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Abstract. We propose a new method for computing the language in-
tersection of two Time Petri nets (TPN); that is the sequence of labels
in timed traces common to the execution of two TPN. Our approach is
based on a new product construction between nets and relies on the State
Class construction, a widely used method for checking the behaviour of
TPN. We prove that this new construct does not add additional expres-
sive power, and yet that it can leads to very concise representation of the
result. We have implemented our approach in a new tool, called Twina.
We report on some experimental results obtained with this tool and show
how to apply our approach on two interesting problems: �rst, to de�ne
an equivalent of the twin-plant diagnosability methods for TPN; then as
a way to check timed properties without interfering with a system.

Keywords: Time Petri nets · Model Checking · State Classes · Realtime
Systems Modeling and Veri�cation.

1 Introduction

Formal languages, and the problem of e�ciently checking intersection between
languages, play an important role in formal veri�cation. For instance, automata-
theoretic approaches to model-checking often boils down to a language empti-
ness problem; that is �nding whether there is a trace, in a system, that is also
�in the negation of a property� [25]. Similarly, in the study of Discrete Event
Systems [28], basic control-theoretic properties are often expressed in terms of
language properties and language composition. We consider examples of these
two problems at the end of this paper.

In this context, there is a large body of research where systems are expressed
using Petri nets (PN). Indeed, PN are well-suited for modelling notions such as
concurrency or causality in a very compact way; and they can be used for veri�-
cation by building a Labeled Transition System out of them. Just as important,
PN come equipped with a structural construct for synchronous composition, that
coincides with language intersection when the set of labels of the nets are equal.
Unfortunately, the situation is not as simple when we consider extensions of
Petri nets that deal with time.
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In this paper, we propose a new method for computing the language inter-
section of two Time Petri nets (TPN) [26,10]. This problem is quite complex
and is hindered by two main problems. First, the state space associated with a
TPN is typically in�nite when we work with a dense time model; that is when
time delays can be arbitrarily small. Therefore we need to work with an ab-
straction of their transition system. Second, there is no natural way to de�ne
the (structural) composition of two transitions that have non-trivial time con-
straints (meaning di�erent from the interval [0,∞[). These problems limit the
possibility for compositional reasoning on TPN.

A solution to the �rst problem was proposed by Berthomieu and Menasche
in [9], where they de�ne a state space abstraction based on state classes. This ap-
proach is used in several model-checking tools, such as Romeo [22] and Tina [12]
for instance. In the following, we propose a simple solution to overcome the sec-
ond problem. Our approach is based on an extension of TPN with a dedicated
product operator, called Product TPN, that can be viewed as an adaptation of
Arnold-Nivat synchronization product [3] to the case of TPN. We show that it
is possible to extend the state class construction to this new extension, which
gives an e�cient method for computing the intersection of two TPN when the
nets are bounded.

Veri�cation of Time Petri Nets. In the following, we consider TPN where
transitions may have observable labels. In this context, an execution is the timed-
event word obtained by recording the transitions that have been �red together
with the delays between them. Our goal is to provide a method for symbolically
computing the set of executions that are common to two labeled TPN. Without
time, it is well-known that we can compute the language of a net from its mark-
ing graph. This gives a Labeled Transition System (LTS); an automaton that is
�nite as soon as the net is bounded. Likewise, we can compute the (language)
intersection of two timed nets by computing the LTS of their synchronous com-
position, denoted N1‖N2 thereafter. Actually, like in the untimed case, we are
more interested by the synchronous product of two languages, rather than by
their intersection.

The situation is quite di�erent when we take time into account. Indeed, we
may have fewer traces with a TPN than with the corresponding, �untimed�
net (the one where timing constraints are deleted). This is because timing con-
straints may prevent a transition from �ring, but never enable it. One solution
to recover a �nite abstraction of the state space is to use the State Class Graph
(SCG) construction. Actually, SCG is an umbrella term for a family of di�er-
ent abstractions, each tailored to a di�erent class of properties, or to a di�erent
extension of TPN. The �rst such construction, called Linear State Class Graph
(LSCG) [9], is based on �ring domains, that is the delays before a transition can
�re. The LSCG preserves the set of reachable markings of a net as well as its lan-
guage; which is exactly what is needed in our case. This is also the construction
that we use in Sect. 3.
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In the following we also mention the Strong SCG construction (SSCG) [11],
based on clock domains, that is the duration for which a transition has been en-
abled. The SSCG preserves more information than the linear one. For example,
we can infer from clocks when two transitions are enabled �at the same time�,
meaning we can handle priorities. The added expressiveness of the strong con-
struction comes at a cost; the SSCG (for a given net) has always more classes
than the corresponding LSCG, sometimes by a very large amount. (We give some
examples of this in Sect. 6.) This is why we prefer to use the LSCG when possible.

Related Works and Review of Existing Methods. A motivation for our
work is that we cannot rely on a synchronous product of TPN. Indeed, a major
limitation with TPN is that there are no sensible way to de�ne the composition of
�non-trivial� transitions, and therefore no sensible way to de�ne the synchronous
composition of �non-composable� TPN; we say that a transition is trivial when
it is associated to the time interval [0,∞[ and that a net is composable when
all its observable transitions are trivial. (We illustrate the problem at the end
of Sect. 2). Likewise we cannot rely on the product of their SCG either. Indeed,
the product of two SCG provides an over-approximation of the expected result,
since it cannot trace time dependencies between events from di�erent nets.

The situation is not the same with other �timed models�. A notable example
is Timed Automata [2], an extension of �nite automata with variables, also called
clocks, whose values progress synchronously as time elapses. Timed Automata
(TA) can use boolean conditions on clocks to guard transitions and as local in-
variants on states. It is also possible to reset a clock when ��ring� a transition.
The classical product operation on �nite automata can be trivially extended to
TA: we only need to use the conjunction of guards, invariants and resets where
needed. This provides a straightforward method for computing the (language)
intersection of two TA, and also a trivial proof that the class of languages ac-
cepted by a TA are closed under intersection. Another related work is based on
the de�nition of Timed Regular Expressions [4], that provides a timed analogue
of Kleene Theorem for TA.

These results seem to promote Timed Automata as an algebraic model of
choice for reasoning about timed words, and many works have studied the rela-
tion between TPN and TA. (On another note, we can remark that even a slight
change in semantics may complicate the product construction; see for instance
the case with signal-event languages [16].) For instance, Cassez and Roux [19]
propose a structural encoding of TPN into TA that preserves the semantics in
the sense of timed bisimulation, and therefore that preserves timed language
acceptance. This encoding generates one automata and one clock for every tran-
sition in the TPN and can be extended in order to accommodate strict timing
constraints; that is static time intervals that have a �nite, open bound. Later,
Bérard et al. [7,15] showed that TPN and TA are indeed equivalent with respect
to language acceptance, but that TA are strictly more expressive in terms of
weak timed bisimulation (≈). These results are based on semantic encodings
from TPN into TA and from TA into TPN that can be chained together to build
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an encoding from a TPN to an equivalent composable one. A similar result is
also found in [27], which provides a structural encoding from a TPN, N , into
a composable TPN that is of size linear with respect to N . But none of these
encodings handle timing constraints that are bounded and right-open.

One of the main di�erence between TA and TPN is that, with TA, we can
loose the ability to �re a transition just by waiting long enough (until some
guards become false). The same behaviour can be observed with TPN when we
add a notion of priorities. In particular, Berthomieu et al. [10,11] prove that
(bounded) TPN with priorities are very close to TA, in the sense of ≈. They
also de�ne an extension of TPN [27] with inhibitor arcs between transitions
(similar to priorities) and a dual notion of permission arcs. In this extension,
called IPTPN, a net can always be transformed into a composable one. (We
show an example of this construction in Sect. 5).

All these results can be used to de�ne three di�erent methods for computing
the intersection of TPN. A �rst method is to use the structural translation from
TPN to TA given in [19] and then to use the product construction on TA. This
encoding is at the heart of the tool Romeo [22] and has been used to build a
TCTL model-checker for TPN (which, incidentally, relies on the �product� of a
net with observers for the formulas). Unfortunately, to the best of our knowledge,
it is not possible to analyse the product of two nets with Romeo and therefore
we have not been able to experiment with this method. Moreover, this approach
is closer in spirit to the SSCG construction.

A second method is to use the (combination of) encodings de�ned in [15]
to replace a TPN with an equivalent, composable one. Unfortunately, this con-
struction relies on a semantic encoding that requires the computation of the
entire symbolic state space of the net, and is only applicable on net that have
closed timing constraints; meaning that we cannot use constraints of the form
[l, h[ for example. While this method is not usable in practice, it could be used
to prove expressiveness results. For example, it gives a proof that the set of TPN
with closed timing constraints is closed under intersection; something we silently
admitted until now.

A third method also relies on generating composable nets as a preprocessing
step. In this case, the idea is to use the IPTPN of [27]. Like in the �rst method,
the main drawback of this approach is that we need to use the strong SCG con-
struction, which means that we could compute much more classes than with a
method based on the LSCG. We describe the experimental results obtain with
this method in Sect. 6.

Outline of the Paper and Contributions. In the next section we de�ne the
semantics of TPN and provide the technical background necessary for our work.
Section 3 contains the semantics of Product TPN, while our two main results
are given in Sect. 4 and 5, where we show that it is possible to extend the State
Class Graph construction to the case of Product TPN and that this extension
does not add additional expressiveness power. By construction, our method can
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be applied even when the TPN are not bounded and without any restrictions on
the timing constraints.

We have implemented our approach in a new tool, called Twina [21] Before
concluding, we report (Sect. 6) on some experimental results obtained with this
tool. We also show some practical applications for our approach on two problems:
�rst, to de�ne an equivalent of the twin-plant diagnosability methods for TPN;
then as a way to check timed properties without interfering with a system.

2 Time Petri Nets and other Technical Background

A Time Petri Net (TPN) is a net where each transition, t, is decorated with
a (static) time interval Is(t) that constrains the time at which it can �re. A
transition is enabled when there are enough tokens in its input places. Once
enabled, transition t can �re if it stays enabled for a duration θ that is in the
interval Is(t). In this case, t is said time enabled.

A TPN is a tuple 〈P, T,Pre,Post,m0, Is〉 in which: 〈P, T,Pre,Post〉 is a
net (with P and T the set of places and transitions); Pre, Post : T → P → N
are the precondition and postcondition functions; m0 : P → N is the initial
marking; and Is : T → I is the static interval function. We use I for the set of all
possible time intervals. To simplify our presentation, we only consider the case
of closed intervals of the form [l, h] or [l,+∞[, but our results can be extended
to the general case. TPN can be k-safe, which means the net has at most k + 1
reachable markings. A safe TPN usually 1-safe.

We consider that transitions can be tagged using a countable set of labels,
Σ = {a, b, . . . }. We also distinguish the special constant ε (not in Σ) for inter-
nal, silent transitions. In the following, we use a global labeling function L that
associates a unique label in Σ ∪ {ε} to every transition1. The alphabet of a net
is the collection of labels (in Σ) associated to its transitions.

A Semantics for TPN Based on Firing Domains. A marking m of a net
〈P, T,Pre,Post〉 is de�ned as a function m : P → N from places to natural
numbers. A transition t in T is enabled at m if and only if m >̇ Pre(t) (we
use the pointwise comparison between functions) and E(m) denotes the set of
transitions enabled at m.

A state of a TPN is a pair s = (m,ϕ) in which m is a marking, and ϕ : T → I
is a mapping from transitions to time intervals, also called �ring domains. Intu-
itively, if t is enabled at m, then ϕ(t) contains the dates at which t can possibly
�re in the future. For instance, when t is newly enabled, it is associated to its
static time interval ϕ(t) = Is(t). Likewise, a transition t can �re immediately
only when 0 is in ϕ(t) and it cannot remain enabled for more than its timespan,
i.e. the maximal value in ϕ(t).

For a given delay θ in Q≥0 and ι in I, we denote ι − θ the time interval
ι shifted (to the left) by θ:, e.g. [l, h] − θ = [max(0, l − θ),max(0, h − θ)]. By
1 We may assume that there is a countable set of all possible transitions (identi�ers)
and that di�erent nets have distinct transitions.
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extension, we use ϕ .− θ for the partial function that associates the transition t
to the value ϕ(t)−θ. This operation is useful to model the e�ect of time passage
on the enabled transitions of a net.

The following de�nitions are quite standard, see for instance [7,10]. The se-
mantics of a TPN is a (labeled) Kripke structure 〈S, S0,→〉 with only two pos-
sible kinds of actions: either s

a−→ s′, meaning that the transition t ∈ T is �red
from s with L(t) = a; or s

θ−→s′, with θ ∈ Q≥0, meaning that time θ elapses from
s. A transition t can �re from the state (m,ϕ) if t is enabled at m and �rable
instantly. When we �re a transition t from state (m,ϕ), a transition k (with
k 6= t) is said to be persistent if k is also enabled in the marking m − Pre(t),
that is if m−Pre(t) >̇ Pre(k). The other transitions enabled after �ring t are
called newly enabled.

De�nition 1 (Semantics). The semantics of a TPN N , with N the net
〈P, T,Pre,Post,m0, Is〉, is the Timed Transition System (TTS) [[N ]] =
〈S, s0,→〉 where S is the smallest set containing s0 and closed by −→, where:

� s0 = (m0, ϕ0) is the initial state, with m0 the initial marking and ϕ0(t) =
Is(t) for every t in E(m0);

� the state transition relation→ ⊆ S×(Σ ∪ {ε} ∪Q≥0)×S is the relation such
that for all state (m,ϕ) in S:

(i) if t is enabled at m, L(t) = a and 0 ∈ ϕ(t) then (m,ϕ)
a−→ (m′, ϕ′)

where m′ = m −Pre(t) +Post(t) and ϕ′ is a �ring function such that
ϕ′(k) = ϕ(k) for any persistent transition and ϕ′(k) = Is(k) elsewhere.

(ii) if θ 6̇ ϕ
∀k ∈ Enabled(m), θ ≤ maxϕ(k) then (m,ϕ)

θ−→ (m,ϕ .− θ).

Transitions in the case (i) above are called discrete transitions; those labelled
with delays (case (ii)) are the continuous, or time elapsing, transitions. Like with
nets, we say that the alphabet of a TTS is the set of labels, in Σ, associated to
discrete actions. Using labels, we can de�ne the product of two TTS by extending
the classical de�nition for the product of �nite automata.

De�nition 2 (Product of TTS). Assume S1 = 〈S1, s
0
1,→1〉 and S2 = 〈S2, s

0
1,

→2〉 are two TTS with respective alphabets Σ1 and Σ2. The product of S1 by S2

is the TTS S1‖S2 = 〈(S1×S2), (s
0
1, s

0
2),−→〉 such that −→ is the smallest relation

obeying the following rules:

s1
α−→1 s

′
1 α ∈ (Σ1 \Σ2) ∪ {ε}
(s1, s2)

α−→ (s′1, s2)

s2
α−→2 s

′
2 α ∈ (Σ2 \Σ1) ∪ {ε}
(s1, s2)

α−→ (s1, s
′
2)

s1
α−→1 s

′
1 s2

α−→2 s
′
2 α 6= ε

(s1, s2)
α−→ (s′1, s

′
2)

Executions, Traces and Equivalences. An execution of a net N is a sequence
in its semantics, [[N ]], that starts from the initial state. It is a time-event word
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over the alphabet containing both labels (in Σ ∪ {ε}) and delays. Continuous
transitions can always be grouped together, meaning that when (m,ϕ)

θ−→(m,ϕ′)
and (m,ϕ′)

θ′−→ (m,ϕ′′) then necessarily (m,ϕ)
θ+θ′−−−→ (m,ϕ′′) (and the �ring

domain ϕ′ is uniquely de�ned from ϕ and θ). Based on this observation, we can
always consider executions of the form σ

def
= θ0 a0 θ1 a1 . . . where each discrete

transition is preceded by a single time delay. By contrast, a trace is the untimed
word obtained from an execution when we keep only the discrete actions. Then
the language of a TPN is the set of all its (�nite) traces.

By de�nition, the language of a TPN is pre�x-closed; and it is regular when
the net is bounded [9]. It is also the case [27] that the �intersection� of two nets
N1 and N2�the traces obtained from (pairs of) executions common to the two
nets�are exactly the traces in the TTS product [[N1]] ‖ [[N2]]. Our goal, in the
next section, is to de�ne a product operation, N1 × N2, that is a congruence,
meaning that [[N1 ×N2]] should be equivalent to [[N1]] ‖ [[N2]].

Language equivalence would be too coarse in this context. In this paper, we
will instead prefer (a weak version of) timed bisimulation, which rely on a weak
version of the transition relation s

α
=⇒ s′ (with α an action in Σ ∪ {ε} ∪Q≥0 and

θ a delay in Q≥0) de�ned from the following set of rules:

s
ε
=⇒ s

s
ε
=⇒ s′ s′

α−→ s′′ s′′
ε
=⇒ s′′′

s
α
=⇒ s′′′

s
θ
=⇒ s′ s′

θ′
=⇒ s′′

s
θ+θ′
===⇒ s′′

De�nition 3 (Behavioural Equivalence). Assume G1 = 〈S1, s
0
1,→1〉 and

G2 = 〈S2, s
0
2,→2〉 are two TTS. A binary relation R over S1 × S2 is a weak

timed bisimulation if and only if s01 R s02 and for all actions α and pair of states
(s1, s2) ∈R we have: (1) if s1

α
=⇒ s′1 then there exists s′2 such that s2

α
=⇒ s′2 and

s′1 R s′2 ; and conversely (2) if s2
α
=⇒ s′2 then there exists s′1 such that s1

α
=⇒ s′1

and s′1 R s′2. In this case we say that G1 and G2 are timed bisimilar, denoted
G1 ≈ G2, and we use ≈ for the union of all timed bisimulations R.

Timed bisimulation is preserved by product [27], meaning that for all TTS
G,G1 and G2 we have G1 ≈ G2 implies (G‖G1) ≈ (G‖G2). In the following we
say that two nets are bisimilar, denoted N1 ≈ N2, when [[N1]] ≈ [[N2]].

Example. We give two examples of TPN with alphabet {a, b} in Fig. 1. Exe-
cutions for the net N1 (left) include time-event words of the form θ0 a θ1 b (and
their pre�x) provided that θ1 ≥ 1. Executions for the net N2 (middle) include
time-event words of the form θ2 a θ3 b and θ3 b θ2 a (and their pre�x) provided
that θ3 ≤ 1. If we consider executions that are in the product of both nets, we
�nd all executions of the form θ0 a, with the constraint θ0 ≤ 1. We also have
one execution of the form θ0 a θ1 b provided that θ0 + θ1 ≤ 1 and θ1 ≥ 1. This
corresponds to the case where event a �res exactly at date 0; any other case
eventually leading to a time deadlock (a situation where time cannot progress).
In the same �gure (right), we display the �untimed� synchronous product N1‖N2.
It is clear that there are no possible choice of time constraint for transition t3×t1
that could lead to a net bisimilar to [[N1]] ‖ [[N2]]. This is a simple example of the
�non-composability� of Time Petri nets.
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p0

t0

a

p1t1

b[1,∞[

(a) N1

q0

t2

a

t3

b[0, 1]q1

(b) N2

q0

t2 × t0

a

t3 × t1

b[?, ?]q1

p0

p1

(c) �untimed� product

Fig. 1: Two examples of TPN and their (failed, untimed) product.

3 Product TPN and their Semantics

We propose an extension of TPN with a synchronous product operation between
TPN, ×, in the style of Arnold-Nivat synchronization of processes [3]. Our goal
is to obtain a congruent composition operator, in the sense that [[N1 ×N2]] ≈
[[N1]]‖[[N2]]. A product TPN, or PTPN, is a TPN 〈P, T,Pre,Post, Is〉 augmented
with two projections, #1 and #2, such that the following properties hold:

� there are two sets #1 P and #2 P that partition the set of places P .
� there are two sets #1 T and #2 T that partition the set of transitions T .
� all the pre- and post-conditions of a transition in #i T are places in #i P : if
t ∈ #i T and Pre(t)(p) > 0 or Post(t)(p) > 0 then p ∈ #i P .

Basically, this means that a PTPN N is the superposition of two distinct, non-
interconnected components, that we call #1N and #2N for short.

De�nition 4 (Product of TPN). The product N1 ×N2 of two disjoint TPN
N1 and N2 (such that P1 ∩ P2 = T1 ∩ T2 = ∅) is the PTPN obtained from the
juxtaposition, preserving labels, of N1 and N2 with the two trivial projections
#i P = Pi and #i T = Ti for all i ∈ 1..2.

With our notations, a PTPN N is equivalent to the composition (#1N) ×
(#2N). In the following, we use the notation #im to denote the restriction of a
marking m to the places in #i P and similarly with #i ϕ and the transitions in
#i T . By convenience, #i(m,ϕ) denotes the state (#im,#i ϕ) and we use #iΣ
for the alphabet of net #iN .

To ease the presentation, we limit the composition to only two components
(instead of a sequence) and we do not de�ne the equivalent of �synchronization
vectors�. As a result, we do not de�ne the product over PTPN. This could be
added, at the cost of more burdensome notations, but it is not needed in our
applications (Sect. 6). This is also why we have the same limitations in our
implementation [21].

Labels are not necessarily partitioned, so the same label can be shared be-
tween the two components of a product. We denote Σ1,2 the set (#1Σ ∩ #2Σ)
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of labels occurring on �both sides� of a PTPN. We should also need the notation
Σ1 for the set (#1Σ \ #2Σ) ∪ {ε} of labels that can occur in #1 concurrently
with #2 (and similarly for Σ2). The semantics for PTPN relies largely on the
semantics of TPN but makes a particular use of labels.

De�nition 5. The semantics of a PTPN 〈P, T,Pre,Post,m0, Is〉, with projec-
tions #1 and #2, is the TTS [[N ]]× = 〈S, s0, |−→〉 such that s0 = (m0, ϕ0) is
the same initial state than in the TPN semantics [[N ]], and |−→ is the transition
relation with actions in Σ ∪ {ε} ∪Q≥0 such that:

α ∈ Q≥0
s
α−→ s′ ∈ [[N ]]

s
α

|−→ s′

t ∈ T L(t) = α /∈ Σ1,2

s
α−→ s′ ∈ [[N ]]

s
α

|−→ s′

a = L(t1) = L(t2) ti ∈ #i T

#i s
a−→ #i s

′ ∈ [[#iN ]] i ∈ 1..2

s
a

|−→ s′

The only new case is for pairs of transitions, t1 and t2 , from di�erent com-
ponents but with the same label: L(t1) = L(t2) = a. This is the equivalent of
a synchronization. Indeed the premisses entail that both t1 and t2 can �re im-
mediately, and the e�ect is to �re both of them simultaneously. As a side e�ect,
our choice of semantics entails that a transition on a �shared label� (in Σ1,2) is
blocked until we �nd a matching transition, with the same label, on the opposite
component. This may introduce a new kind of time deadlock that has no direct
equivalent in a TPN: when a transition has to �re urgently (hence time cannot
progress) while there are no matching transition that is time-enabled.

It is the case that the reachable states, in [[N ]]×, are a subset of the states
in [[N ]]. This is because we may forbid a synchronization on a shared label, but
never create new opportunities to �re a transition. We also have a more precise
result concerning the semantics of a PTPN and the product of its components.

Theorem 1. The TTS [[N ]]× is isomorph to the product [[#1N ]] ‖ [[#2N ]].

Proof. By induction on the shortest path from the initial state, s0, to a reachable
state s in [[N ]]× and then a case analysis on the possible transitions from s. ut

4 Construction of the State Class Graph for PTPN

We give a brief overview of the LSCG construction for a PTPN N = 〈P, T,Pre,
Post,m0, Is〉. In the following, we use the notation αst and β

s
t for the left and

right endpoints of interval Is(t). For the sake of simplicity, we only consider
inequalities that are non-strict (our de�nitions can be extended to the more
general case) and assume that β − α =∞ when β is in�nite.

A state class C is a pair (m,D), where m is a marking and D is a domain; a
(�nite) system of linear inequalities on the �ring dates of transitions enabled at
m. We will use variable xi in D to represent the possible �ring time of transition
ti. In the Linear SCG construction [8,9], we build an inductive set of classes Cσ,
where σ ∈ T ∗ is a sequence of discrete transitions �rable from the initial state.
Intuitively, the class Cσ = (m,D) collects all the states reachable from the initial
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state by �ring schedules of support sequence σ. For example, the initial class Cε
is (m0, D0) where D0 is the domain de�ned by the static time constraints in ϕ0,
that is: αsi ≤ xi ≤ βsi for all ti in E(m0).

The e�ciency of the SCG construction relies on several factors: (1) First,
we can restrict to domains D that are di�erence systems, that is a sequence of
constraints of the form αi ≤ xi ≤ βi and xi − xj ≤ γi,j , where each variable
in (xi)ti∈E(m0) corresponds to an enabled transition (and i 6= j). (2) Next, we
can always put domains in closure form, meaning that each bounds α, β and γ
are the tightest preserving the solution set of D. Hence we can encode D using
a simple vector of values. This data structure, called Di�erence Bound Matrix
(DBM), is unique to all the domains that have equal solution set. Hence testing
class equivalence is decidable and e�cient. (3) Finally, if Cσ = (m,D) is de�ned
and t is enabled at m, we can incrementally compute the coe�cients of the DBM
D′, the domain obtained after �ring t from Cσ, from the coe�cients of D.

We only consider the new case where we simultaneously �re a pair of tran-
sitions (ti, tj) from a class (m,D). We assume that the resulting marking is m′.
First, we need to check that both transitions can eventually �re. This is the case
only if the condition γt,k ≥ 0 is true for all t ∈ {i, j} and k enabled at m (with
k 6= t). In this case, the resulting domain D′ can be obtained by following a
short number of steps, namely:

1. add the constraints xi = xj and xi ≤ xk to D, for all k /∈ {i, j} (since ti, tj
must �re at the same date and before any other enabled transition);

2. introduce new variables x′k for all transitions enabled in m
′, that will become

the variables in D′, and add the constraint x′k = xk − xi if tk is persistent
or αsk ≤ x′k ≤ βsk if tk is newly enabled;

3. eliminate all the variables from D relative to transitions in con�ict with ti, tj
and put the resulting system in normal form.

Except for step 1 above, with the constraint that xi = xj , this is exactly the
procedure described in [8] for plain TPN. When both transitions (ti, tj) can �re,
it is possible to completely eliminate all occurrences of the �unprimed� variables
xk in D′ and the result is a DBM. Which is exactly what is needed in our case.

We can draw two useful observations from this result. First, we can follow
the same procedure with any number of equality constraints, and still wind up
with a DBM. Therefore it would be possible to �re more than two transitions
simultaneously. Second, we have an indirect proof that forcing the synchroniza-
tion of transitions is strictly less constraining than using priorities (because it is
not possible to use the LSCG construction with priorities), something that was
not obvious initially.

5 Expressiveness Results

It is not obvious that PTPN add any expressive power compared to TPN. On
the one hand, the semantics of a PTPN N is quite close to the semantics of
its components. In particular, [[N ]]× = [[N ]] when there are no shared labels
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(Σ1,2 = ∅). Moreover, in a PTPN like in a TPN, it is not possible to lose
the ability of �ring a transition just by waiting long enough; a behaviour that
distinguishes TPN from TA, or from TPN with priorities for instance. On the
other hand, PTPN introduces new kind of time deadlocks which are a�ected by
time delays (see our example at the end of Sect. 2). Next, we prove that the two
models are equally expressive (up-to ≈) when all timing constraints are either
in�nite or closed on the right (in which case we say the net is right-closed).

Theorem 2. Given a safe, right-closed PTPN N , we can build a safe, compos-
able TPN N ′, whose size is linear with respect to N , such that [[N ]]× ≈ [[N ′]].

For the sake of brevity, we only sketch the proof. We rely on two auxiliary
properties and on an encoding from TPN into composable net; meaning an equiv-
alent net where all timing constraints have been �moved� to silent transitions.
We �nd such result in [27, Def. 9], which provides a construction to build a com-
posable net T1(N) from every safe and right-closed TPN N . Our restrictions on
N in Th. 2 come from this construction, as is our result on the size of N ′.

Our �rst auxiliary property, (L1), compare the product of composable TPN
with their synchronous product, namely: if N1 and N2 are composable TPN then
[[N1 ×N2]]× ≈ [[N1 ‖N2]]. Property (L1) derives directly from the construction
of the product N1 ‖N2 of composable TPN. Indeed, with composable nets, the
fusion of transitions sharing a common label are una�ected by continuous tran-
sitions. Hence they have the same behaviour in N1 ×N2 than in N1‖N2. (And
this is the only place where the semantics of the two nets may diverge.)

Next, we use an equivalent of the congruence property for PTPN, (L2): given
two pairs of TPN (N1, N2) and (M1,M2) such N1 ≈ N2 and M1 ≈ M2 we
have that [[N1 ×M1]]× ≈ [[N2 ×M2]]×. Property (L2) can be proved by de�ning
a �candidate relation�, R, which contains the pair (s0, s

′
0) of initial states of

N1 ×M1 and N2 ×M2; then proving that R is a weak timed bisimulation. A
suitable choice forR is to take the smallest relation such that (s1]s′1) R (s2]s′2)
whenever s1 ≈ s2 and s′1 ≈ s′2. Then the proof follows by simple case analysis.

Finally, we use construction T1 (above) to build composable TPN from the
nets #1N and #2N and to de�ne N ′

def
= T1(#1N)‖T1(#2N). By property of

T1 we have #iN ≈ T1(#iN) for all i ∈ 1..2. Hence by (L2) and (L1) we have
[[N ]]× = [[#1N × #2N ]]× ≈ [[T1(#1N)×T1(#2N)]]× ≈ [[T1(#1N) ‖T1(#2N)]].
The property follows by transitivity of ≈.

Our proof gives a constructive method to build a net N ′ with (at most) four
extra transitions and places, compared to N , for each non-trivial labeled transi-
tion. We can use the SCG of N ′ to compute the language of N (and to compute
the intersection of two nets when we choose N = N1 ×N2). Unfortunately this
approach does not scale well. For example, the composition of the two nets given
in Fig. 1 has 16 classes with this method instead of only 3 with our approach
(and the intermediary TPN has 11 places and 7 transitions). Likewise, for the
simple example in Fig. 4 we have a net with 25 places, 211 transitions and 1 389
classes instead of simply 3 classes with PTPN.

Another limitation of this approach are the restrictions imposed on the timing
constraints of N . Indeed, to the best of our knowledge, there are no equivalent
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of construction T1 in the case of �right-open� transitions.

Composable Time Petri nets using IPTPN. Berthomieu et al. [27] de�ne
an extension of TPN with �inhibition and permission� that provides another
method for building composable nets. With this extension, it is always possible to
build a composable IPTPN from a TPN. For example, Fig. 2 displays the IPTPN
corresponding to the �product� of the two nets in Fig. 1. In this construction, we
create a silent, extra-transition tci for every non-trivial observable transition ti.
These transitions cannot �re (they self-inhibit themselves with an arc) but
�record the timing constraints� of the transition they are associated with. Then
a permission arc ( ) is used to transfer these constraints on the (product of)
labeled transitions.

Tina provides a SCG construction for IPTPN but, like with the addition of
priorities, it is necessary to use the strong construction in this case. We use the
encoding into IPTPN we just sketched above in our experiments.

6 Experimental Results and Possible Applications

We have implemented the state class construction for PTPN in a tool called
Twina [21] that can generate the LSCG of both �plain� and product TPN. The
tool and models mentioned here are available online at https://projects.laas.fr/
twina/, with instructions on how to reproduce our results.

Performances Compared with IPTPN We compare the results obtained
with PTPN and an encoding into IPTPN, which appears to be the best alter-
native among the three methods mentioned in Sect. 1. By default, Twina uses
option -W, that computes the Linear SCG of a net. We also provide option -I
to compute the LSCG for the product of two nets using the construction de-
�ned in Sect. 4. We use the same syntax for nets in Twina than in Tina [12]. In
particular, our method can be used with nets that are not 1-safe and without
any restriction on the timing constraints (so we accept right-open transitions).
We also allow read- and inhibitor-arcs with the same semantics than in Tina.

https://projects.laas.fr/twina/
https://projects.laas.fr/twina/
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Twina (LSCG) IPTPN (SSCG)
Model Exp. States Trans. States Trans. Ratio

jdeds plain 26 42 28 45 8%
jdeds twin 544 1 144 706 1 432 30%
jdeds obs 57 103 64 115 12%

train3 plain 3 101 7 762 5 051 13 027 63%
train3 twin 1 453 393 5 415 838 4 018 109 15 702 687 176%
train3 obs 6 202 16 614 10 102 27 801 63%

train4 plain 10 319 27 153 16 841 45 717 63%
train4 twin 20 954 198 79 768 434 57 567 538 229 935 082 175%
train4 obs 20 638 58 367 33 682 98 015 63%

plant plain 2 696 558 7 359 339 4 628 698 12 870 710 72%
plant twin 1 300 3 183 1 633 3 996 26%
plant obs 5 715 293 15 639 336 9 790 043 27 215 355 71%

wodes plain 2 554 6 080 5 363 13 047 110%
wodes twin 55 402 155 586 151 352 426 928 173%
wodes obs 5 767 13 506 14 663 34 508 154%

wodes232 plain 20 388 88 122 32 382 140 969 59%
wodes232 twin 39 588 981 304 246 211 339 165 870 2 552 685 724 757%
wodes232 obs 106 043 434 712 226 269 888 042 113%

Table 1: Comparing the PTPN and IPTPN methods

We compare the size of the LSCG with the results obtained using IPTPN and
Tina in Table 1. The results are reported with the sizes of the SCG in number
of classes and edges; we also give the ratio of classes saved between the LSCG
and the SSCG. So a 100% ratio means twice as much states in the strong SCG.

We use di�erent models for our benchmarks: jdeds is an example taken
from [23] extended with time; train is a modi�ed version of the train controller
example in [13] with an additional transition that corresponds to a fault in the
gate; plant is the model of a complex automated manufacturing system from [32];
wodes is the WODES diagnosis benchmark of Giua (see e.g. [18]) with added
timed constraints. For each model, we give the result of three experiments: plain
where we compute the SCG of the net, alone; twin where we compute the in-
tersection between the TPN and a copy of itself with some transitions removed;
and obs where we compute the intersection of the net with a copy of the TPN
in Fig. 3. We explain the relevance of the last two constructions just afterwards.

We see that, in some of our examples, there is a large di�erence between the
size of the LSCG and the size of the SSCG for the same example. This was one
of our main reason for developing a speci�c tool. This is important since, on the
extreme case, we can have a quadratic blow-up in the number of classes when
analysing a twin product. (This is almost the case in example jdeds.) We also ob-
serve that, on model plant-twin, the size of the intersection may be much smaller
than the size of one of the component alone; 1300 classes compared to 2 million.
This is to be expected, since the intersection may have only one class. Nonethe-
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Fig. 4: Product of a TPN Nf (left) and its �twin� No (right) for the fault f .

less this emphasizes the need to have methods that can build the intersection
on the �y, without computing a symbolic representation for each component �rst.

Diagnosability and the Twin Plant Method. One possible application of
Twina�and our initial motivation for this work�is to check fault diagnosabil-
ity [29] in systems modelled as TPN [5,17]. In this context, a system is described
as a TPN with a distinguished unobservable event f that models a fault. (Any
transition labelled with f is faulty.) Fault f is diagnosable if it is always possible
to detect when a faulty transition has �red, in a �nite amount of time, just by
looking at the observable �ow of events [31]. Under the assumptions that the
system does not generate Zeno executions, and that any possible execution is
not in�nitely unobservable, one way to check diagnosability is to look for in�-
nite critical pairs [20]. A critical pair consists of a couple of in�nite executions
of the TPN, one faulty the other one not, that have equal timed observations.
Then fault f is diagnosable if no such pair exists. By using Twina, we aim at
checking diagnosability by adapting the twin-plant method [24] to TPN. The
idea is to make two copies of the same system, one with the fault, Nf , and the
other without it, No, and to relabel all unobservable events to avoid collisions.
Then checking for the existence of an in�nite critical pair amounts to �nding an
in�nite execution with f in the product No ×Nf .

We give an example of this construct in Fig. 4 where a and b are both
observable. In system Nf , fault f is not diagnosable if we do not consider time,
as we always observe b after an a in both faulty and non-faulty executions. Now
considering the observation of time, f is diagnosable as the date of b is always
discriminant. In the intersection of Nf and No, every execution where transition
t4 �res leads to a time deadlock. Indeed, in this case, we must wait at least 3 to
�re transitions t1 and at most 2 to �re t5 (and both have label b).

The twin-plant construction is quite useful and we provide an option to di-
rectly build a twin TPN in our tool (option -twin). This is the construction
we use in our experiments for Table 1. In this case, we can generate a LTS
for the twin plant and check that every fault eventually leads to a deadlock in
the product, meaning that the system is diagnosable. For instance using a LTL
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model-checker and a property such as (♦f) ⇒ (♦dead) [23]. We also provide a
dedicated algorithm (option -diag) to check this property on-the-�y. When the
system is not diagnosable, it allows us to �nd a counter-example before exploring
the whole behaviour of the twin-plant.

Observer-based veri�cation.Another application of our product construction
is model checking TPN, in much the same way some �observer-based� veri�cation
techniques rely on the product of a system with an observer [1,30]. The idea is
to express a property as the language of an observer, O, then check the property
on the system N by looking at the behaviour of N × O. A major advantage of
this approach is that there is no risk to disrupt the system under observation,
which is not always easy to prove with other methods.

We give an example of observer in Fig. 3. In this net, sequences of events a
and b may occur in any order and at any date. On the other hand, the only way
to �re t3 is to ��nd� two successive occurrences of a and b with a delay (strictly)
bigger than 2. Hence we can check if such behaviour is possible in a system,
N , by checking whether t3 can �re in N × O. This is the problem we consider
in the obs experiments of Table 1. We only consider one small example here.
Nonetheless, the same approach could be used to check more complex timed
properties. This will be the subject of future works.

7 Conclusion

We propose an extension of TPN with a product operation in the style of Arnold-
Nivat. The semantics of our extension is quite straightforward. What is more sur-
prising is that it is possible to adapt the LSCG construction to this case�which
means that we do not need the equivalent of clocks or priorities�and that this
extension does not add any expressive power. This is a rather promising result,
complexity-wise, since it means that we can hope to adapt the same optimiza-
tion techniques than with �plain� TPN, such as speci�c symmetry reduction
techniques for instance [14].

We have several opportunities for extending our work. Obviously we can eas-
ily extend our product to a sequence of nets and add a notion of �synchronization
vectors�. This could lead to a more compositional framework for TPN, in the
style of the BIP language [6]. Another promising application of our approach
would be to extend classical results from the theory of supervisory control to the
context of TPN. We already mentioned a possible application for diagnosability
(which was the initial motivation for our work). A next step could be to study
the �quotient� of two TPN language�the dual of the product�which can be
used to reason about the controlability of a system and that is at the basis of
many compositional veri�cation methods, such as Assume-Guarantee for exam-
ple.
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