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Abstract In this paper, we address the problem of failure detection and lo-
calization in a Timed Discrete Event System (TDES) such (max,+)-linear
system graphically modeled by a Timed Event Graph (TEG). The considered
failures are changes on holding times or tokens of the TEG places that can
provoke shifts between an observed outcoming timed flow and an expected
outcoming timed flow (for a given incoming timed flow). Indicators are built
to first detect such shifts relying on the (max,+) algebraic framework and
the residuation theory. An analysis of the indicators’ values provides informa-
tion about time or event failure that could have happen. Then, thanks to the
knowledge of the behavior of the system through its corresponding TEG, sets
of failures that could explain the detected shifts are obtained. It comes from
matrices of signatures for each indicator built on each observable output of
the system. An example of application is proposed to experiment exhaustively
failures of type time and event on each place of the TEG.

Keywords Failure diagnosis · Detection and Localization · Timed Event
Graphs · (max,+)-Linear Systems · Dioid and Residuation Theory · Toolbox

1 Introduction

Smart manufacturing gathers a large category of manufacturing processes that
intensively use computers to control, supervise and adapt the manufacturing
processes by taking advantage of advanced information (from raw data sensors
on supply chains and manufacturing processes to client demands and market
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trend analyses). Within this context, automated failure diagnosis of supply
chains and manufacturing processes plays a crucial role as it is a way to im-
prove the flexibility of the overall manufacturing process by quickly isolating
the failure in the chain and then taking actions like reconfigurations or main-
tenance depending on the type of diagnosed failure. Based on new available
sensing technologies (IoT), smart manufacturing aims at deploying more and
more connected sensors on the processes so that supervision systems, and
more specifically automated diagnosis systems, have more and more data to
analyse and exploit. Among the possible dysfunctions, manifest breakdowns,
that lead to complete stop of the manufacturing process, have to be distin-
guished from performance problems within the process and the resource flow.
While our proposal can deal with failures of the former type, this paper fo-
cuses on failures of the latter type. A manufacturing process can firstly be
affected by timed shift failures, such as unexpected transmission delays of a
resource from a machine to another, late arrival of deliveries from the supply
chain, decreasing of production over time. This type of failure is mostly due
to degraded functioning of machines. Another specific type of failures, called
event shift failures, has also to be considered: typical event shift failures are
unexpected arrival/removal of resources in the process (for instance, a human
operator taking a resource for quality testing, and bringing back later or not;
a machine that rejects the input resource or a machine that always produces
a potentially malformed output even if one of its resource input is missing...).

This paper presents an original framework for the automated detection
and localisation of event/time shift failures within a manufacturing process.
We propose in this framework to model such a process as a fault-free (max,+)-
linear system: the model only represents normal behaviours of the underlying
system. This (max,+) formalism is based on the idempotent semiring theory
([1,7,17]). Such models aim at representing Timed Discrete Event Systems
(TDES) and particularly synchronization between equipments, process dura-
tions and transmission times which are the typical phenomena that are inves-
tigated in this paper. Another advantage of such a formalism is that this type
of models can be implemented with help of efficient tools that take advan-
tage of the underlying (max,+)-linear algebra. More precisely, we propose to
model a manufacturing process as a Timed Event Graph (TEG), a sub-class
of time Petri nets, to automatically interpret it as an equation system in the
idempotent semiring Max

in Jγ, δK.
The paper is organized as follows. Section 2 presents some related works.

Section 3 describes the general problem of failure detection in timed discrete
event systems and then introduces the subclass of TEGs that is investigated
throughout this paper. The necessary mathematical background introducing
the Max

in Jγ, δK dioid is then detailed in Section 4 as well as the way TEGs
are represented within thisMax

in Jγ, δK algebraic framework. Section 5 then fo-
cuses on the detection of event/time shifts in the observable signals of the
supervised process. This detection system actually compares the real observed
event flows with predicted event flows and mainly relies on the residuation
theory in Max

in Jγ, δK introduced in Section 4.1. Section 6 proposes a charac-
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terization of event/time shift failures within this framework and defines a set
of indicators for their detection. Section 7 explains how can the indicators
be used to perform failure localization in the manufacturing process. Finally,
Section 8 presents an exhaustive set of simulations and experimental results
on an example of manufacturing process that shows the detection/localization
capabilities of our proposed indicators. Section 9 finally concludes this work.

2 Related work

As opposed to the classical fault diagnosis in untimed discrete event sys-
tems [29], there are definitely fewer work dealing with failure diagnosis in timed
discrete event systems and they are more recent. The first attempts to deal
with time in an event-based system is to model observable time patterns that
are relevant to symptomatic abnormal behaviours without a complete model
of the underlying system to supervise. Among these pattern-based techniques,
there are temporal causal signatures [24], [20] that directly map faults to ob-
servable effects defined as timed event patterns. A closer formalism is also the
one of chronicles [9] that provides an effective and automated way to recognize
such patterns on-line from an observable flow of timed events.

Problems of failure diagnosis relying on a complete model of autonomous
timed system (i.e. without inputs) have then been defined by the use of time
automaton in [27,28,25,5,6]. These works extend the classical fault diagno-
sis problem of discrete event systems with time, a fault is usually modeled
as the occurrence of a specific event. More recent contributions also use time
Petri nets with specific algorithms [10,12,16,26] to deal with the space and
time complexity of the problem and [3] investigates the diagnosability of such
systems. [18] also proposes a diagnosis algorithm on time workflows that han-
dles more complex fault than single fault event. This algorithm uses a model-
checking technique.

Our contribution is based on systems that depend on observable inputs (in
this sense systems are not autonomous). It is typical of smart manufacturing
processes where the resources to be processed are firstly sensored before mov-
ing to the first processing machines. We investigate a subclass of time Petri
nets that are the Timed Event Graphs: thanks to this restriction, we can take
advantage of the linearity of the models to get effective and efficient computa-
tions in an algebraic way by the use of the specific (max,+)-algebra denoted
Max

in Jγ, δK. Contrary to the set of works listed hereabove, we consider that the
available model of the system is faultless (no behavioural model of faults is
available). Our work is an extension of [21] and [13]. The previous work [21]
is a seminal work that exploits Max

in Jγ, δK to only focus on time shift failure
detection while [13] introduces the time shift failure localization. This paper
fully benefits from Max

in Jγ, δK and extends both works to also deal with event
shift failures and shows how effective is the method on smart manufacturing
processes. The use of (max,+) algebraic approaches for fault diagnosis is very
new, and to the best of our knowledge, there are only three other seminal
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works for fault diagnosis using a (max,+) algebraic approach. In [23], they
propose a two-layered diagnosis architecture where only the high layer relies
on another type of (max,+) algebra to perform fault detection in a set of
components modeled as an autonomous Timed Event Graph. In [19], they ex-
ploit a similar (max,+) algebra to define a framework for the fault diagnosis
of autonomous discrete time hybrid systems. Finally, the work of [2] also ex-
ploits a (max,+) method to predict trajectories in durational graphs that are
a sub-class of timed automata.

3 Problem statement

3.1 Failure Detection in Timed Discrete Event System

This paper addresses the failure detection problem in a specific type of Timed
Discrete Event Systems (TDES) that relies on a formal framework based on
the (max,+) algebra theory. Generally speaking, a TDES Π is a system that
generates a timed language L(Π) ⊆ T (Σ) that is a set of timed sequences over
an alphabet of events Σ. In this paper, we assume that time is global and
discrete (one global clock). A timed sequence of T (Σ) is then a sequence ρ
mixing durations, events of Σ and time points:

T (Σ) ⊆ (Σ ∪ {λ} × N)+.

For example, if Σ = {a, b, c} then ρ = (a, 3).(c, 4).(λ, 2).(b, 1).(b, 2).(λ, 4)
is such a timed sequence of T (Σ). Event a occurs at date 3 after the origin
of time, c occurs 4 units of time after a (so c occurs at date 7), the time
point representing two units of time after the occurrence of c is represented
by (λ, 2) (it is thus date 9), b occurs 1 unit of time later (so at date 10), and
so on. To simplify the notations, ρ is simply written as ρ = 3a4c2λ1b2b4λ. We
denote PΣ′ the temporal projection operator from T (Σ) to T (Σ′) that keeps
only the events from Σ′ in a run of T (Σ): for instance, if Σ′ = {a, b} then
PΣ′(ρ) = 3a7b2b4λ and if Σ′ = {c} then PΣ′(ρ) = 7c9λ.

To setup the detection problem, Σ is partitioned into two subsets: the set
of observable events (namely Σo) and the set of unobservable events (namely
Σuo). In this paper, we assume that time is fully observable. It follows that
any possible run ρ of the system can be associated with its observation σ by
temporal projection. Back to the previous instance, if Σo = {a, b} and Σuo =
{c} then the observation of ρ = 3a4c2λ1b2b4λ is σ = PΣo(ρ) = 3a7b2b4λ.

All along this paper, we consider that the model of the system is fault- free:
there is no information about how the system abnormally behaves in case of
failures. The objectives are:

1. to detect the occurrence of a failure, i.e. to detect that the system has
generated a run that is not modelled based on the observations;

2. to localise the part of the system and the possible class of failures that can
explain the observations.
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Definition 1 (Failure) A TDES Π is failing if it produces a real (but
partially-observed) timed sequence ρ that is not part of L(Π).

A system is failing if it produces an abnormal run ρ (ρ 6∈ L(Π)). As the
system is partially observable, the system may generate an abnormal run ρ
whose observation is the same as the one of a run ρ′ from the normal behaviour
of the system: PΣo

(ρ) = PΣo
(ρ′). In this case, the failure is not detectable by

any kind of indicator.

Definition 2 (Detectable Failure) The failure of Π is detectable if it pro-
duces a real (but partially-observed) timed sequence ρ such that:

∀ρ′ ∈ L(Π), PΣo
(ρ) 6= PΣo

(ρ′).

Consider σ a timed sequence of T (Σo), the failure detection problem then
consists in checking whether there is no run ρ from the normal behaviour that
can produce the observation σ:

Detection(Π,σ) ≡ (∀ρ ∈ L(Π), PΣo
(ρ) 6= σ).

Suppose now that σ ensures that the system is failing, so it means that
the underlying run ρ of the system is not in L(Π). Two classes of failures
can then be distinguished depending on the sequence ρ based on the following
remark. It is always possible to characterize ρ as a concatenation of two timed
sequences ρ1.δe.ρ2 (e ∈ Σ, δ ∈ R+) such that ρ1 is in L(Π) but ρ1.δe is not.
If ρ1.δe is not in L(Π) two cases hold:

1. in a run ρ ∈ L(Π) starting with ρ1, event e should occur after ρ1 but not
after a duration δ: it is a time-shift failure that is located at the occurrence
of e (e might normally occur before δ in the run so in this case the failure
is a delay, or e might normally occur after δ in the run, in this case, the
occurrence of e is too early);

2. there is no run in L(Π) starting with ρ1 followed by an occurrence of event
e: it is an event-shift failure. Either the occurrence of e has been added or
the occurrence of a different e′ is missing.

3.2 Timed Event Graph

The aim of the paper is to exploit the (max,+) theory to perform failure
detection and localisation on systems that can be represented in this theory,
that is Timed Event Graphs (TEG). A TEG is a subclass of Petri nets where
each place has only one upstream transition and one downstream transition,
that represents a subclass of timed discrete event systems (see Figure 1).

Definition 3 (Timed Event Graph) A Timed Event Graph is a tuple
〈P, T,A,M0, H〉 such that

– P is a finite set of places;
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Fig. 1: A MISO TEG of an automated assembly line.

– T is a finite set of transitions;
– A ⊆ (P × T ) ∪ (T × P ) is a finite set of arcs;
– M0 : P → N is the initial marking;
– H : P → N is the holding time function;
– ∀p ∈ P , |{(p, t) ∈ A}| ≤ 1 and |{(t, p) ∈ A}| ≤ 1.

The alphabet of the system associated with a TEG is Σ = T . A marking
M of a TEG is a function P → N that maps a number of tokens to a place p.
The firing rule of a TEG is defined as follows. A transition t is enabled by the
marking M if ∀p, (p, t) ∈ A, M(p) ≥ 1. A transition t is firable at date δ ∈ N
if:

1. t is enabled in the marking of the TEG at date δ;
2. ∀p, (p, t) ∈ A, if Hp(δ) denotes the amount of time before δ when p holds

at least a token, then Hp(δ) ≥ H(p);
3. δ is minimal (i.e. conditions 1 and 2 do not hold for δ − 1), this is the

earliest time firing condition.

Finally, TEG semantics ensures that a transition is fired as soon as it is firable.
Throughout this paper, we consider the subclass of TEGs that represent

non-autonomous systems, which means that they are characterized by a set
of input transitions u1, . . . , un with {(p, u) ∈ A} = ∅ and a set of output
transitions y1, . . . , ym with {(u, p) ∈ A} = ∅. Input transitions typically rep-
resent the sensored flows of resources to be processed by a manufacturing
system while the output transitions represent the sensored flows of products
after processing. The system starts operating as soon as input resources are
available (trigger of an input transition).

All along the paper, we will consider the following assumptions meaning
that there is always at least one firing of any input transition and that each
input flow is a finite sequence.
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Assumption 1 (Non-empty input sequences) The sequence of events that
triggers any input transition ui is not empty. Formally, given the temporal pro-
jection P{ui}:

∀ρ ∈ L(Π),∀k ∈ N, P{ui}(ρ) 6= kλ. (1)

Assumption 2 (Finite input resources) The sequence of events that trig-
gers any input transition ui is finite, formally:

∀ρ ∈ L(Π),∃n ∈ N, P{ui}(ρ) = k1uik2ui . . . knuikn+1λ. (2)

Any transition that is neither an input transition nor an output transition
is called an internal transition. An observable transition is a transition that is
associated with a sensor on the real system that is able to record any event of
the system represented by the fire of the transition t and the date of the event.
Throughout this paper, we consider that both input and output transitions
t are observable (t ∈ Σo). We may also consider that some sensors are also
available to record events and dates related to internal transitions. Such a
sensor for an internal transition t is modeled in the TEG as a measurable
output transition mo(t).

Definition 4 (Measurable output transition) A measurable output tran-
sition mo(t) associated with an internal transition t is a transition such that:

– ∃p ∈ P, (t, p) ∈ A, (p,mo(t)) ∈ A;
– H(p) = 0;
– mo(t) is an output transition ({(mo(t), p′) ∈ A} = ∅).

By definition, t fires at date δ if and only if mo(t) fires at date δ so mo(t)
represents the sensor associated with t as an output observable transition.

Example 1 Figure 1 presents a MISO (Multiple Inputs - Single Output) Timed
Event Graph that represents an automated assembly line. It is composed of
3 machines M1, M2 and M3. Machines M1 and M2 independently process
respectively incoming parts u1 and u2. For each incoming part, the dura-
tion of the process is 2 for machine M1 (H(p2) = 2) and 3 for machine M2

(H(p5) = 3). The end of the processing of machines M1 and M2 is respectively
represented by the firing of transition x2 and x4. Machine M3 then assembles
one part coming from machine M1 with one part coming from machine M2,
taking respectively 3 and 5 time units to arrive there (H(p3) = 3, H(p6) = 5).
The firing of transition x6 represents the end of the assembling process. Two
assembling processes can be done at the same time and the duration of this
process is 2 time units. The complete product is then delivered as the output y
of the line. In this example, only u1, u2 and y are observable. Suppose now that
another sensor is available and records any end of the process of machine M2

(transition x2), then we can add a measurable output transition y2 = mo(x2).

The way a TEG can be defined as a (max,+)-linear system is detailed in
the second subsection of next section.
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4 Models of (max,+)-linear systems

This section recalls the mathematical background that will be used throughout
the paper. For this section, interested reader is invited to peruse [1,7,17].

4.1 Dioid and residuation theory

Definition 5 (Idempotent semiring) An idempotent semiring, also called
dioid, D is a set endowed with two inner operations denoted ⊕ and ⊗. The
sum ⊕ is associative, commutative, idempotent (i.e. ∀a ∈ D, a ⊕ a = a) and
admits a neutral element denoted ε. The product1 ⊗ is associative, distributes
over the sum and admits a neutral element denoted e.

An idempotent semiring is said to be complete if it is closed for infinite
sums and if the product distributes over infinite sums too. Due to the sum
idempotency, an order relation can be associated with D by the following
equivalences: ∀a, b ∈ D, a < b ⇐⇒ (a = a ⊕ b and b = a ∧ b). Because of
the lattice properties of a complete idempotent semiring (see [4]), a⊕ b is the
least upper bound of D (also denoted >) whereas a ∧ b is its greatest lower
bound. Finally, the Kleene star operator is defined as follows: a∗ =

⊕
i≥0 a

i

with ai+1 = a⊗ ai and a0 = e.

Theorem 1 ([17]) Implicit equation x = ax⊕b, defined over a complete dioid
D, admits x = a∗b as least solution.

Example 2 The set Zmax = Z∪{−∞,+∞}, endowed with the max operator as
sum ⊕ and the classical sum as product ⊗, is a complete idempotent semiring
where ε = −∞, e = 0 and > = +∞. On Zmax, the greatest lower bound ∧
takes the sense of the min operator.

Example 3 The set of formal series with two commutative variables γ and δ,
Boolean coefficients in {ε, e} and exponents in Z, is a complete idempotent
semiring denoted BJγ, δK where ε =

⊕
n,t∈Z εγ

nδt (null series) and e = γ0δ0.

A series s ∈ BJγ, δK is written in a single way by s =
⊕

n,t∈Z s(n, t)γ
nδt where

s(n, t) = e or ε.

Graphically, a series of BJγ, δK is described by a collection of points of
coordinates (n, t) in Z2 with γ as horizontal axis and δ as vertical axis. Boolean
coefficients indicate the presence of a point s(n, t) = e or its absence s(n, t) = ε.

Example 4 The quotient set of BJγ, δK by the modulo γ∗(δ−1)∗ equivalence re-
lation provides the complete idempotent semiringMax

in Jγ, δK. This means that
an element ofMax

in Jγ, δK is an equivalence class denoted2 [a]γ∗(δ−1)∗ gathering
all the elements of BJγ, δK equivalent modulo γ∗(δ−1)∗. Neutral elements ε

1 As in usual algebra, ⊗ will be omitted when no confusion is possible.
2 Notation a without the bracket will be adopted in the sequel.
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and e are identical to those of BJγ, δK. Element3 > is equal to (γ−1δ)?. The
equivalence relation induces these computation rules:

γnδt ⊕ γn
′
δt = γmin(n,n′)δt,

γnδt ⊕ γnδt
′

= γnδmax(t,t′),

γnδt ⊗ γn
′
δt
′

= γn+n
′
δt+t

′
.

Remark 1 Equivalence γ∗(δ−1)∗ naturally induces a monotony feature of series
of Max

in Jγ, δK. Indeed, let s =
⊕

i≥0 γ
niδti ∈ Max

in Jγ, δK, then ni ≤ ni+1 and
ti ≤ ti+1.

Remark 2 A C++ library called minmaxgd enables series of Max
in Jγ, δK to be

handled (see [8]).

Graphically, the product of a monomial γnδt ∈ BJγ, δK by γ∗(δ−1)∗ goes
to consider this element in Max

in Jγ, δK as a southeast cone with coordinates
(n, t) containing all the monomials equivalent to γnδt. The description of all
the points of all the cones induced by the monomials of a series s ∈Max

in Jγ, δK
corresponds to the maximal representation of s. Its minimal representation is
obtained by writing only the monomials representing the cones’ vertices.

Example 5 Let s = γ1δ3 ⊕ γ2δ4 ⊕ γ5δ7 be a series of Max
in Jγ, δK illustrated on

Figure 2.

– Maximal representation of s: all the points contained in the cones induced
by the monomials of s (among them, points of coordinates: (1, 3), (2, 2),
(3, 4), (6, 7), . . .).

– Minimal representation of s: only the points of the cones’ vertices (only
the points of coordinates: (1, 3), (2, 4), (5, 7)).

Two other interesting representations of a series s ∈Max
in Jγ, δK are its dater

function and its counter function.

Definition 6 (Dater function) The dater function of a series s ∈Max
in Jγ, δK

is the non-decreasing function denoted Ds(n) : Z 7→ Z and obtained from the
maximal representation of s by conserving for each γn of the series, the largest
corresponding δt. Thus, s =

⊕
n∈Z γ

nδDs(n).

Definition 7 (Counter function) The counter function of a series s ∈
Max

in Jγ, δK is the non-decreasing function denoted Cs(t) : Z 7→ Z and obtained
from the maximal representation of s by conserving for each δt of the series,
the smallest corresponding γn. Thus, s =

⊕
t∈Z γ

Cs(t)δt.

3 A simplification of writing gives ε = γ+∞δ−∞ and > = γ−∞δ+∞.
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Example 6 Let us take back series s = γ1δ3 ⊕ γ2δ4 ⊕ γ5δ7 ∈ Max
in Jγ, δK of

Figure 2. The dater function of s is

∀n ∈ Z, Ds(n) = {. . . ,−∞, 3, 4, 4, 4, 7, 7, . . .}
with Ds(n) = −∞ for n ≤ 0,

Ds(1) = 3, Ds(2) = 4, Ds(3) = 4, Ds(4) = 4,

Ds(n) = 7 for n ≥ 5.

Its counter function is

∀t ∈ Z, Cs(t) = {. . . , 1, 1, 2, 5, 5, 5,+∞, . . .}
with Cs(t) = 1 for t ≤ 3,

Cs(4) = 2, Cs(5) = 5, Cs(6) = 5, Cs(7) = 5,

Cs(t) = +∞ for t ≥ 8.

Remark 3 Because of equivalence γ∗(δ−1)∗, this equality holds from the min-
imal representation:

s = γ1δ3 ⊕ γ2δ4 ⊕ γ5δ7

= . . .⊕ γ1δ−1 ⊕ γ1δ0 ⊕ γ1δ1 ⊕ γ1δ2

⊕ γ1δ3 ⊕ γ2δ4 ⊕ γ3δ4 ⊕ γ4δ4 ⊕ γ5δ5 ⊕ γ5δ6

⊕ γ5δ7 ⊕ γ6δ7 ⊕ γ7δ7 ⊕ γ8δ7 ⊕ γ9δ7 ⊕ . . . .

Indeed, the minimal representation does not need to detail all the monomi-
als: some of them are covered by the equivalence class of others as γ1δ2 by
[γ1δ3]γ∗(δ−1)∗ or γ3δ4 by [γ2δ4]γ∗(δ−1)∗ . This is the representation mostly cho-
sen.

1 2 3 4 5 6

1

2

3

4

5

6

7

γ

δ

Fig. 2: Graphical representation of the series s ∈Max
in Jγ, δK from Example 5.
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In a complete dioid, the product operation is not reversible. However, the
residuation theory, coming from the lattice theory [4], allows the definition
of “pseudo-inverse” of some isotone maps, such as this product, to be done.
In particular, the residuation theory provides optimal solutions to inequalities
such as f(x) 4 b, where f is an order-preserving mapping defined over ordered
sets. This theory can then be applied over complete idempotent semiring as
follows.

Definition 8 (Residuated and residual mappings) Let f : D → C be an
isotone mapping, where D and C are complete idempotent semirings. Mapping
f is said to be residuated if ∀b ∈ C, the greatest element of subset {x ∈
D|f(x) 4 b}, denoted f ](b), exists and belongs to this subset. Mapping f ] is
called the residual of f .

When f is residuated, f ] is the unique isotone mapping such that f ◦ f ] 4
IdC and f ] ◦f < IdD, where IdC and IdD are respectively the identity mappings
on C and D.

Theorem 2 ([17]) Let D be a complete dioid and A ∈ Dn×n be a square
matrix. Then, A◦/A ∈ Dn×n is a matrix which verifies

A◦/A = (A◦/A)∗. (3)

Example 7 Mapping Ra : x 7→ x ⊗ a defined over a complete idempotent
semiring D is residuated. Its residual is usually denoted R]a : x 7→ x◦/a and
called right quotient. Therefore, b◦/a is the greatest solution to inequality x⊗a 4
b, i.e. b◦/a = x̂ =

⊕
{x | x⊗a 4 b}. This example can be applied for the product

of matrices such as X 7→ X⊗A ∈ Dp×m with A ∈ Dn×m and X ∈ Dp×n, that
is:

RA = X ⊗A : (X ⊗A)ij =

n⊕
k=1

Xik ⊗Akj ,

and the computation of B◦/A ∈ Dp×n with B ∈ Dp×m is given by:

R]A(B) = B◦/A : (B◦/A)ij =

m∧
k=1

Bik◦/Ajk. (4)

Example 8 By introducing the idempotent semiring of dater functions (see [1,
Section 5.3]) endowed with the pointwise maximum as sum and the following
convolution as product:

∀m, (f ⊗ g)(m) =
⊕
ν∈Z
{f(ν)⊗ g(m− ν)} = sup

ν∈Z
{f(ν) + g(m− ν)},

the residual of this convolution is

∀m, (f◦/g)(m) =
∧
ν∈Z
{f(ν)◦/g(ν −m)} = inf

ν∈Z
{f(ν)− g(ν −m)}. (5)
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In this dioid, e = 0, ε = −∞ and > = +∞. Now with the idempotent semiring
of counter functions endowed with the pointwise minimum as sum and the
following convolution as product:

∀s, (f ⊗ g)(s) =
⊕
τ∈Z
{f(τ)⊗ g(s− τ)} = inf

τ∈Z
{f(τ) + g(s− τ)},

the residual of this convolution is

∀s, (f◦/g)(s) =
∧
τ∈Z
{f(τ)◦/g(τ − s)} = sup

τ∈Z
{f(τ)− g(τ − s)}. (6)

In this dioid, e = 0, ε = +∞ and > = −∞.

4.2 (max,+)-linear systems and Timed Event Graph modeling

The complete dioidMax
in Jγ, δK aims at modeling timed discrete event systems

as timed sequences of events. Indeed, thanks to equivalence γ∗(δ−1)∗, series of
Max

in Jγ, δK are non-decreasing and can be used to represent the accumulation of
event occurrences over time. For instance, suppose that a system only generates
one type of event, let us say, a, then the series s = γ0δ2⊕γ1δ3⊕γ2δ6⊕γ3δ+∞
fully represents the run rs = (a, 2).(a, 1), (a, 3) ≡ 2a1a3a where γ3δ+∞ is a
monomial that means that the 4th occurrence of a never happens. Suppose now
that a is actually a transition of a TEG (see Definition 3) then s represents
a firing sequence of this transition. Generally speaking, for each transition of
the TEG, we can write a firing sequence of this transition, also called an event
flow or a trajectory, as a series ofMax

in Jγ, δK. A monomial γnδt of any of these
series is interpreted as follows: its (n+ 1) event occurrence happens at earliest
at time t. When trajectories describe a finite number n of events, they contain
n+ 1 monomials in which the last monomial is written γnδ+∞ meaning that
the (n+ 1)th event occurrence never happens.

Given a flow u ∈Max
in Jγ, δKp as an input vector of size p, we can model the

system’s response as a flow y ∈Max
in Jγ, δKq represented as an output vector of

size q that is ruled by the following equation:

y = h⊗ u (7)

where h is the transfer function image. This input/output relation can be
obtained from the following state representation:{

x = Ax⊕Bu
y = Cx

(8)

where x ∈ Max
in Jγ, δKn is the state vector of the system, A ∈ Max

in Jγ, δKn×n,
B ∈Max

in Jγ, δKn×p and C ∈Max
in Jγ, δKq×n. Indeed, by applying Theorem 1 to

state equation x = Ax ⊕ Bu, the input/output relation is y = CA∗Bu = hu,
and:

h = CA∗B. (9)



Failure Detection and Localization for Timed Event Graphs in (max,+)-Algebra 13

Systems that are fully characterized by Equation 7 or Equations 8 are
commonly called (max,+)-linear systems and they also describe Timed Event
Graphs and their semantics (see Section 3.2) as detailed below.

– Each series ui (respectively yi) of the input vector u (respectively output
vector y) in a (max,+)-linear system is associated with the timed sequence
produced by the fire of the input transition ui (respectively output transi-
tion yi) in the corresponding TEG Π.4 Let r ∈ L(Π) be a run of the TEG
Π then ui (respectively yi) represents P{ui}(r) ∈ T ({ui}) (respectively
P{yi}(r) ∈ T ({ui})).

– Each series xi of the state vector x in a (max,+)-linear system is associated
with the timed sequence produced by the fire of the respective internal
transition xi. Let r ∈ L(Π) be a run of the TEG Π then xi represents
P{xi}(r) ∈ T ({xi}).

– Equation x = Ax ⊕ Bu describes both the structure and the firing rules
of the internal transitions of the TEG. From this equation, we have xi =⊕n

j=1A(i, j)xj ⊕
⊕p

j=1B(i, j)uj . If A(i, j) 6= ε then A(i, j) is a monomial

γmδt where m is the backward event shift between the transitions xj and
xi and t is their backward time shift which means that if xj fires at time
τ then xi will fire at a time greater or equal to τ + t (time shift) and after
m other fires of xi (event shift, only the (m+ 1)th next fire of xi depends
on this fire of xj). It follows that A(i, j) corresponds to a place pk such
that (xj , pk) ∈ A and (pk, xi) ∈ A with H(pk) = t and M0(pk) = m.
Similarly, if B(i, j) = γmδt 6= ε, then it corresponds to a place pl such that
(uj , pl) ∈ A and (pl, xi) ∈ A with H(pl) = t and M0(pl) = m. Finally, the
⊕ operator between the monomials A(i, j)’s and B(i, j)’s ensures that the
earliest firing rule condition of the transition xi holds.

– Equation y = Cx describes both the structure and the firing rules of the
output transitions of the TEG in a similar way as for the internal tran-
sitions. For each measurable output transition, corresponding row of C
contain only one element different from ε, this element is the monomial
γ0δ0.

Looking back to the TEG defined by Figure 1, the state representation of
the corresponding (max,+)-system is given in Max

in Jγ, δK:

x =



. γ1δ0 . . . .

γ0δ2 . . . . .

. . . γ1δ0 . .

. . γ0δ3 . . .

. γ0δ3 . γ0δ5 . γ2δ0

. . . . γ0δ2 .


x⊕



γ0δ0 .

. .

. γ0δ0

. .

. .

. .


u

y =
(
. . . . . γ0δ0

)
x

.

4 We use the same notation for a transition of the TEG and its corresponding series in
the (max,+)-linear system.
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The entries of matrices A ∈ Max
in Jγ, δK6×6, B ∈ Max

in Jγ, δK6×2 and C ∈
Max

in Jγ, δK1×6 show the firing relations between transitions. A(1, 2) = γ1δ0

means that there is one token between x2 and x1, so the (n+ 1)th firing of x1
depends on the nth firing of x2. Because of the synchronization on x1, the nth

firing of this transition also depends of the nth firing of u1 as indicated by the
monomial B(1, 1) = γ0δ0. Monomial A(2, 1) = γ0δ2 indicates that the firing
date of x2 depends on the firing date of x1 plus 2 time units. The absence
of connection between transitions can be seen for instance between x1 and y
with C(1, 1) = . = ε.

The transfer function h ∈Max
in Jγ, δK1×2 of the system is computed:

h = CA∗B = (γ0δ7(γ1δ2)∗ γ0δ10(γ1δ3)∗).

In h(1, 0), the monomial (γ1δ2)∗ shows the process of 1 piece by 2 time units
on the machine M1 whereas the monomial (γ1δ3)∗ of h(1, 1) shows the process
of 1 piece by 3 time units on M2. Now the system’s behavior is characterized
by h in Max

in Jγ, δK, flows of events over time can be proceed. Thus, if the
following finite input trajectory is given:

u =

(
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞

)
in which γ0δ2 means that the 1st event occurrence of u1 and u2 happens at time
2 but their 5th event occurrence never happens (γ4δ+∞). The corresponding
output trajectory is:

y = hu = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞

meaning that the first complete product is delivered at t = 12. This time cor-
responds to the arrival time on u1 and u2 (at t = 2) plus the duration of the
longest path between the inputs and the output, that is 10 between u2 and y.

Remark 4 It is important to notice that dater function of y is

∀n ∈ Z, Dy(n) = {. . . ,−∞, 12, 15, 18, 21,+∞, . . .}
with Dy(n) = −∞ for n ≤ −1,

Dy(0) = 12, Dy(1) = 15, Dy(2) = 18, Dy(3) = 21,

Dy(n) = +∞ for n ≥ 4.

Its counter function is

∀t ∈ Z, Cy(t) = {. . . , 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, . . .}
with Cy(t) = 0 for t ≤ 12,

Cy(t) = 1 for 13 ≤ t ≤ 15,

Cy(t) = 2 for 16 ≤ t ≤ 18,

Cy(t) = 3 for 19 ≤ t ≤ 21,

Cy(t) = 4 for t ≥ 22.



Failure Detection and Localization for Timed Event Graphs in (max,+)-Algebra 15

Dater and counter functions of such series differ from those of Example 6
since some event occurrences never happened (those from numbering 4). In
such case, the dater function always begins and ends by infinite value whereas
the counter function only contains finite values.

Example 9 Let us now consider the TEG of a MIMO (Multiple Inputs - Mul-
tiple Outputs) represented by Figure 3. It is composed of two inputs u1 and u2
and two outputs y1 and y2. We also suppose that internal transitions x1 and
x3 can be observed so we add two measurable output transitions y3 = mo(x1)
and y4 = mo(x3) (see Definition 4). The state representation of this system is:

x =


. . . .

γ0δ2 . . γ0δ1

γ0δ2 . γ1δ1 .

. . γ0δ1 .

x⊕


γ0δ1 .

. .

. γ0δ3

. .

u

y =


. γ0δ3 . .

. . . γ0δ1

γ0δ0 . . .

. . γ0δ0 .

x

that gives the following transfer function h ∈Max
in Jγ, δK4×2

h = CA∗B =


γ0δ8(γ1δ1)∗ γ0δ8(γ1δ1)∗

γ0δ5(γ1δ1)∗ γ0δ5(γ1δ1)∗

γ0δ1(γ1δ1)∗ .
γ0δ3(γ1δ1)∗ γ0δ3(γ1δ1)∗

 .

By giving the following input:

u =

(
γ0δ2 ⊕ γ1δ4 ⊕ γ3δ+∞
γ0δ3 ⊕ γ1δ5 ⊕ γ3δ+∞

)
,

the output is:

y =


γ0δ11 ⊕ γ1δ13 ⊕ γ2δ14 ⊕ γ3δ+∞
γ0δ8 ⊕ γ1δ10 ⊕ γ2δ11 ⊕ γ3δ+∞

γ0δ3 ⊕ γ1δ5 ⊕ γ3δ+∞
γ0δ6 ⊕ γ1δ8 ⊕ γ2δ9 ⊕ γ3δ+∞

 .

5 Time and event shift detection

As presented in Subsection 4.2, a (max,+)-linear system is fully characterized
by its transfer function h and its corresponding TEG. As described in Sec-
tion 3.1, the model of the system that we consider is fault-free, i.e. the model
represents the relationship between the inputs and the outputs only when the
system normally behaves.
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Fig. 3: A TEG of a MIMO (max,+)-linear system.

From now, and through the rest of this paper, we use the following nota-
tions. The real input of the system is denoted u, the real output of the system
is denoted y and we assume that inputs u and outputs y are fully observable.
As inputs u are fully observable, we can compute the output flows ỹ = h⊗ u
that should be normally produced by the system given the real inputs u. A
failure is then detectable if and only if the real output y does not match the
output ỹ (ỹ is part of the observable projection of a run from the normal
behaviour of the system as explained in Subsection 3.1).

The challenge now is to find a way to actually compare y and ỹ and de-
termine the presence of time and event shifts between y and ỹ as described in
Subection 3.1. Subsections 5.1 and 5.2 propose to perform these comparisons
by using the residuation theory in particular the use of the right quotient ◦/ be-
tween y and ỹ. Information about shifts between date occurrences or number
of events for these output transition firings are directly given by this computa-
tion. Such correlation between series of Max

in Jγ, δK previously comes from the
second order theory of (max,+)-linear systems introduced in [17]. The work of
Subsection 5.1 was first proposed in [21]. Details of computation and analyses
of the results are added here.

Moreover, since we deal with (max,+)-linear systems, the impact on out-
puts y and ỹ of Assumptions 1 and 2 made for this paper and given in the
problem statement (Subsection 3.2), means that:

I. Series y and ỹ never equal to ε and contain at least one monomial each
(see Assumption 1);

II. Series y and ỹ are finite flows of events, they always end with a monomial
γnδ+∞ (see Assumption 2).
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5.1 Detection of time shifts

In a (max,+)-linear system, when failures happened, this can provoke a real
output trajectory y different than the expected output trajectory ỹ. Then,
some comparison needs to be done to detect shifts between series y and ỹ.
The right quotient is used and so are dater functions for the time shifts in this
subsection, counter functions for the event shifts in the next subsection.

Definition 9 (Time shift function) Let a and b be series of Max
in Jγ, δK,

Da(n) and Db(n) their respective dater functions. The time shift function
representing the time shifts between a and b for each n ∈ Z is defined by:

Ta,b(n) = Db(n)−Da(n).

Intuitively speaking, the time shift function associates the time difference
between the nth event occurrence of series a and the nth event occurrence
of series b. Obviously, Ta,a(n) = 0,∀n ∈ Z. If Ta,b(n) is equal to a positive,
respectively negative, number then the nth event occurrence of b will happen
later, respectively earlier, than the nth event occurrence of a. About the infinite
values (see [17]), these equalities hold for all finite D(n) ∈ Z:

(−∞)−D(n) = −∞ (+∞)−D(n) = +∞, (10)

D(n)− (−∞) = +∞ D(n)− (+∞) = −∞, (11)

(−∞)− (−∞) = +∞ (+∞)− (+∞) = +∞. (12)

Example 10 Let a and b be series ofMax
in Jγ, δK, let us deal with situations we

will have for the detection step.

– If a = γ0δ2 ⊕ γ1δ+∞ so Da(n) = {. . . ,−∞, 2,+∞, . . .}, and b = γ0δ1 ⊕
γ2δ+∞ so Db(n) = {. . . ,−∞, 1, 1,+∞, . . .}. For n = 1 one has

Db(1)−Da(1) = 1− (+∞) = −∞

representing the fact that a stops before b (b has one more event occurrence
regarding a).

– If a = γ0δ4 ⊕ γ2δ+∞ so Da(n) = {. . . ,−∞, 4, 4,+∞, . . .}, and b = γ1δ3 ⊕
γ2δ+∞ so Db(n) = {. . . ,−∞, 3,+∞, . . .}. For n = 0 one has

Db(0)−Da(0) = (−∞)− 4 = −∞

representing the fact that a starts before b (a has one more event occurrence
regarding b).

The time shift function Ta,b(n) gives all the time differences between two
series a and b of Max

in Jγ, δK for the same number of event occurrence. Partic-
ularly, obtaining the smallest and the largest time shifts can be computed:

T − = inf
ν∈Z
{Db(ν)−Da(ν)}, (13)

T + = sup
ν∈Z
{Db(ν)−Da(ν)}. (14)
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However, regarding Equation (5) describing the residuation operation of two
dater functions, these values T − and T + are actually obtained by that com-
putation of residuation with m = 0 and by taking sup = − inf for T +. Indeed,
the time shift function only concerns dates of the same number of event oc-
currences whereas Equation (5) computes all the differences between all the
event occurrences. On a series ofMax

in Jγ, δK, m = 0 goes to take the exponent
of γ equals to 0. When it is not directly given in the minimal representation,
it can be obtained in its dater function. Thus, the following theorem uses the
residuation computation between series a and b to obtain these bounds T −
and T +.

Theorem 3 ([17]) Let a, b ∈ Max
in Jγ, δK, the time shift function given in

Definition 9 can be bounded as follows:

∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0) (15)

where Db◦/a(0) and −Da◦/b(0) are directly extracted from series b◦/a and a◦/b by
only looking at the monomials containing γ0:

Db◦/a(0) comes from γ0δ
D

b◦/a(0) ∈ b◦/a,

−Da◦/b(0) comes from γ0δ
D

a◦/b(0) ∈ a◦/b.

Thus, needed comparison to detect time shifts between two series ofMax
in Jγ, δK

is reduced to compute bounds Db◦/a(0) and −Da◦/b(0). Series a and b will be
replaced by outputs ỹ and y in the detection of failures of the next section.

Remark 5 In this paper, only the difference between dates of the same num-
ber of event occurrences are considered. On further work, the residuation com-
pututation could give results on time shifts between different numbers of event
occurrences.

Example 11 Let a, b ∈Max
in Jγ, δK such that

a = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞,
b = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞.

As illustrated in Figure 4, it is clear that the smallest time shift is equal to 0
(reached for γ0 and γ1 of both a and b) whereas the largest time shift is equal
to 2 (reached for γ3). Computations of b◦/a and a◦/b provide mathematically
these shifts:

b◦/a = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞,
a◦/b = γ0δ−2 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞.

The smallest time shift Db◦/a(0) is equal to 0 and is found in the monomial

γ0δ
D

b◦/a(0) ∈ b◦/a. This means that for at least one point, series a and b have
the same time occurrence for the same event occurrence numbering (event
occurrences 0 and 1 with times 12 and 15 to be specific). The largest time
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shift −Da◦/b(0) is equal to 2 (between monomials γ3δ21 ∈ a and γ3δ23 ∈ b to

be specific) and is found in the monomial γ0δ
D

a◦/b(0) ∈ a◦/b. This latter series
is illustrated in Figure 5 and shows that the largest shift between a and b in
the time domain is 2 time units.

1 2 3 4
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13

14

15

16

17

18

19

20

21

22

23

24
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b

D
a◦/b(0)

γ

δ

Fig. 4: Series a, b ∈ Max
in Jγ, δK of example

11.
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D
a◦/b(0)

γ

δ

Fig. 5: Maximal bound of the time shift
between a and b.

The time shift function Ta,b(n) is about vertical distances of a series b in
comparison to a series a. The analysis of the bounds of this time shift function
provides indications on the graphical position of b regarding the position of
a under Assumptions I and II given at the begining of this section, where a
and b are series representing ỹ and y. This position can be translated into
information on time delay or advance of event occurrences of b compared to
ones of a.

Property 1 When Db◦/a(0) and Da◦/b(0) of Theorem 3 are finite values, three
analyses can be obtained:

– if the bounds are both positives

Db◦/a(0) ≥ 0 and −Da◦/b(0) ≥ 0,

then b is graphically above a (a 4 b in the dioid order), meaning that at
least one event occurrences of b happened later than occurrences of a (the
others happened at the same time);

– if the bounds are both negatives

Db◦/a(0) ≤ 0 and −Da◦/b(0) ≤ 0,

then b is graphically under a (a < b in the dioid order), meaning that at
least one event occurrence of b happened before than occurrences of a (the
others happened at the same time);
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– finally, if one bound is negative and the other is positive

Db◦/a(0) ≤ 0 and −Da◦/b(0) ≥ 0,

then b graphically crosses a (they are not comparable in the dioid order),
meaning that some event occurrences of b happened later, some before,
some possibly at the same time.

Remark 6 When Db◦/a(0) = −Da◦/b(0), the time shift between a and b is always
the same from the beginning to the end.

A particular analysis has to be made when bounds (only one, no matter
the lower or the upper, or the two) is (are) infinite. By taking back Example
10, two cases are possible to obtain infinite bounds:

– one series stops before the other in the numbering of event occurrences;
– one series starts before the other in the numbering of event occurrences.

This introduces an infinite time shift since a comparison is made between a
finite number and the infinite value. Moreover, if the two bounds are infinite,
then the two series share no number of event occurrence at all.

Property 2 When one bound of Theorem 3 is infinite (Db◦/a(0) = −∞ or
−Da◦/b(0) = −(−∞) = +∞), an exponent of γ in one series does not ex-
ist in the other5 meaning that an event shift happened on event occurrences
between a and b. According to the other bound one has:

– if Db◦/a(0) ≥ 0 and −Da◦/b(0) = +∞, then a 4 b ;
– if Db◦/a(0) = −∞ and −Da◦/b(0) ≤ 0, then a < b ;
– if Db◦/a(0) = −∞ and −Da◦/b(0) ≥ 0 or if Db◦/a(0) ≤ 0 and −Da◦/b(0) = +∞,

then a and b are not comparable;
– if Db◦/a(0) = −∞ and −Da◦/b(0) = +∞, then the event numbering of one

series starts just after or more the numbering of the last event of the other
series.

The following property points out that even if time shifts happened, series
can be equal for some monomials.

Property 3 When one bound of Theorem 3 is equal to 0 (no matter the value
of the other bound), series a and b share at least one identical monomial (if
several, they do not necessary follow each other). An exception exists when a
and b crosses each other: the value 0 is not a bound on minimal and maximal
shifts between a and b and will so not appear in neither in Db◦/a(0) nor in
−Da◦/b(0).

Finally, some combinations of bounds are impossible because of their order.

Property 4 Because bounds Db◦/a(0) and −Da◦/b(0) of Theorem 3 are com-
pletely ordered, if Db◦/a(0) is positive, then −Da◦/b(0) is positive too (it can not
be negative). SoDb◦/a(0) ≥ 0 and−Da◦/b(0) ≤ 0 is a combination that can never
happen, neither can the combination Db◦/a(0) = +∞ and −Da◦/b(0) = −∞.

5 But this is not because of the equivalence relation in Max
in Jγ, δK (see Remark 3).
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5.2 Detection of event shifts

To know if series y and ỹ ofMax
in Jγ, δK have shifts in the event domain, counter

functions are now used with again the right quotient ◦/. In [17], [11] and [22],
such event shifts are considered as the representation of some stock in the
system.

Definition 10 (Event shift function) Let a and b be series of Max
in Jγ, δK,

Ca(t) and Cb(t) their respective counter functions. The event shift function
representing the event shifts between a and b for each t ∈ Z is defined by

Sa,b(t) = Cb(t)− Ca(t).

The event shift function associates the difference of numbering between
event occurrences of a and b for the same time t. Obviously, Sa,a(t) = 0,∀t ∈ Z.
If Sa,b(t) is equal to a positive, respectively negative, value then at the same
time t, the numbering of the event occurrence of b is smaller, respectively
larger, than the numbering of the event occurrence of a. The same relations
than those of Equations (10) and (11) hold for infinite values with finite C(t) ∈
Z (see [17]) but not those when both terms are equal to infinite values:

(−∞)− C(t) = −∞ (+∞)− C(t) = +∞, (16)

C(t)− (−∞) = +∞ C(t)− (+∞) = −∞, (17)

(−∞)− (−∞) = −∞ (+∞)− (+∞) = −∞. (18)

Remark 7 Unlike dater functions, infinite values will not be obtained with
counter functions during the detection step since series we deal with only
contain finite values (see Proposition 1 further).

The event shift function Ca,b(t) gives all the event differences between two
series a and b ofMax

in Jγ, δK at the same date. Particularly, obtaining the small-
est and the largest event shifts can be computed:

C− = inf
τ∈Z
{Cb(τ)− Ca(τ)}, (19)

C+ = sup
τ∈Z
{Cb(τ)− Ca(τ)}. (20)

However, regarding Equation (6) describing the residuation operation of two
counter functions, these values C− and C+ are actually obtained by that com-
putation of residuation with s = 0 and by taking inf = − sup for C−. Indeed,
the event shift function only concerns event occurrences of the same date
whereas Equation (6) computes all the differences between all the dates. On
a series of Max

in Jγ, δK, s = 0 goes to take the exponent of δ equals to 0. When
it is not directly given in the minimal representation, it can be obtained in its
counter function. Thus, the following theorem uses the residuation computa-
tion between series a and b to obtain these bounds C− and C+.
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Theorem 4 ([17]) Let a, b ∈ Max
in Jγ, δK, the event shift function given in

Definition 10 can be bounded as follows:

∀t ∈ Z, −Cb◦/a(0) ≤ Sa,b(t) ≤ Ca◦/b(0). (21)

where −Cb◦/a(0) and Ca◦/b(0) are again extracted from the series b◦/a and a◦/b
with here a look at their γ exponents when their δ exponents are equals to 0:

−Cb◦/a(0) comes from γ
C
b◦/a(0)δ0 ∈ b◦/a,

Ca◦/b(0) comes from γ
C
a◦/b(0)δ0 ∈ a◦/b.

As for the time shift function, needed comparison in the event domain
between two series of Max

in Jγ, δK use the computation of the bounds −Cb◦/a(0)
and Ca◦/b(0). Series a and b will be replaced by outputs ỹ and y in the detection
of failures of the next section.

Remark 8 In this paper, only the difference between event occurrences of the
same date are considered. On further work, the residuation compututation
could give results on event shifts between different dates of event occurrences.

Example 12 Let a, b ∈Max
in Jγ, δK such that

a = γ1δ12 ⊕ γ3δ15 ⊕ γ5δ18 ⊕ γ6δ+∞,
b = γ0δ12 ⊕ γ2δ15 ⊕ γ4δ18 ⊕ γ5δ+∞.

As illustrated Figures 6 and 7, the largest event shift between a and b is equal
to 1. It happened for instance at t = 15 where the 2nd event occurrence of a
happened whereas at the same time, a is already to its 3rd event occurrence.
This value is obtained by computations b◦/a and a◦/b:

b◦/a = γ−1δ0 ⊕ γ1δ3 ⊕ γ3δ6 ⊕ γ4δ+∞,
a◦/b = γ1δ0 ⊕ γ3δ3 ⊕ γ5δ6 ⊕ γ6δ+∞,

meaning that −Cb◦/a(0) = 1 and Ca◦/b(0) = 1.

Remark 9 In this example, Db◦/a(0) = 0 and −Da◦/b(0) = +∞. Then a 4 b (see
Property 2).

The event shift function Sa,b(t) is about horizontal distances of a series b
in comparison to a series a. As for the time shifts, the analysis of the bounds
of the event shifts provides indications on the graphical position of b regarding
the position of a under the same assumptions than those referenced I. and II
at the beginning of this section (again, a and b are series representing ỹ and
y) and used for the time shift function. This position can be translated into
information on delay or advance in the event occurrences of b compared to
ones of a.

Property 5 When −Cb◦/a(0) and Ca◦/b(0) of Theorem 4 are finite values, three
analyses can be obtained:
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– if the bounds are both positives

−Cb◦/a(0) ≥ 0 and Ca◦/b(0) ≥ 0,

then b is graphically above a (a 4 b in the dioid order), meaning that b is
always equal or late in the numbering of its event occurrences than a;

– if the bounds are both negatives

−Cb◦/a(0) ≤ 0 and Ca◦/b(0) ≤ 0,

then b is graphically under a (a < b in the dioid order), meaning that b is
always equal or in advance in the numbering of its event occurrences than
a;

– finally, if one bound is negative and the other is positive

−Cb◦/a(0) ≤ 0 and Ca◦/b(0) ≥ 0,

then b graphically crosses a (they are not comparable in the dioid order).

Remark 10 When −Cb◦/a(0) = Ca◦/b(0), the event shift between a and b is al-
ways the same from the beginning to the end.

The following proposition deals with the result of the assumption of having
a and b never equal to ε, meaning that there is always at least one monomial
in each series.

Proposition 1 Bounds −Cb◦/a(0) and Ca◦/b(0) will never reach infinite values.

Proof As soon as even only one event happened in each a and b, counters
Ca(t) and Cb(t) are equal to finite values (see Remark 4) the result of their
subtraction cannot be infinite.

Now again, even if event shifts happened, series can be equal for some
monomials.
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Property 6 When one bound of Theorem 4 is equal to 0 (no matter the value
of the other bound), series a and b share at least one same numbering of event
occurrences in both series.

Example 13 Let a and b be series of Max
in Jγ, δK.

– If a = γ0δ1⊕γ2δ+∞ and b = γ0δ2⊕γ1δ+∞, one has −Cb◦/a(0) = 0 meaning
that at least one numbering of event occurrences is reached in both series.
Indeed, at t = 1, series a already has its first event (γ0δ1) whereas the first
event of b will necessarily happen later (at t = 2 according to monomial
γ0δ2). More precisely:

. . .

Cb(0)− Ca(0) = 0− 0 = 0

Cb(1)− Ca(1) = 0− 0 = 0

Cb(2)− Ca(2) = 0− 2 = −2

Cb(3)− Ca(3) = 1− 2 = −1

Cb(4)− Ca(4) = 1− 2 = −1

. . .

and from Equation (19):

inf
τ∈Z
{Cb(τ)− Ca(τ)} = − sup

τ∈Z
{Cb(τ)− Ca(τ)} = 0.

– If a = γ1δ1 ⊕ γ2δ+∞ and b = γ0δ2 ⊕ γ1δ+∞, one has −Cb◦/a(0) = 1 and
Ca◦/b(0) = 2 meaning that some numberings of event occurrences achieved
by one series is never reached by the other. For instance, at t = 0, series b
already has its first event (γ0δ2) whereas the first event of a never happened
(the series begins with γ1δ1).

Finally, as for time shifts, some combinations of bounds are impossible.

Property 7 Because −Cb◦/a(0) and Ca◦/b(0) are completely ordered, if -Cb◦/a(0) is
positive, then Ca◦/b(0) is positive too (it can not be negative). So −Cb◦/a(0) ≥ 0
and Ca◦/b(0) ≤ 0 is a combination that can never happen.

6 Indicator for the detection of failures

Section 5 proposes a method to mathematically compare series ofMax
in Jγ, δK in

order to perform event and time shift detection. Here, we build an indicator for
each output of a (max,+)-linear system, so for each output of its TEG, that
will be raised if a shift failure is detectable between the real observed output y
and the expected output ỹ. This indicator uses the bounds of Equations (15)
and (21) and relies on all the analyses done over them in Section 5 by taking
ỹ = a and y = b.
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6.1 Definition of the indicator

The indicator defined here deals with both time and event shifts between y
and ỹ provoked by both time and event failures. As explained in Section 3,
the indicator relies on the following assumptions:

– all the inputs of the system are observable, so input u is known;
– none of the inputs ui is empty (see Assumption 1 of Subsection 3.2);
– all the outputs of the system are observable, so output y is known;
– as u and y represent the real inputs and outputs of the system, they are

finite (i.e. all series representing these observations end with a monomial
γnδ+∞, see Assumption 2 of Subsection 3.2).

The proposed indicator relies on the off-line computation of the transfer
function h of the system and is defined as follows (general case with y 6= ε 6= ỹ).

Definition 11 (Indicator of shift failures) Let h ∈ Max
in Jγ, δKq×p be the

transfer function of a (max,+)-linear system, let u ∈ Max
in Jγ, δKp be the ob-

servable input of the system such that hu 6= ε and y ∈ Max
in Jγ, δKq 6= ε be its

output. Indicator I(u, yi) is the function6:

I(u, yi) =

{
false if for ỹi = hu, τ(yi, ỹi) = ν(yi, ỹi) = [0; 0]

true otherwise

with

τ(ỹi, yi) = [Dyi◦/ỹi(0) ; −Dỹi◦/yi(0)],

ν(ỹi, yi) = [−Cyi◦/ỹi(0) ; Cỹi◦/yi(0)].

I is the set of the q failure indicators of the system.

To obtain these indicators, expected output ỹi is first computed with the
knowledge of h and of the observable input u. Then, thanks to the right quo-
tient operation between observed output yi and expected output ỹi, time shifts
τ(ỹi, yi) and event shifts ν(ỹi, yi) are obtained. The indicator is raised when
at least one bound of the intervals τ(ỹi, yi) and ν(ỹi, yi) is different from 0; it
returns false when all the bounds are equal to 0. For the sake of completeness
of the indicator definition, we also need to handle specific cases where the
predicted and/or real outputs are empty, that are: I(u, yi = ε) = true if and
only if ỹi 6= ε and if ỹi = ε, I(u, yi 6= ε) = true.

Now, let σ ∈ Σ∗o be a non-empty observation of the system (see Section 3.1)
respecting the previous assumptions, we denote:

Indicator(Π,σ) ≡
q∨
i=1

I(u, yi)

6 When there is only one output, such as in SISO (Single Input - Single Output) or MISO
systems, notation I(u, y) with τ(y, ỹ) and ν(y, ỹ) holds.
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where u = [uj ]j∈{1,...,p} and uj is the series that represents P{uj}(σ) and yi is
the series that represents P{yi}(σ) (see Section 4.2).

The next result shows that the defined set of indicators provides a way
to solve the failure detection problem (see Section 3.1) that is sound and
complete.

Theorem 5 For any non-empty observation σ ∈ Σ∗o defined as above,

Indicator(Π,σ) ≡ Detection(Π,σ).

Proof (⇒) Suppose first that Indicator(Π,σ) is true. So it means that there
exists at least an output yi such that I(u, yi) is true. If yi 6= ε and ỹi 6= ε,
either τ(yi, ỹi) 6= [0; 0] or ν(yi, ỹi) 6= [0; 0]. Suppose τ(yi, ỹi) 6= [0; 0], Theorem 3
asserts that there exists t ∈ Z such that Tyi,ỹi(t) 6= 0 so yi 6= ỹi, thus y 6=
ỹ = hu 6= ε. The real run ρ′ of the system must then be such that it has
generated u as observable inputs but not hu as observable outputs. It follows
that σ cannot be generated by any run ρ ∈ L(Π) of the system. Therefore,
Detection(Π,σ) is true. If ν(yi, ỹi) 6= [0; 0], using a similar reasoning by using
Theorem 4, the result also holds. Now, if yi = ε, then ỹi 6= ε, and if ỹi = ε
then yi 6= ε, Detection(Π,σ) is also true.

(⇐) Suppose that Detection(Π,σ) is true, it means that there does not
exist a run of Π whose observable projection is σ (see Section 3). As input
u is observable, the real run of Π that has generated σ must have generated
u which implies that there does not exist a run of Π that can generate both
u and y. If there exists yi = ε then ỹi 6= ε and Indicator(Π,σ) is true. If
there exists ỹi = ε then yi 6= ε, Indicator(Π,σ) is also true. In the general
case, y 6= ỹ = hu. Thus, there is at least one output yi 6= ỹi so there exists
t ∈ Z such that either Syi,ỹi(t) 6= 0 or Tyi,ỹi(t) 6= 0 or both. Theorem 3 and
Theorem 4 then ensure that either ν(yi, ỹi) 6= [0; 0] or τ(yi, ỹi) 6= [0; 0] or both.
By Definition 11, Indicator(Π,σ) must be true.

Complexity analysis
To determine the complexity of the indicator, we first need to distinguish the
off-line part of the computation (that does not rely on any observed input u)
and the on-line part. The offline part of the computation consists in computing
the transfer function h = CA∗B whose worst-case complexity is based on the
computation of A∗. A is exclusively composed of monomials and represents
the nT internal transitions of the TEG. Based on the algorithms implemented
in the library minmaxgd [8], A∗ is then a linear number of ⊗ products, each
product being in O(n2T log(nT )) (effective product combined with the sorting
of the monomials to get a canonical representation of the resulting series).
Therefore, the offline computational part is in O(n3T log(nT )). As far as the
online part is concerned, given an input u, the computation of the indicator
both requires the computation of ỹi = hu and the residuals ỹi◦/yi and ỹi◦/yi.
Let nu denote the number of input observed events, the number of monomials
in any polynom ui linearly depends on nu. The complexity of the computation
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of ỹi = hu then relies on the complexity of a product between a series of h and
a polynom of u that is in O(nhnulog(nh)) where nh is the maximal number
of monomials in a series of h: the prediction ỹi = hu linearly depends on the
size of u from a complexity point of view. Finally, the residuals ỹi◦/yi and ỹi◦/yi
involve only polynoms. The number of monomials in ỹi linearly depends on
nu by definition of a TEG. If we suppose that the number of monomials in yi
also linearly depends on nu then the computation of any residuals is finally in
O(n2ulog(nu)).

6.2 Indicator analysis

The proposed indicator gathers the use of Equations (15) and (21) to treat both
time and event shift detection. To explain the indications of such indicator, a
coupling of the time and event shift analyses made separately in Subsections
5.1 and 5.2 has to be done under assumptions referenced I. and II. at the
beginning of Section 5 that still hold. Moreover, remember that we took ỹ = a
and y = b to obtain

τ = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [τ ; τ ] and ν = [−Cy◦/ỹ(0); Cỹ◦/y(0)] = [ν; ν].

Let τ and ν be shift intervals with finite values as illustrated in Table 1,
three combinations, coming from Properties 1 and 5, are translated into failure
detection information:

– case 1.a. means that y is slower than ỹ, the shift failure delays the event
occurrences of this output;

– case 2.b. means that y is faster than ỹ, the shift failure makes the events
of this output be occurring earlier than normally expected;

– case 3.c. means that ỹ and y cross each other, delay and advance are
produced by the shift failure.

Moreover, for cases 1.a and 2.b, if τ , respectively ν, contains the same value
for its two bounds, the delay or the advance is always the same during all the
duration of the observation (see Remarks 6 and 10).

1. τ = [ ≥ 0 ; ≥ 0 ] a. ν = [ ≥ 0 ; ≥ 0 ]
2. τ = [ ≤ 0 ; ≤ 0 ] b. ν = [ ≤ 0 ; ≤ 0 ]
3. τ = [ ≤ 0 ; ≥ 0 ] c. ν = [ ≤ 0 ; ≥ 0 ]

Table 1: Cases of τ and ν with finite values in intervals.

Proposition 2 In combinations 1.a, 2.b and 3.c of Table 1, because τ is com-
posed with finite values, all the numbering of event occurrences of ỹ are present
in y and vice versa.
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Proof According to Theorem 3, τ and τ are the extreme time shifts between
y and ỹ among all the time shifts between event occurrences of y and ỹ. If an
event occurrence exists in ỹ but not in y, the corresponding time shift is an
infinite value and becomes the smallest or the largest time shift as proposed
in Property 2. Thus, all the event occurrences of ỹ exist in y and vice versa.

This proposition points out that when a τ interval with finite values is
obtained, the observed number of event occurrences is equal to the expected
number of event occurrences. In that case, even if an event shift happened,
only a time shift is really detected. This particular case can happen when
the event failure introduces some tokens on a place involved in the longest
duration path of a synchronization. Then, the tokens are ready to be used
by the synchronization sooner that if the event shift does not happen and the
dates of the real outputs can be in advance regarding the dates of the expected
output.

Proposition 3 When τ and ν are shift intervals with finite values as illus-
trated in Table 1, no other combination than 1.a, 2.b and 3.c can be done.
Moreover, non-ordered bounds in τ or ν cannot exist.

Proof Because of Theorem 3, a τ positive interval is equivalent to y < ỹ.
Because of Theorem 4, a ν positive interval is equivalent to y < ỹ. Then,
a τ positive interval implies a ν positive interval and vice versa. The same
reasoning holds for negative intervals (cases 2. and b.) and mixed intervals
(cases 3. and c.). For the non-ordered bound case, Properties 4 and 7 show
that bounds of τ and ν are ordered.

Now, one or both bounds of τ can be equal to an infinite value as explained
in Property 2 and recalled in Table 2. Remember that interval ν never contains
infinite values (see Proposition 1). One bound of τ equals to ∞ necessary
signifies that for at least one event occurrence of y, respectively ỹ, there is
no event occurrence of ỹ, respectively y. The number of effectively produced
output is lower or upper than the number of desired output. Such a shift can
appear when for instance a product is taken from the line to be checked by
the quality team: one product will miss at the output regarding the number
of expected product. It can also happened when a product is put back in the
line after a quality check. The two bounds of τ equal to∞ signifies that y and
ỹ share no number of event occurrence at all. Expected and observed output
are completely shifted one from another in the counting of event number point
of view.

i. τ = [ ≥ 0 ; +∞ ] ii. τ = [ −∞ ; ≤ 0 ]
iii. τ = [ ≤ 0 ; +∞ ] iv. τ = [ −∞ ; ≥ 0 ]
v. τ = [ −∞ ; +∞ ]

Table 2: Cases of τ with infinite values in intervals.



Failure Detection and Localization for Timed Event Graphs in (max,+)-Algebra 29

Let τ be time shift intervals with infinite values and ν be event shift in-
tervals with finite values as illustrated in Tables 1 and 2, these combinations,
coming from Properties 2 and 5, are translated into failure detection informa-
tion:

– case i.a. (only positive values in τ and ν) means that y is slower than ỹ,
the shift failure delays the event occurrences of this output;

– case ii.b. (only negative values in τ and ν) means that y is faster than ỹ,
the shift failure makes event of this output à vérifier: be occurring earlier
than normally expected;

– cases iii., iv. or v. with c. (mixed bounds for τ and ν) means that ỹ and y
cross each other, delay and advance are produced by the shift failure.

Proposition 4 When τ contains infinite values as illustrated in Table 2, and
with the different configurations of ν as given in Table 1, no other combination
than i.a, ii.b, iii.c, iv.c. and v.c. can be done. Moreover, non-ordered bounds
in τ or ν can not exist.

Proof The proof is the same than the one of Proposition 3.

Finally, Table 3 summarizes the possible and impossible cases for intervals
τ and ν with:

– ok = possible case because of Propositions 3 and 4;
– � = impossible case because of Proposition 3;
– � = impossible case because of Proposition 4.

a. b. c.
ν = [ ≥ 0 ; ≥ 0 ] b. [ ≤ 0 ; ≤ 0 ] c. [ ≤ 0 ; ≥ 0 ]
τ =

1. [ ≥ 0 ; ≥ 0 ] ok � �
2. [ ≤ 0 ; ≤ 0 ] � ok �
3. [ ≤ 0 ; ≥ 0 ] � � ok

i. [ ≥ 0 ; +∞ ] ok � �
ii. [ −∞ ; ≤ 0 ] � ok �
iii. [ ≤ 0 ; +∞ ] � � ok

iv. [ −∞ ; ≥ 0 ] � � ok

v. [ −∞ ; +∞ ] � � ok

Table 3: Summary of cases for τ (with finite and infinite values) and ν (finite values).

All individual bound analyses made in Section 5 still hold for a complete
analysis of the detected failure.

6.3 Simple examples of uses

Let us take back the MISO (max,+)-linear system of Figure 1. When the
system is not failing, remember that for the following input:

u =

(
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞
γ0δ2 ⊕ γ1δ3 ⊕ γ2δ5 ⊕ γ4δ+∞

)
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the expected output is:

ỹ = hu = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞.

Firstly, assume that there is a time failure from transition x1 to transition
x2 that generates a delay of 2 time units (machine M1 unexpectedly spends 4
time units to process instead of 2). The observed output7 is then:

y = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕ γ4δ+∞.

The computations of y◦/ỹ and ỹ◦/y give

y◦/ỹ = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ7 ⊕ γ3δ11 ⊕ γ4δ+∞,
ỹ◦/y = γ0δ−2 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞

= γ0δ−2 ⊕ γ1δ0 ⊕ γ1δ1 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞.

Thus, I(u, y) = true because

τ(ỹ, y) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [0; 2],

ν(ỹ, y) = [−Cy◦/ỹ(0); Cỹ◦/y(0)] = [0; 1].

The shift failure is detected and corresponds to the case 1.a. of previous subsec-
tion. Moreover, since bounds are both composed of positive and finite values,
this failure has slowed down the production rate of the system. Value 0 in
τ tells us that at some point, the real output was exactly as expected. The
largest time shift is equal to 2 and the largest event shift is equal to 1. Value
0 in ν indicates that at least one numbering of event occurrences is reached in
both series. This is largely confirmed by τ since it contains only finite numbers:
all the numberings of ỹ are actually reached by y.

Now, assume that an event failure produces the add of a token on place p6
between x4 and x5. The observed outputs is:

y = γ0δ9 ⊕ γ1δ12 ⊕ γ2δ15 ⊕ γ3δ18 ⊕ γ4δ+∞.

The computations of y◦/ỹ and ỹ◦/y give

y◦/ỹ = γ0δ−3 ⊕ γ1δ0 ⊕ γ2δ3 ⊕ γ3δ6 ⊕ γ4δ+∞,
ỹ◦/y = γ0δ3 ⊕ γ1δ6 ⊕ γ2δ9 ⊕ γ3δ12 ⊕ γ4δ+∞

= γ0δ0 ⊕ γ0δ3 ⊕ γ1δ6 ⊕ γ2δ9 ⊕ γ3δ12 ⊕ γ4δ+∞.

Thus, I(u, y) = true because

τ(ỹ, y) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [−3;−3],

ν(ỹ, y) = [−Cy◦/ỹ(0); Cỹ◦/y(0)] = [−1; 0].

7 ỹ and y are respectively equal to series a and b from Example 11.
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The shift failure is detected and corresponds to the case 2.b. of previous sub-
section. Its effect is such that y is always faster than ỹ of 3 time units. This
comes from the token added in the place with the longest duration just before
the synchronization illustrated by transition x5. Moreover, since τ contains
only finite numbers, all the numbering of ỹ is reached by y. Thus, there is no
direct detection of the event shift since it only accelerates the process without
loss of event occurrence of y regarding ỹ (of which we had a preview since one
bound of ν is equal to 0).

An event failure produces the loss of a token on place p11 between x6 and
x5. The observed outputs is:

y = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ18 ⊕ γ3δ21 ⊕ γ4δ+∞.

The computations of y◦/ỹ and ỹ◦/y give

y◦/ỹ = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞,
ỹ◦/y = γ0δ0 ⊕ γ1δ3 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞.

Thus, I(u, y) = false because

τ(ỹ, y) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [0; 0],

ν(ỹ, y) = [−Cy◦/ỹ(0); Cỹ◦/y(0)] = [0; 0].

The event shift is not detected because the input was sufficiently slowed re-
garding the system behavior to not need the use of the complete machine M3

for doing the assembly of the products. So, even if an event failures provokes
the breakdown of one part of this machine, that does not slow the produced
output.

Finally, an event failure produces the add of a token in place p8 between
x6 and y. The observed output is:

y = γ0δ0 ⊕ γ1δ12 ⊕ γ2δ15 ⊕ γ3δ18 ⊕ γ4δ21 ⊕ γ5δ+∞.

The computations of y◦/ỹ and ỹ◦/y give

y◦/ỹ = γ1δ0 ⊕ γ2δ3 ⊕ γ3δ6 ⊕ γ4δ9 ⊕ γ5δ+∞,
ỹ◦/y = γ0δ3 ⊕ γ1δ6 ⊕ γ2δ9 ⊕ γ3δ+∞

= γ0δ0 ⊕ γ0δ3 ⊕ γ1δ6 ⊕ γ2δ9 ⊕ γ3δ+∞.

Thus, I(u, y) = true because

τ(ỹ, y) = [Dy◦/ỹ(0);−Dỹ◦/y(0)] = [−∞;−3],

ν(ỹ, y) = [−Cy◦/ỹ(0); Cỹ◦/y(0)] = [−1; 0].

The event shift is detected and corresponds to the case ii.b. of previous subsec-
tion. This detection shows that the number of observed output is upper than
the number of expected output and that it is faster than expected output.
Indeed, since a token is ready to be used by the output without any action on
the input, the output fires it as soon as the system starts (that is monomial
γ0δ0) and then the tokens given by the input are used by the output.
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7 Localization of failures

Once the step of detection of failures is achieved by the detection of shifts
between the observed outputs and the expected outputs, the next step in the
failure diagnosis process is about the localization of the source of such shifts.
This work was previously presented in [13] but for only time shift failures.
Here, both failures, time and event, are gathered in the indicator and so in the
localization step. Before presenting the localization method, we firstly propose
a formal characterization of these types of failures in theMax

in Jγ, δK framework
that shows that any type of failures investigated here has an effect on a place
the TEG.

7.1 Time and event shift failure

The type of failures that are considered in this paper are time shifts, having
an impact on the holding time of the TEG places, and event shifts, having
an impact on their number of tokens. In a TEG of a (max,+)-linear system
representing its normal behavior, places are characterized by a monomial non-
equal to ε in matrices A, B and C of its state representation. A time shift failure
has for impact that the holding time of the corresponding place is increased
or decreased as defined below. Such a failure represents for instance delay in
the availability of a piece of equipment in an assembly line, delay for luggage
delivery in the network of conveyors or unexpected advance in the transfer of
a box.

Definition 12 (Time shift failure) In a TEG of a (max,+)-linear system,
by writing γnδt the monomial representing a place p in matrices A, B or C of
its state representation, the impact of a time shift failure fτ on this place is
written as follows:

γnδt ⊗ fτ with fτ =

{
γ0δt

′
if a time shift failure occurs,

e otherwise,

where t′ ∈ Z and t′ ≥ −t.

Example 14 The transfer of a box takes 3 time units to be done: γ0δ3 as
illustrated Figure 8 by a single place. If a delay of 2 time units happens fτ =
γ0δ2, the time of the transfer is slowed and last 5 time units:

γ0δ3 ⊗ fτ = γ0δ3 ⊗ γ0δ2 = γ0δ3+2 = γ0δ5.

Another case is when a time shift of 2 time units accelerate the box transfer:

γ0δ3 ⊗ fτ = γ0δ3 ⊗ γ0δ−2 = γ0δ3−2 = γ0δ1.
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Fig. 8: TEG of a box transfer.

About the event shift failure, it has for impact that the number of tokens
in a place is increased or decreased (but is never negative). Such a failure
represents for instance loss or add of resources such as the breakdown or the
add of machines among others doing the same process, or the removal of a
product to be checked by the quality team in a production line.

Definition 13 (Event shift failure) In a TEG of a (max,+)-linear system,
by writing γnδt the monomial representing a place p in matrices A, B or C of
its state representation, the impact of an event shift failure fν on this place is
written as follows:

γnδt ⊗ fν with fν =

{
γn
′
δ0 if an event shift failure occurs,

e otherwise,

where n′ ∈ Z and n′ ≥ −n.

Example 15 Figure 9 shows a simple process of a product working at a rate of
2 products (γ2δ0 for p4) per 2 time units (holding time in p2). The breakdown
of a machine in p4 allows now only 1 product to be processed per 2 time
units. The impact on p4 is the loss of a token and can be written with its
corresponding monomial:

γ2δ0 ⊗ fν = γ2δ0 ⊗ γ−1δ0 = γ2−1δ0 = γ1δ0.

On the opposite, if a machine is added to the normal behavior, the production
rate is increased and the impact on p4 is seen on γ:

γ2δ0 ⊗ fν = γ2δ0 ⊗ γ1δ0 = γ2+1δ0 = γ3δ0.

Now, if a product already processed is added after the machines on the pro-
duction chain, this can for instance have an impact on p3 as follows:

γ0δ0 ⊗ fν = γ0δ0 ⊗ γ1δ0 = γ0+1δ0 = γ1δ0.

7.2 Failure signature

As explained in the previous subsection, a shift failure in a (max,+)-linear
system actually causes a modification of the holding times of places (failure of
type fτ ) or on its number of tokens (failure of type fν) of the corresponding
TEG. Thus, there are as many possible time-shift failures (respectively event-
shift failures) as places. Let F denote the set of such possible failures in the
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Fig. 9: Nominal behavior of a loop in a TEG.

TEG. The effect of such a failure can be observed on several outputs and so
several indicators can be involved. From the knowledge of the system TEG, it
is possible to obtain links between the output designated by the indicator and
the failure that causes the shift if the TEG is structurally observable.

Definition 14 (Structural observability, [17]) A TEG is structurally ob-
servable if, from every internal transition xi, there exists a path to at least one
output transition yi.

From this definition, the studied TEG of this paper are all structurally
observable. In the following, we denote by I the set of available indicators.

Definition 15 (Failure signature) Let fi be a failure (either an event-
shift or a time-shift failure) associated with a place i of the TEG, the failure
signature of fi is the set of indicators Ifi ⊆ I such that for any indicator
I(u, yj) ∈ Ifi , there exists a path from place i to the output transition yj in
the TEG.

Property 8 If fi occurs in the system, then only indicators from Ifi may return
true.

This property is due to the structural observability, it means in particular
that if an indicator I(u, yk) ∈ Ifj \ Ifi returns true, it cannot be explained by
the occurrence of fi.

Example 16 With the TEG illustrated Figure 3, the failure signature If1 is
composed by the four indicators I(u, y1), I(u, y2), I(u, y3) and I(u, y4). Now,
by reasoning from the failures to the indicators, one can see that output y4
may be affected by failures f1, f2, f5, f6, f11 (respectively associated to places
p1, p2, p5, p6, p11). The presence of a failure on one of these places can pro-
duce a shift detected by indicator I(u, y4) and indicator I(u, y4) is part of the
signature of all these failures.

Thus, each shift failure has a signature containing all the indicators that
can be raised if it occurs. They are all gathered in the matrix of signatures of
the system.

Definition 16 (Signature Matrix) The signature matrix of the system is
the relation I ×F denoted M ∈ B|I|×|F| for which each element is defined by:

Mij =

{
1 if I(u, yi) ∈ Ifj ,
0 otherwise.
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Example 17 The signature matrix of the TEG of Figure 3 is the following:

M =


1 1 1 1 1 1 1 1 0 0 0
1 1 0 0 1 1 1 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 1 0 0 0 0 1

 .

Lines are indicators on the observed outputs: I = {I(u, y1), I(u, y2), I(u, y3),
I(u, y4)}. Columns are the time shift failures that can happen in this system:
F = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11}.

Thanks to this matrix and with the state of indicators, a set of candidate
failures is proposed.

Definition 17 (Candidate failure) A failure fj is a candidate failure if it
exists an indicator I(u, yi) with Mij = 1 that returns true.

Example 18 In Figure 3, if indicators I(u, y1) and I(u, y3) return true whereas
the other indicators return false, then f1, f2, f3, f4, f5, f6, f7, f8, f10 are the
candidate failures. By construction, no failure among f9 and f11 can explain
the value of indicators.

7.3 Characteristic signature

The signature matrix points out different failures that can explain the raise of
indicators. However, it is about a set of possibilities, not a strict implication.
Indeed, in a (max,+)-linear system, when a shift failure occurs in a path
upstream a synchronization, it is possible that its effect is totally hidden by the
synchronization. For a time failure, the time shift can be counterbalanced by
a higher process duration in another path. For instance, in the TEG of Figure
3, several synchronizations are present between several paths that arrive on
outputs except y3. For an event failure, the event shift can also be hidden if
the token is added in the path with the slowest process duration as illustrated
in the second example of Subsection 6.3.

So, a shift failure fi can raise the indicator I(u, yi) but not necessarily
because of downstream synchronizations. But, if one (and only one) failure
happens in a place of the TEG necessarily involved in a path leading from one
input to one output of the system but without synchronization, the indicator
of this output will be necessarily raised. For instance, in TEG of Figure 3, if
f8 occurs, it will necessarily have an effect on the output y1. Similarly, if f1 or
f10 occurs, a shift will necessarily appear on y3 without the possibility to be
couterbalanced by any synchronization. Thus, the definition of a characteristic
signature illustrating this statement is possible.

Definition 18 (Characteristic signature) The set Icfi ⊆ Ifi ⊆ I is the
set of indicators returning necessarily true when a shift failure fi occurs
(∀I(u, y) ∈ Icfi , I(u, y) ≡ true). Icfi is called the characteristic signature of
fi.
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Definition 19 (Characteristic signature matrix) The characteristic sig-
nature matrix of the system is the relation I × F denoted M c ∈ B|I|×|F| for
which each element is defined by:

M c
ij =

{
1 if I(u, yi) ∈ Icfj ,
0 otherwise.

Example 19 The characteristic signature matrix of the TEG of Figure 3 is the
following:

M c =


0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

 .

As in the previous signature matrix, lines are the indicators over the observed
outputs: I = {I(u, y1), I(u, y2), I(u, y3), I(u, y4)}. Columns are the shift fail-
ures that can happen in this system: F = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10,
f11}.

Such characteristic signature matrix can be used to refine the localization
made earlier. Indeed, under the single failure assumption meaning that only
one failure has happened in the system, if an indicator of the characteristic
signature of a failure fi has not raised, then fi surely has not happened and
can be removed from the set of candidates.

Definition 20 (Minimal set of candidate failures) Under the single fail-
ure assumption, the minimal set of candidate failures is the set of failures fi
such that:

– for all indicators I(u, yj) such that M c
ij = 1, I(u, yj) is true;

– in the case when Icfi = ∅, there exists at least one indicator such that
Mik = 1 that returns true.

Example 20 On Figure 3, if indicators I(u, y1) and I(u, y3) return true, the
set of candidate failures found in M is {f1, f2, f3, f4, f5, f6, f7, f8, f10}. But,
the analysis of the characteristic signature matrix M c tells us that there is no
observation of time shift on y2 that excludes failure f7. So, the minimal set of
candidate failures is {f1, f2, f3, f4, f5, f6, f8, f10}.

8 Example of application

As an illustrative exemple, this section presents some experimental results on a
TEG that is depicted on Figure 10. This entire experiment is fully implemented
in a C++ toolbox, called MaxPlusDiag, that relies on the minmaxgd library.

TEG of Figure 10 represents a typical manufacturing process we aim at
diagnosing. The process is composed of a main line (from u to y). At some
steps, the line is waiting for a resource of type A that is provided by another
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Fig. 10: A manufacturing process MP .

line called Activity 1. Similarly, the main line is also waiting for a resource of
type B provided by Activity 2 so that the main line can finally assemble the
final product.

This subsection presents an exhaustive experimental analysis of single
event/time shift failures in the process MP . This process, as depicted in Fig-
ure 10, is composed of 3 inputs, namely, u11, u12 and the main input u. It also
has one output y: it is thus composed of four observable series. In this experi-
mental setting, we call a configuration of MP a subset of internal transitions
of MP that are observed with the help of measurable output transitions (see
Definition 4). As there are 11 internal transitions, there are 1024 configura-
tions (from the configuration with no measurable output transitions till the
configuration with 11 measurable output transitions). In order to show how
the proposed set of indicators behaves on this process, for any possible config-
uration of MP , we simulate for each possible place of MP :

– a time shift failure of +2 (on 16 places);
– a time shift failure of −1 (on the 7 places that have a time greater or equal

to 1);
– an event shift failure of +2 (on 16 places);
– an event shift failure of −1 (on the 3 places that have a token).

To sum up, for every configuration, there are 42 fault injection problems to
be solved. As the number of possible configurations is 1024, the presented
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Fig. 11: False negative detections

simulation solves 43008 problems. The inputs that used for these simulations
are:

u11 = u12 = u = γ0δ0 ⊕ γ1δ20 ⊕ γ2δ40 ⊕ γ3δ60 ⊕ γ4δ+∞.

Figure 11 presents the rate of false negative detections over the 1024 pos-
sible configurations: configurations are ordered from the configurations with
less measurable output transitions till the configuration with the maximal set
of measurable output transitions. As expected, the number of false negative
detections decrease with the increase of the number of measurable output
transitions. However, due to synchronization phenomena within the process,
some shift failures are not detectable. Indeed, if a shift failure occurs in a place
but its output transition waits for another token from another place, the shift
failure has no effect over the propagation time so has no effect on the observed
outputs. Simulations then shows there are 12 non detectable shift failures (time
shift (+2) on places A1

1back, A1
2back, waitA1, sendB1, waitingA1, time shift

(−1) on place waitA1, event shift (+2) on places A1
1back, A1

2back, waitA1,
sendB1, waitingA1, and event shift (−1) on place waitingA1).

Simulations show that:
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Fig. 12: Time shift detections

– as soon as a time shift failure has been injected, the analysis of the indicator
as presented in Section 6.2 always leads to the detection of a time shift
failure as a possible diagnosis candidate.

– similarly, as soon as an event shift failure has been injected, the analysis
of the indicator always leads to the detection of an event shift failure as a
possible diagnosis candidate.

Note that, for some problems, both event shift/time shift failures are possible
diagnosis candidates.

Figure 12 presents this result. The curve named detection per conf presents
the number of problems that have been detected (in this sense, it is obtained
by subtracting the number of false negatives of Figure 11 to the 42 simulated
problems). The curve named time shift returns the number of time shift failure
problems that have been detected as a time shift failure. The curve named
event shift returns the number of event shift failure problems that have been
detected as an event failure. It is noticeable that the first curve is actually the
sum of both last curves.

As far as the localization is concerned, whatever the problem is, in case of
a detection then any injected failing place is always part of the candidates. If
the failure is not part of the minimal set of candidates, it simply means that
its characteristic signature is empty. Figure 13 shows the percentage of cases
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Fig. 13: Percentage of cases where the injected fault is part of the minimal set of candidates.

where the injected failure is part of the minimal set of candidates. Figure shows
that the percentage increases with the number of measurable output transi-
tions and more particularly measurable output transitions linked to internal
transitions that are not synchronised transitions. Indeed, an observed synchro-
nization transition cannot be part of the characteristic signature of a failure
so its observation cannot improve the quality of the minimal set of candidates.
Meanwhile, the observation of a transition that is not a synchronization has
a direct impact of the characteristic signatures and improves the detection.
In any configuration when this subset of transitions is observed, the part of
injected failures being part of the minimal set is 61 percent.

This section presented an exhaustive analysis about how the proposed de-
tection system behaves given all the possible indicator configurations. The
results of these set of 43008 experiments can be summarized as follows:

1. as soon as a failure is detectable (i.e. its effect is propagated until at least
one observable transition), it is detected by one indicator at least;

2. based on the indicator analyses, the diagnosis system always returns at
least the correct type of failure (event shift or time shift failure);

3. any injected failure that is detected is always part of the failure candidates;
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4. as the conducted experiments are based on a single failure, any detected
injected failure that has a characteristic signature is always part of the
minimal set of failure candidates.

9 Conclusion

This paper deals with a method to detect and localize time and event shift fail-
ures in systems modeled by Timed Event Graphs and represented byMax

in Jγ, δK
equations. These systems are well-suited to manage timed processes with syn-
chronization of equipments typical of smart manufacturing.

Automated failure detection of performance problems such as time and
event shifts is proposed through a failure indicator on each output. The set of
indicators is built by using (max,+)-algebra, more precisely the residuation
of Max

in Jγ, δK series. Given an input flow of timed observations, it formally
compares the expected and observed outputs of the system. Then, numerical
values of indicators, that are interval of time units and numbering of event
occurrences, give us information about the detected shifts.

After the detection step, the localization of failures that made indicators
raised is proposed. Based on the structural analysis of the TEGs and the set
of available indicators, we introduce the notion of failure signatures for TEG
based on which it is then possible to determine the possible sources of the time
or event shift in the system.

There are many perspectives of this work to build a complete diagnosis
process for TEG and (max,+)-linear systems.

A first way of investigation is to extend the TEG model to handle bounded
holding time or tokens uncertainties in places thanks to the dioid of intervals
(see [14] and [15]). In such modeling, minimal and maximal bounds of holding
times or tokens allows uncertain or variable duration process to be considered
that is more realistic in a smart manufacturing context. Then, new indicators
have to be found and under the assumption of exact observations (so no inter-
val of time or of event for the observations of input and output trajectories)
some first simple leads are to use shifts of observed output with both maximal
and minimal expected output. In that case, failures that do not not make the
real output go out the interval of expected output will not be detected.

Another very interesting lead is about the diagnosability question as well
as the sensor placement problem (that can be formalized through observers).
Indeed, faults can be compensated by synchronization phenomena so that they
might totally be silent from a global point of view, and adding local sensors is
then necesssary. Moreover, such new information could drive more efficiently
discrimination of time shifts regarding event shifts.

Finally, the indicator proposed here is only binary as it only relies on
checking whether a property holds on a set of monomials from the computed
residuals. However residuals also contain quantitative pieces of information
as differences for the same event occurrences or for the same dates but also
differences shifted by one, by two, . . . occurrences or dates. Our objective,



42 Euriell Le Corronc et al.

in case of a failure detection, is then to exploit the quantitative pieces of
information stored in the residuals to better characterise the event and time
shift failures and especially check whether there are cumulative effects of shift
failures (if so, it would indicate the cause of a failure are permanent and
generates more and more time/event shifts) or not (the failure occurred at a
time point and then disappeared, may be due to underlying intermittent/latent
equipment faults).
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