make a correction of the production
performed in order not to have a delay on the delivery.

u1
[0, 0]

p1

x1
[2, 5]

p4

x2

[3, 3]

p7

u2
[0, 0]

p2

x3
[1, 3]

p5

x4
[5, 5]

p8

x5
[2, 2]

p10

x6
[0, 0]

p11

y

[0, 0]

p3

[0, 0]

p6

[0, 0]

p9

Eq2

Eq1

Eq3

Fig. 1. Representation of the normal behavior of an assembly line as a Timed
Event Graph with time intervals

Example 1. Figure 1 shows a part of such a plant. It is an
assembly line composed of equipments represented as a Timed
Event Graph where places hold time intervals. Equipments 1
and 2 (Eq1 and Eq2) do the same treatment but not with
the same time. The treatment on Equipment 3 (Eq3) needs
a sufficient number of wafers that requires synchronization.
Input u1 (resp. u2) is a flow of timed events corresponding to
the arrivals of the wafers on Eq1 (resp. Eq2). If Eq1 (resp.
Eq2) is ready, this corresponds to a token in p3 (resp. p6), the
processing of the wafer by Eq1 (resp. Eq2) is carried out on p4
(resp. p5) and the process duration is between 2 and 5 hours
(resp. 1 and 3 hours). The processing by Eq3 corresponds
to p10 and lasts exactly 2 hours. This operation can only be
processed if there is a sufficient number of wafers coming from
Eq1 and Eq2. Wafers take 3 hours from Eq1 (p8) to arrive on
Eq3 and 5 hours from Eq2 (p7).

Now suppose that on u1 we have 4 wafers: one at t=1, one
at t=2 and two at t=3; the same on u2. Final products are
available on the output y respectively at time 12, 18, 24 and
30. Then, the question is: is the schedule respected according
to the TEG of Figure 1 or is there a time drift?

For the wafer that arrives at t=1 on Eq1 (Eq2), in the best
case it is processed in 2 hours (1 hour) and then takes 3 hours
(5 hours) to arrive on Eq3. Synchronization between wafers is
done at t=6 and they are processed in 2 hours on Eq3. So, the
wafers come out at t=8. In the worst case, the wafers come
out at t=11. However, the first observable output comes out
one hour later the worst case hence the time drift.

Timed Event Graphs, as the one presented in Figure 1,
can be formally defined as (max,+)-linear systems that are
introduced in the next section. This formalization will be used
to the definition of the indicators of time shift failures as the
one of Example 1.

III. SCIENTIFIC BACKGROUND

This section recalls the mathematical background used in
this paper for describing (max,+)-linear systems with time

intervals [BCOQ92], [Max91], [BHMR12] and [LHCJ04].

A. Dioid theory

The dioid theory is used to describe the inputs, the outputs
and the behavior of the system studied. In particular, series of
a specific dioid are defined to obtain the trajectories of inputs
and outputs flows of timed events.

Definition 1. A dioid D is a set composed of two internal op-
erations ⊕ and ⊗. The addition ⊕ is associative, commutative,
idempotent (i.e. ∀a ∈ D, a⊕a = a) and has a neutral element
ε. The multiplication ⊗ is associative, distributive on the right
and the left over the addition ⊕ and has a neutral element e.
When there is no ambiguity, the symbol ⊗ is omitted.

Definition 2. A dioid is complete if it is closed for infinite
sums and if ⊗ is distributive over infinite sums.

Example 2. The dioid Zmax = (Z ∪ −∞) endowed with the
max operation as addition ⊕ and the addition as multiplication
⊗ with neutral element denoted ε = −∞ and e = 0. The dioid
Zmax is not complete because +∞ does not belong to the set
Zmax so the infinite sum is not set to +∞. By adding +∞ to
the dioid Zmax, we get the complete dioid Zmax.

Theorem 1 ( [BCOQ92]). Let D be a complete dioid, x = a∗b
is the solution of x = ax⊕ b, where x = a∗b, and a∗ =

⊕
i≥0

ai

is the Kleene star operator with a0 = e and ai+1 = a⊗ ai.

Definition 3. For a dioid D, � denotes the order relation such
that ∀a, b ∈ D, a � b⇔ a⊕ b = b.

Example 3. The complete dioid B[[γ, δ]] is the set of formal
series with two commutative variables γ and δ with boolean
coefficients in {ε, e} and exponents in Z. A series s ∈ B[[γ, δ]]
is written s =

⊕
n,t∈Z

s(n, t)γnδt where s(n, t) = e or ε. The

neutral elements are ε =
⊕

n,t∈Z
γnδt and e = γ0δ0.

Graphically, a series of B[[γ, δ]] is described by a collection
of point of coordinates (n, t) in Z2 with γ as horizontal axis
and δ as vertical axis. For instance, Figure 2 shows a couple
of series p = γ3δ0⊕γ4δ1⊕γ5δ2 and p = γ0δ1⊕γ2δ3⊕γ4δ5.

In the following, we will consider the dioidMax
in [[γ, δ]]. It is

the quotient of the dioid B[[γ, δ]] by the modulo γ∗(δ−1)∗. The
dioid Max

in [[γ, δ]] is a complete dioid with ∀a, b ∈Max
in [[γ, δ]]:

a = b ⇔ aγ∗(δ−1)∗ = bγ∗(δ−1)∗. The internal operations
are the same as in B[[γ, δ]] and neutral elements ε and e are
identical to those of B[[γ, δ]].

Definition 4. Let s ∈ Max
in [[γ, δ]] be a series, the dater

function of s is the non-decreasing function Ds(n) from
Z 7→ Z such that s =

⊕
n∈Z

γnδDs(n).

Example 4. Considering Example 1, a first wafer arrives on
u1 at time t=1, a second at t=2 and finally a third and a
fourth at t=3 represented by series u1 = γ0δ1⊕γ1δ2⊕γ2δ3⊕
γ4δ+∞. The absence of a fifth wafer is indicated by +∞ in



monomial γ4δ+∞. Series u1 has for dater function Du1
(0) =

1, Du1(1) = 2, Du1(2) = 3 and Du1(3) = 3.

In the problem of detection of time differences between a
plan and the reality, the residuation theory is used and provides
time comparison between series.

Definition 5. Let Π : D 7→ C be an isotone mapping, where D
and C are complete dioids. The largest solution of Π(x) = b is
called the residual of Π and is noted Π]. When Π is residuated,
Π] is the unique isotone mapping such that Π ◦Π] � IdC and
Π] ◦Π � IdD where IdC and IdD are respectively the identity
mappings on C and D.

Example 5. The mappings La 7→ a ⊗ x and Ra 7→ x ⊗ a
defined over a complete dioid D are both residuated. Their
residuals are denoted by L]

a(x) = a ◦\x and R]
a(x) = x◦/a.

Thanks to the residuals defined above we will be able to
define time comparison between series.

Definition 6. Let a, b ∈Max
in [[γ, δ]] and their respective dater

functions Da and Db. The time shift function representing the
time shift between a and b for each n ∈ Z is defined by
Ta,b(n) = Da −Db.

Theorem 2 ( [Max91]). Let a, b ∈ Max
in [[γ, δ]], the time shift

function Ta,b(n) can be bounded by:

∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0),

where Db◦/a(0) is obtained from monomial γ0δDb◦/a
(0) of series

b◦/a and Da◦/b(0) is obtained from γ0δ
D

a◦/b
(0) of series a◦/b.

Definition 7. Let a, b ∈ Max
in [[γ, δ]], the time shift between

series a and b is

∆(a, b) = [Db◦/a(0);−Da◦/b(0)], (1)

where γ0δ
D

b◦/a
(0) ∈ b◦/a and γ0δ

D
a◦/b

(0) ∈ a◦/b. In this
interval, the series from which the time offset is measured
is the series a. It is called the reference series of the interval.

From this definition, if the time shift interval needs to be
defined with series b as the reference series, the interval will
be ∆(b, a) = [Da◦/b(0);−Db◦/a(0)].

Example 6. Let us consider two different observable outputs
y from the system (Figure 1): y1 = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕
γ3δ21⊕ γ4δ+∞ (i.e delivery of final products at times 12, 15,
18, 21), and y2 = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞
(i.e delivery of final products at times 12, 15, 19, 23). The
minimal time shift between y1 and y2 is Dy2◦/y1

(0) = 0 and is
found in the monomial where the degree of γ is 0 of y2◦/y1 =
γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞. The maximal time
shift is −Dy1◦/y2

(0) = 2 and is found in γ0δ−2 of y1◦/y2 =
γ0δ−2 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞.

B. Models of (max,+)-linear systems with time intervals

This section presents a (max,+)-linear system with time in-
tervals and the graphical representation (see TEG of Figure 1).

Definition 8. A closed interval in a dioid D is a set of the
form x = {t ∈ D|x � t � x} denoted by x = [x, x].

Definition 9. The set of intervals in D denoted by I(D),
endowed with the operations

x⊕y = [x⊕ y, x⊕ y], x⊗y = [x⊗ y, x⊗ y],

where x = {x ∈ D|x � x � x} and y = {y ∈ D|y � y � y}.
The interval ε = [ε, ε] is neutral element of ⊕ and the interval
e = [e, e] is neutral element of ⊗.

The order relation � in I(D) induced by the additive law
⊕ is such that

x⊕y = y⇔ x � y⇔
{
x � y in D,
x � y in D.

Let I(Max
in [[γ, δ]]) denote the set of intervals of the dioid

Max
in [[γ, δ]]. An interval defined over I(Max

in [[γ, δ]]) corre-
sponds to all the series between the series of the minimum
bound and the series of the maximum bound. For this purpose,
the representation of the series in Max

in [[γ, δ]] is used for the
plotting of the series of the lower and upper bounds.

Example 7. In Figure 2, the couple of polynomials represents
the interval p = [γ3δ0⊕ γ4δ1⊕ γ5δ2 , γ0δ1⊕ γ2δ3⊕ γ4δ5].
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Fig. 2. Interval representation of p ∈ I(Max
in [[γ, δ]])

The elements of the TEG will be represented by equations
in I(Max

in [[γ, δ]]). The equations can be grouped into a set
of matrices A, B and C called the state representation of the
system that defines the relations between any set of input event
flows u and the state x, and the relations between the state x
and the output event flows y. Let u ∈ I(Max

in [[γ, δ]]p×1) be
the input vector of size p, x ∈ I(Max

in [[γ, δ]]n×1) be the state
vector of size n and y ∈ I(Max

in [[γ, δ]]q×1) be the output vector
of size q. The state representation is:{

x = Ax ⊕ Bu,
y = Cx,

where A ∈ I(Max
in [[γ, δ]]n×n), B ∈ I(Max

in [[γ, δ]]n×p) and
C ∈ I(Max

in [[γ, δ]]q×n). Equality x = Ax⊕Bu can be trans-
formed to x = A∗Bu thanks to Theorem 1 so we have

y = CA∗Bu.



Matrix H = CA∗B represents the transfer function of the TEG.

Example 8. For the system of Figure 1 the matrices
A ∈ I(Max

in [[γ, δ]]6×6), B ∈ I(Max
in [[γ, δ]]6×2) and C ∈

I(Max
in [[γ, δ]]1×6) of the state representation are:

A(1;2) = [γ1δ0, γ1δ0]; A(2;1) = [γ0δ2, γ0δ5];
A(3;4) = [γ1δ0, γ1δ0]; A(4;3) = [γ0δ1, γ0δ3];
A(5;2) = [γ0δ3, γ0δ3]; A(5;4) = [γ0δ5, γ0δ5];
A(5;6) = [γ1δ0, γ1δ0]; A(6;5) = [γ0δ2, γ0δ2];
B(1;1) = [γ0δ0, γ0δ0]; B(3;2) = [γ0δ0, γ0δ0];
C(1;6) = [γ0δ0, γ0δ0].

Other entries in matrices are equal to ε. The exponent n of
γ represents the backward event shift between transitions (the
n + 1th firing of x1 depends on the nth firing of x2) and
the exponent of δ represents the backward time shift between
transition (the firing date of x2 depends on the firing date of
x1 and time between 2 and 5). The transfer function is:

H(1,1) = [(γ0δ7)[γ1δ2]∗, (γ0δ10)[γ1δ5]∗];
H(1,2) = [(γ0δ8)[γ1δ2]∗, (γ0δ10)[γ1δ3]∗].

IV. ACCEPTABLE OUTPUTS IN (MAX,+)-LINEAR SYSTEMS
WITH TIME INTERVALS

This section introduces the acceptable outputs of a (max,+)-
linear systems with time intervals. Acceptable outputs corre-
spond to the outputs that are included in the interval of the
predicted output. The hypothesis for the different definitions
are known inputs and known transfer function of the (max,+)-
linear systems with time intervals.

A. The system time shift

For a (max,+)-linear system with time intervals where
H ∈ I(Max

in [[γ, δ]]q×p) is the transfer function and u ∈
I(Max

in [[γ, δ]]p×1) is a given input, the predicted outputs are :

yp = Hu = [y
p
, yp].

It is important to notice that the predicted outputs of the system
are intervals of series because of the interval description of the
system through the interval transfer function. In this interval of
predicted outputs, the lower bound corresponds to the fastest
execution of the system. That is, the tokens travel through the
system with the smallest bound of the time intervals associated
with the places. The upper bound corresponds to the slowest
execution of the system. The tokens consume the largest bound
of the time intervals associated with the places. The time shift
between yp and y

p
can be computed thanks to the time shift

bounds given in Definition 7.

Definition 10. Let yp = Hu = [y
p
, yp], with u ∈

I(Max
in [[γ, δ]]p×1), H ∈ I(Max

in [[γ, δ]]q×p). The system time
shift with yp as reference series is:

∆yp
= [Dy

p
◦/yp

(0);−Dyp◦/y
p
(0)] = [∆yp

,∆yp
].

The system time shift with y
p

as reference series is:

∆y
p

= [Dyp◦/y
p
(0);−Dy

p
◦/yp

(0)] = [∆y
p
,∆y

p
].

The system time shift with yp as reference series corre-
sponds to the time shift from y

p
to yp where y

p
� yp so

Dy
p
◦/yp

(0) ≤ 0 and −Dyp◦/y
p
(0) ≤ 0.

The system time shift with y
p

as reference series corresponds
to the time shift from yp to y

p
where yp � yp so

Dyp◦/y
p
(0) ≥ 0 and −Dy

p
◦/yp

(0) ≥ 0.

Example 9. Given the TEG of Figure 1, with the following
inputs u1 = u2 = [γ0δ1 ⊕ γ1δ2 ⊕ γ2δ3 ⊕ γ4δ+∞ , γ0δ1 ⊕
γ1δ2 ⊕ γ2δ3 ⊕ γ4δ+∞] where u1 = u1 = u2 = u2, we get
the predicted output yp = [y

p
, yp] = [γ0δ9 ⊕ γ1δ11 ⊕ γ2δ13 ⊕

γ3δ15 ⊕ γ4δ+∞ , γ0δ11 ⊕ γ1δ16 ⊕ γ2δ21 ⊕ γ3δ26 ⊕ γ4δ+∞]
where y

p
� yp. The system time shift with yp as refer-

ence is ∆yp
= [Dy

p
◦/yp

(0);−Dyp◦/y
p
(0)] = [∆yp

,∆yp
] =

[−11,−2]. The system time shift with y
p

as reference is
∆y

p
= [Dyp◦/y

p
(0);−Dy

p
◦/yp

(0)] = [∆y
p
,∆y

p
] = [2, 11].

B. Acceptable outputs

Definition 11. Let H ∈ I(Max
in [[γ, δ]]q×p) a known transfer

function, u ∈ I(Max
in [[γ, δ]]p×1) a known input and yp =

Hu = [y
p
, yp] the predicted output. A given output y is said

acceptable if y
p
� y � yp. Such an output is denoted yacc

and belongs to the set denoted Yacc.

Proposition 1. An output y ∈ Yacc is an acceptable
output if and only if the following four conditions hold:

Dy◦/yp
(0) ∈ [∆yp

, 0], (2) −Dyp◦/y(0) ∈ [∆yp
, 0], (3)

Dy◦/y
p
(0) ∈ [0 , ∆y

p
], (4) −Dy

p
◦/y(0) ∈ [0 , ∆y

p
]. (5)

Proof. (⇒) Consider an acceptable output y. When y =
yp, the time shifts between yp and y are Dy◦/yp

(0) =
0, Dyp◦/y(0) = 0, Dy◦/y

p
(0) = Dyp◦/y

p
(0) = ∆y

p
and

Dy
p
◦/y(0) = Dy

p
◦/yp

(0) = ∆y
p

thanks to Definitions 7 and 10.
So Equations (2)-(5) hold in this limit case. When y = y

p
, the

time shifts between yp and y are Dy◦/y
p
(0) = 0, Dy

p
◦/y(0) = 0,

Dy◦/yp
(0) = Dy

p
◦/yp

(0) = ∆yp
and Dy

p
◦/y(0) = Dy

p
◦/yp

(0) =

∆yp
thanks to Definitions 7 and 10. So Equations (2)-(5) hold

in this limit case. Then, for any acceptable output y such as
y
p
� y � yp, since y evolves between y

p
and yp, the time

shift distances D(0) can only evolve between the bounds of
the intervals of Equations (2)-(5).

(⇐) If Dy◦/yp
(0) = 0 and −Dyp◦/y(0) = 0, then there is

no time shift between y and y
p

because of Definition 10 of
the system time shift with yp as reference. So y = yp. It
implies that Dy◦/y

p
(0) = ∆y

p
and −Dy

p
◦/y(0) = ∆y

p
thanks

to Definition 10 of the system time shift with y
p

as reference.
Now if Dy◦/y

p
(0) = 0 and −Dy

p
◦/y(0) = 0, then there is

no time shift between y and yp because of Definition 10 of
the system time shift with y

p
as reference. So y = y

p
. It

implies that Dy◦/yp
(0) = ∆yp

and −Dyp◦/y(0) = ∆yp
thanks



to Definition 10 of the system time shift with yp as reference.
Thus, if the time shift distances D(0) evolve between these
limit bounds, then the output y evolves between y

p
and yp.

So for any set of time shift distances that respect Equations
(2)-(5), the output y is an acceptable output.

Proposition 2. If −Dy
p
◦/y(0) /∈ [0 , ∆y

p
] then −Dyp◦/y(0) /∈

[∆yp
, 0]. If Dy◦/yp

(0) /∈ [∆yp
, 0] then Dy◦/y

p
(0) /∈ [0 , ∆y

p
].

So, an output is said acceptable if Equations (3) and (4) are
correct.

Proof. In the case −Dy
p
◦/y(0) /∈ [0 , ∆y

p
], −Dy

p
◦/y(0) � ∆y

p

implies −Dyp◦/y(0) � ∆yp
because ∆y

p
and ∆yp

are the same
time shift to the nearest sign caused by the reference taken into
account in the calculation according to Definition 7.

In the case Dy◦/yp
(0) /∈ [∆yp

, 0], Dy◦/yp
(0) � ∆yp

implies
Dy◦/y

p
(0) � ∆y

p
because ∆yp

and ∆y
p

are the same time
shift to the nearest sign caused by the reference taken into
account in the calculation according to Definition 7.

Example 10. The predicted output yp = [γ0δ7⊕γ1δ9⊕γ2δ11⊕
γ3δ13 ⊕ γ4δ+∞ , γ0δ10 ⊕ γ1δ15 ⊕ γ2δ20 ⊕ γ3δ25 ⊕ γ4δ+∞]
is represented by the series with plain lines in Figure 3 with
the system time shift ∆yp

= [−12,−3] and ∆y
p

= [3, 12].
The output y1 = γ0δ8 ⊕ γ1δ11 ⊕ γ2δ14 ⊕ γ3δ17 ⊕ γ4δ+∞

is represented with dotted line and the output y2 = γ0δ7 ⊕
γ2δ9 ⊕ γ3δ13 ⊕ γ4δ+∞ is represented with dashed line.
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Fig. 3. Graphical representation of the acceptable output y1 and the non-
acceptable output y2 with respect to interval yp = [y

p
, yp]

For y1, the condition indicates −Dyp◦/y1
(0) = −8 ∈

[∆yp
, 0] = [−12, 0] and Dy1◦/y

p
(0) = 1 ∈ [0 , ∆y

p
] = [0, 3]

so the output y1 belong to the set of acceptable outputs.
For y2, we have −Dyp◦/y(0) = −12 ∈ [∆yp

, 0] = [−12, 0]
and Dy◦/y

p
(0) = −3 /∈ [0 , ∆y

p
] = [0, 3] so the output y2

does not belong to the set of acceptable outputs.

V. TIME SHIFT FAILURE DETECTION IN (MAX,+)-LINEAR
SYSTEMS WITH TIME INTERVALS

This section finally presents the definition of indicators for
the offline detection of time shift failures in systems modeled

as TEGs (see Figure 1). Without loss of generality, we consider
here that the system has one output only. In this framework, a
time shift failure is characterized by the fact that for a given
flow of input events the system does not generate an acceptable
flow of output events (there are time shifts). Formally, a time
shift failure has occurred in the system, if, for a given input
vector u ∈ I(Max

in [[γ, δ]]p×1) where any element of u is a
singleton interval like [u, u], the real output y ∈Max

in [[γ, δ]]q×1

of the system is not acceptable with regards to yp = Hu.
As presented in Example 1, we suppose that the super-

visor has a set of sensors to fully observe the inputs and
the output of the system. These observations are denoted
uo ∈ I(Max

in [[γ, δ]]p×1) and yo ∈ I(Max
in [[γ, δ]]q×1). In the

following, we consider that the sensors that observe the inputs
are certain (no time uncertainty in the flow of input events)
which means that uo = u with u the real input vector as
defined hereabove.

The principle of the detection is to firstly predict the outputs
yp based on the model and the observed inputs (yp = Huo
with H ∈ I(Max

in [[γ, δ]]q×p)) and to secondly check whether
the observed output yo is acceptable or not. We consider two
cases. The first one is when the observation of the output is
certain: yo = [yo, yo], with yo = y ∈ Max

in [[γ, δ]]q×1 the real
output. We then propose to extend the solution to deal with
uncertain observed outputs : any output event of the system is
observed at a time t by a sensor with an uncertainty d, which
means that the output event has occurred within time interval
[t−d, t+d]. In this case, yo = [y

o
, yo] is part of I(Max

in [[γ, δ]]).

A. Indicator in case of a certain observable output yo
The indicator is a boolean function that aims at asserting

whether there is a failure or not. It actually checks whether yo
is acceptable based on Equations (3) and (4).

Definition 12. The indicator Ind(uo, yo) is:

Ind(uo, yo) =


false if for yp = H.uo,

−Dyp◦/yo
(0) ∈ [∆yp

, 0]

and Dyo◦/y
p
(0) ∈ [0,∆y

p
]

true otherwise.

The following proposition ensures that the indicator is
correct, it does not generate any false positive/negative results.

Proposition 3. The indicator returns true iff a time shift failure
has occurred in the system.

Proof. Propositions 1-2 ensure yo is acceptable with regards
to yp = Huo iff Equations (3-4) hold. By Definition 12,
Equations (3)-(4) hold iff Ind(uo, yo) is false.

Example 11. Consider the scenario that is defined by the
observed inputs of Example 9. The TEG of Figure 1 has thus
the following system time shift predictions: ∆yp

= [−11,−2]
and ∆y

p
= [2, 11]. Suppose that in reality there was an

incident on Equipment 1: the operation lasts longer with a
processing time of 6 hours in p4 which does not belong



to interval [2,5] (see Figure 1). The following output is
observed yo = γ0δ12 ⊕ γ1δ18 ⊕ γ2δ24 ⊕ γ3δ30 ⊕ γ4δ+∞

(see Example 1). Dyo◦/y
p
(0) = 3 /∈ [0,∆y

p
] = [0, 2] and

−Dyp◦/yo
(0) = 4 /∈ [∆yp

, 0] = [−11, 0]. The indicator
Ind(uo, yo) returns true because Equations (4) and (3) are
false. The time shift failure is detected.

B. Indicator in case of an uncertain observable output yo

As the observable output yo in uncertain, it is characterized
by an interval yo = [y

o
, yo] from I(Max

in [[γ, δ]]). Definition 13
extends Definition 12 to deal with uncertain observations.

Definition 13. The indicator Ind(uo, yo) is:

Ind(uo, yo) =


false if for yp = Huo,

−Dyp◦/yo
(0) ∈ [∆yp

, 0]

and Dy
o
◦/y

p
(0) ∈ [0,∆y

p
].

true otherwise.

The following proposition ensures that the indicator is
conservative and does not generate any false negative results.

Proposition 4. If a time shift failure has occurred in the system
then the indicator returns true.

Proof. Suppose a time shift failure has occurred but the indi-
cator returns false, then Equations (3-4) hold. By Propositions
1 and 2, any series of yo is acceptable: no time shift failure
could have happened, hence the contradiction.

Example 12. Looking back to the scenario described in
Example 11 with the same observed inputs, but consider now
that the observation of the outputs is uncertain: yo1 = [γ0δ9⊕
γ1δ11 ⊕ γ2δ13 ⊕ γ3δ15 ⊕ γ4δ+∞ ; γ0δ12 ⊕ γ1δ18 ⊕ γ2δ24 ⊕
γ3δ30⊕γ4δ+∞] (i.e. the deliveries of the final products are es-
timated to be at time within [9, 12], [11, 18], [13, 24], [15, 30])
and yo2 = [γ0δ9⊕γ1δ11⊕γ2δ13⊕γ3δ15⊕γ4δ+∞ ; γ0δ10⊕
γ1δ12⊕γ2δ14⊕γ3δ16⊕γ4δ+∞] (i.e. the deliveries of the final
products are estimated to be at time within [9, 10], [11, 12],
[13, 14], [15, 16]). For yo1, Dy

o
1◦/y

p
(0) = 2 ∈ [0,∆y

p
] = [0, 2]

and −Dyp◦/yo1
(0) = 4 /∈ [∆yp

, 0] = [−11, 0]. The indicator
Ind(uo, yo1) then returns true: the occurrence of a time shift
failure is suspected. For yo2, Dy

o
2◦/y

p
(0) = 2 ∈ [0,∆y

p
] =

[0, 2] and −Dyp◦/yo2
(0) = −1 ∈ [∆yp

, 0] = [−11, 0]. The
indicator Ind(uo, yo2) then returns false: the occurrence of
no time shift failure.

VI. CONCLUSION

In this article, we extend the problem of time failure diagno-
sis in TEG by using time intervals. Using (max,+) algebraic
techniques we propose indicators that detect time shift with
(un)certain observable outputs. The indicators are based on
the dioid I(Max

in [[γ, δ]]) but the indicator computations consist
in comparing the min/max bounds of the observable outputs.
This study is motivated by the development of algorithms for
time shift failure detection in assembly lines. We have several
perspectives for the use of indicators on a real production line

such as that of STMicroelectronics. We will set up the C++
coding of this indicator in the MaxPlusDiag library of the
article [LCSPP18] from the library MinMaxGD [CLHB00].
Another perspective is to deal also with event uncertainty (i.e.
interval of tokens in a place of the TEG).
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