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Abstract: In this paper, we are interested in the discriminability of supervision patterns, in
discrete event systems (DES). Discriminability — as opposed to diagnosability — is the possibility
to detect the exclusive occurrence of a particular behavior of interest — called the supervision
pattern. To this end, we propose to adapt the classical twin-plant approach to Petri nets unfolding.
The usage of unfoldings permits us to avoid the combinatorial explosion associated with marking
graphs. The method can also be used to solve the classical problem of discrete event systems’
diagnosability.
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1. INTRODUCTION

In the context of discrete-event systems (DES), the super-
vision task consists in analyzing the sequence of observed
events and determining whether an abnormal/faulty situa-
tion has occurred before deciding what kind of actions to
perform in order to recover the optimal performance of the
system. By the intrinsic nature of DES, an abnormal situa-
tion is characterized by a partial order of observable/non-
observable events called an event pattern or a supervision
pattern as introduced in Jéron et al. (2006).
In this paper, we address the problem of analysing the
discriminability of a set of supervision patterns. Two
supervision patterns R1 and R2 are discriminable if it
is always possible to assert from the observed events that
if R1 (resp. R2) has occurred then R2 (resp. R1) has not
occurred and will not occur.
The notion of pattern discriminability is obviously related
to the notion of pattern diagnosability and their respective
analyses (Jiang et al. (2003), Jéron et al. (2006), Yoo and
Garcia (2008), Gougam et al. (2013)), however the point
of view is different. The result of a diagnosability analysis
states whether any considered pattern is always detectable
or not. If such a property holds then it is possible to design
a diagnoser that will always be able to determinate which
patterns have occurred in a finite amount of time. However
there is a pitfall: underlying real-world systems are not and
cannot be diagnosable as the diagnosability property is very
restrictive (Pencolé (2005)) and requires an observability
level that cannot be implemented as a set of sensors on the
underlying system (physical and/or cost constraints). The
classical diagnosability analyses will then conclude such a
real-world system is not diagnosable, so what is next?
To cope with this problem, we propose to develop a more
constructive analysis by checking the discriminability of

the occurrence of a set of patterns with respect to another
disjoint set of patterns. The analysis is constructive in
the sense that any partial discriminability result has an
outcome that can impact the design of a diagnoser for
the analysed system even if the underlying system is
not globally diagnosable. And finally, once the proposed
discriminability analysis is completed, checking the classical
diagnosability analysis is straightforward and for free.
In our proposal, the development of the discriminability
analysis relies on two original choices. The first one is
the use of Petri net — which were shown to be more
appropriate to solve diagnosis problems Lai et al. (2008) —
to model patterns as well as the system (Basile et al.
(2009), Dotoli et al. (2009)) so that we benefit of the
natural way to represent event concurrency. The second
one is the use of net unfoldings (McMillan (1995), Esparza
et al. (2002), Benveniste et al. (2003)) in order to benefit
of a representation as a partial order of events. Unfoldings
avoid the explicit enumeration of event sequences that is
performed by techniques based on marking graphs like
in Cabasino et al. (2012). Our proposed approach allows
us to have some interesting properties. First, genericness,
meaning that we do not impose particular patterns, we
rather define a generic framework for supervision pattern,
and every pattern falling in this framework can be used for
supervision. Second, the supervision patterns are compact,
i.e. only relevant events are included leading to more concise
patterns. Finally, reusability, which is a direct consequence
of the compactness, the exclusive use of relevant events
yields supervision patterns which are independent from the
system.
The paper is organized as follows. Section 2 introduces the
problem, Section 3 presents Petri nets and their use to
model the system and the patterns. The proposed analysis
method is detailed in Sections 4 and 5. An example of



our method is given in Section 6. Finally, we conclude in
Section 7 and give some perspectives.

2. DISCRIMINABILITY OF SUPERVISION PATTERNS

Analyzing the discriminability of a system in the DES
context means characterizing the performances of the
diagnosis algorithm. A diagnosis algorithm, given an
observable sequence produced by the system, is responsible
of returning its state, i.e. is the system in a normal
state or a faulty state, and in the latter case, which —
faulty — behavior yielded this state. If such algorithm
exists, and can determine with certainty after a bounded
number of observations that only a particular combination
of behaviors occurred, this combination is said to be
discriminable. On the other hand, if the algorithm can
detect the occurrence of a behavior with no information
about the possible occurrence of other faulty behaviors,
the former is said to be detectable.
In this paper, we consider a system modeled by a language,
faulty behaviors are recognized by supervision patterns
which are also languages with specific properties. More for-
mally, the problem of supervision pattern discriminability
in discrete event systems is then defined in the following
context.
Let Σ = {a, b, . . .} be a finite set called an alphabet. The
Kleene closure of Σ denoted Σ∗ is the set of finite sequences
— or words — over Σ — including the empty sequence,
denoted in the following by λ. Σ+ = Σ∗ \ {λ} is the set
of non-empty finite sequences. A subset S ⊆ Σ∗ is called
a language over Σ. The continuation z of a sequence w
in S is a sequence such that wz ∈ S. So, the set of w’s
continuations in S is defined as S/w = {z ∈ Σ∗ : wz ∈ S}.
The classical projection of a sequence w ∈ Σ∗ on a subset
Σp of Σ is denoted PΣp(w). Finally, ‖w‖ denotes the
length of the sequence w. The behavior of the system is
modeled by the prefix-closed language S over an alphabet
Σ representing the set of events generated by the system.
Some of these events are observable, while others are not.
The observable events are represented by the set Σo and the
set of non-observable events is called Σu. So, Σ = Σo ∪Σu.
We make the assumption that the system is Σo-alive,
meaning: ∀w ∈ S,∃z ∈ S/w : PΣo(z) 6= λ; this hypothesis
ensures that the system produces observations with some
regularity. A supervision pattern R is a language over
ΣR ⊆ Σ that recognizes R-faulty sequences.
Definition 1. Let R = {R1,R2, . . . ,Rn} be a set of
supervision patterns. A sequence w ∈ Σ∗ is said to be
Ri-faulty if: PΣRi

(w) ∈ Ri. A sequence w ∈ Σ∗ is said to
be R-faulty if: ∀R ∈ R : w is R-faulty. A sequence w ∈ Σ∗
is said to be faulty if: ∃R ∈ R : w is R-faulty.
Definition 2. Let R = {R1,R2, . . . ,Rn} be a set of
supervision patterns. Let Rs ∈ 2R be a subset of R. A
sequence w ∈ Σ∗ is said to be exclusively Rs-faulty in R

if:
{
∀R ∈ Rs : w is R-faulty
∀R 6∈ Rs : w is not R-faulty

We will simply use “exclusively Rs-faulty” rather than
“exclusively Rs-faulty in R” when there is no ambiguity.
We can now define the discriminability of a set of supervi-
sion patterns.

Definition 3. Given a system S and a set of supervision
patterns R = {R1,R2, . . . ,Rn}. A subset Rs of R is said
to be discriminable if:
∃n ∈ N,∀w an exclusively Rs-faulty word of S,∀z ∈ S/w :

‖PΣo(z)‖ ≥ n =⇒ D

where the discriminability condition D is:
∀wo ∈ P−1

Σo
(PΣo(wz)) : wo is exclusively Rs-faulty

This property insures that one can detect with certainty
that only a particular combination of patterns — namely
Rs — occurred.
Similarly, we define the R-diagnosability of a system.
Definition 4. Let R = {R1,R2, . . . ,Rn} be a set of
supervision patterns. A language S is R-diagnosable if:
(∀R ∈ R)(∃n ∈ N),∀w an R-faulty word of S,∀z ∈ S/w :

‖PΣo(z)‖ ≥ n =⇒ D

where the diagnosability condition D is:
∀wo ∈ P−1

Σo
(PΣo(wz)) : wo is R-faulty

More intuitively, a language S is R-diagnosable if it does
not contain two arbitrary long sequences, the first R-faulty,
the second non R-faulty, which have the same observable
behavior.

3. ON MODELING ASPECTS

To tackle the problem of discriminability, we propose to use
labeled Petri nets to model the system and the patterns.

3.1 Labeled Petri nets

Definition 5. A labeled Petri net is a tuple 〈P, T,A, `, L,Σ〉
where:
• P : a set of places;
• T : a set of transitions with P ∩ T = ∅;
• A ⊆ (P ×T )∪ (T ×P ): a binary relation representing

arcs between nodes;
• ` : P ∪ T → L ∪ Σ ∪ {λ}: a labeling function where
L is the set of place labels, Σ is the set of transition
labels and λ denotes the empty sequence.
` is naturally extended to markings and sequences

of nodes. LetM be a marking: `(M) = {`(p) : p ∈M}.
For s = s1s2 . . . ∈ (P ∪ T )∗, `(s) = `(s1)`(s2) . . ..

A marking M is a map from P to N which maps any place
p to the number of tokens M(p) contained in it. For the
sake of simplicity, a marking may sometimes be denoted as
a multiset. For instance, let P = {p1, p2, p3}, the marking
M such that M(p1) = 2,M(p2) = 0 and M(p3) = 1
can be represented as M = {p1, p1, p3}. A marked and
labeled Petri net is a tuple Θ = 〈P, T,A, `, L,Σ,M0〉 where
〈P, T,A, `, L,Σ〉 is a labeled Petri net and M0 an initial
marking. The current state of a Petri net is defined by its
current marking. The set •t = {p ∈ P : (p, t) ∈ A} is the
preset of t and t• = {p ∈ P : (t, p) ∈ A} is its postset
(the preset •p and postset p• of a place p are similarly
defined). The transition t is firable from a given marking
M iff: ∀p ∈ •t : M(p) > 0. Firing t leads to a new marking
M ′ such that M ′ = (M \ •t) ∪ t• and which is denoted by
M

t−→M ′. A marking M is reachable if there exists a firing



sequence s = t0t1 . . . tn such thatM0
t0−→M1

t1−→ · · · tn−→M ,
we can also write M0

s−→M . Given a marked and labeled
Petri net Θ and a set of final markings Q, the G-type
language (see Peterson (1977)) generated by Θ is given by:
L(Θ) = {`(s) : s ∈ T ∗ ∧M0

s−→M ∧ ∃M ′ ∈ Q,M ′ ⊆M}.
The system is modeled by a Petri net Θ. As the language
of the system is prefix-closed, it can be represented as the
G-type language of a bounded Petri net (∃n ∈ N,∀p ∈
P : M(p) ≤ n) associated with the set of final markings
Q = {∅} (any reachable marking being a superset of ∅).

3.2 Supervision Patterns

The classical framework of DES diagnosis (Sampath et al.
(1995)) relies on detecting the simple occurrence of particu-
lar — faulty — events. The supervision patterns framework,
as proposed in Jiang et al. (2003) and in Jéron et al. (2006),
extend this analysis to more complex models, enabling us
to express more interesting behaviors, possibly involving
several events. We propose to represent a supervision
pattern as a labeled Petri net.
Definition 6. A supervision pattern is a marked labeled
Petri net 〈P, T,A, `, L,Σ,M0〉 such that:
(1) (labeling) L = {N,F};
(2) (initialization) ∀p ∈ P : M0(p) > 0⇒ `(p) = N ;
(3) (exclusivity) ∀p1, p2 ∈ P : `(p1) = N ∧ `(p2) = F ⇒

M(p1)×M(p2) = 0;
(4) (stability) for each reachable marking M , ∃p ∈

P,M(p) > 0 and `(p) = F implies that for each suc-
cessor marking M ′ : ∃p′ ∈ P,M ′(p′) > 0 and `(p′) =
F .

(5) (completeness) for each reachable markingM , ∀e ∈ Σ,
∃t ∈ T : (`(t) = e ∧ ∀p ∈ •t,M(p) > 0);

The first condition ensures that every place is either labeled
by N or F . Condition 2 states that in the initial state,
each marked place is labeled by N . Condition 3 states
that a place labeled N and another one labeled F can
not be marked at the same time in a reachable marking,
meaning that the pattern can not be recognized and not
recognized at the same time. Condition 4 ensures that once
the pattern is recognized — the place labeled F is marked —
it can not return to a non faulty marking. Condition 5 is
the completeness condition: from any reachable marking,
the supervision pattern can fire a transition labeled by
any event in its alphabet, this condition ensures compact
independent pattern (the pattern does not include other
events than those relevant to faulty behavior).
Any supervision patterns is associated to the set of final
markings Q that contain only one marking Q = {{p ∈ P :
`(p) = F}}.

Example: event concurrency Let E = {e1, e2, . . . }
be a set of events. The pattern describing the concurrent
occurrence of these events is the labeled Petri net depicted
in Figure 1, with the final marking Q = {{p0}}. Transition
t0, as it is labeled with λ, is firable as soon as every event
of E has occurred.

N N
· · ·

N

e1 e2 · · · e|E|

N

N
· · · N

e1 e2 e|E|

λ

F

e1e|E|
· · ·

Figure 1. A set of concurrent events.

4. DISCRIMINABILITY ANALYSIS APPROACH

The problem of the discriminability of supervision patterns
can now be redefined as being the analysis of the discrim-
inability of a subset of supervision patterns modeled by
labeled Petri nets Ωs ∈ 2Ω where Ω = {Ω1, Ω2, . . . , Ωn}
in a labeled Petri net Θ where ΣΩi ⊆ Σ for all i.
Definition 7. A subset Ωs ∈ 2Ω is discriminable in Ω if
L(Ωs) is discriminable in L(Ω). Where:

L(Ω) = {L(Ω1),L(Ω2), . . . ,L(Ωn)}

One classical method used in analyzing the diagnosability
of faults in a discrete event system — introduced in Yoo
and Lafortune (2002) and Jiang et al. (2000), is the use of
a twin-plant on the observable events to detect normal and
faulty executions that share the same observable behavior
— if any — and thus conclude about the non-diagnosability
of the system by looking for such sequences that have
infinite number of observable events. In the supervision
pattern context, the same principle applies. But, first, the
supervision patterns must be combined to form a meta-
pattern Π recognizing all possible combinations of the
patterns. Next, the recognition of this meta-pattern must
be taken into account within the system Θ. These two
operations are realized by two products.

4.1 Synchronized product of labeled Petri nets

LetΘ1 = 〈P1, T1, A1, `1, L1, Σ1,M10〉 andΘ2 = 〈P2, T2, A2,
`2, L2, Σ2,M20〉 be two labeled Petri nets. The synchro-
nized product Θ = Θ1 ‖ Θ2 is the labeled Petri net
Θ = 〈P, T,A, `, L,Σ,M0〉 such that:
• P = P1 ∪ P2;
• T = T̂1 ∪ T̂2 ∪ Ts,

where: T̂i = {t ∈ Ti : `i(t) 6∈ Σ1 ∩ Σ2}, i =
1, 2; and Ts =

⋃
l∈Σ1∩Σ2

{t1 ‖ t2 : ∃(t1, t2) ∈ (T1 ×

T2) : `1(t1) = `2(t2) = l};
• A = Â1 ∪ Â2 ∪As,
Âi = Ai\[(Pi×(Ti\T̂i))∪((Ti\T̂i)×Pi)], i = 1, 2; and



As ={(p, t) ∈ (P × T ) : p ∈ P1, t = t1 ‖ t2, (p, t1) ∈ A1}
∪{(p, t) ∈ (P × T ) : p ∈ P2, t = t1 ‖ t2, (p, t2) ∈ A2}
∪{(t, p) ∈ (T × P ) : p ∈ P1, t = t1 ‖ t2, (t1, p) ∈ A1}
∪{(t, p) ∈ (T × P ) : p ∈ P2, t = t1 ‖ t2, (t2, p) ∈ A2}

• `(p) =
{
`1(p) if p ∈ P1
`2(p) if p ∈ P2

;

• `(t) =


`1(t1) if t = t1 ‖ t2 ∈ Ts
`1(t) if t ∈ T1
`2(t) if t ∈ T2

;

• L = L1 ∪ L2;
• Σ = Σ1 ∪Σ2;

• M0(p) =
{
M10(p) if p ∈ P1
M20(p) if p ∈ P2

.

This product can be constructed simply by taking the union
of the two nets, removing transitions with labels in Σ1∩Σ2,
and for each (t1, t2) ∈ T1×T2 where `(t1) = `(t2) 6= λ, add
a transition t1 ‖ t2 to the product inheriting their label and
arcs.
The product imposes the simultaneous evolution of the two
Petri nets, whenever a shared event occurs. In a general
context, this can lead to a deadlock — the case where
the first petri net needs to fire a synchronized transition
while the second one did not reach the appropriate marking.
The completeness condition imposed on the supervision
patterns ensures that this situation can not happen in our
context — the completeness condition states that in any
marking, the pattern can fire a transition with any label.
So, applying this product on two supervision patterns can
model all the possible combinations of their evolution —
only one of them evolves, the two evolve in the same time,
etc.

Final Markings: Product of Patterns Let Qi be the
set of final markings of Ωi, i = 1, 2. We define the set of
final markings of the product Ω = Ω1 ‖Ω2, Q = Q1 ∪Q2.
Proposition 8. L(Ω) = {w ∈ (Σ1 ∪Σ2)∗ : PΣ1(w) ∈
L(Ω1) ∨ PΣ2(w) ∈ L(Ω2)}.
Proposition 9. w ∈ L(Ω) ⇐⇒ ∃w1 ∈ L(Ω1),PΣ1∩Σ2(w) =
PΣ1∩Σ2(w1) ∨ ∃w2 ∈ L(Ω2) : PΣ1∩Σ2(w) = PΣ1∩Σ2(w2).

Final Markings: Product of the System and a
Pattern The recognition of the supervision pattern must
be taken into account within the system. This is realized
by a slight modification of the product — more precisely,
the final markings — which is applied to the pattern and
the system. For clarity we will use a different symbol for
this product ?.
Let Qi be the set of final markings of Θi, i = 1, 2. We
define the set of final markings of the product Θ = Θ1 ?Θ2,
Q = {q = q1 ∪ q2 : (q1, q2) ∈ Q1 ×Q2}.
Proposition 10. L(Θ) = {w ∈ (Σ1 ∪Σ2)∗ : PΣ1(w) ∈
L(Θ1) ∧ PΣ2(w) ∈ L(Θ2)}.
Proposition 11. w ∈ L(Θ) ⇐⇒ ∃w1 ∈ L(Θ1),∃w2 ∈
L(Θ2) : PΣ1∩Σ1(w) = PΣ1∩Σ2(w) = PΣ1∩Σ2(w2).

From these propositions, we can characterize faulty se-
quences.
Proposition 12. Given a system Θ and a meta-pattern Π:

w ∈ L(Θ) is faulty ⇐⇒ w ∈ L(Θ ? Π).

All necessary notations being introduced, the analysis
method is detailed in the following.

4.2 Analysis stages

We define an “’” operator applicable to sequences, alpha-
bets, and labeled Petri nets, which renames appropriately
its operand by priming unobservable events and the label
of each place. We also change the labels of every place in
the supervision patterns Ωi from N (reps. F ) to Ni (resp.
Fi).
We start by combining the set of supervision patterns in
a meta-pattern Π = (Ω1 ‖ Ω2 ‖ . . . ‖ Ωn) — the product
is obviously associative — then we perform the product
of Θ and Π to obtain ΘΠ = Θ ? Π. The net Γ is
calculated as the synchronized product of ΘΠ and Θ′Π —
the result of this product is commonly called the twin-plant.
The final step consists in finding the possible sequences
c : MΓ0

c−→M from MΓ0 the initial marking of Γ that lead
to an ambiguous marking that can indefinitely occur.
Definition 13. A marking M in Γ is ambiguous if: ∃p, p′ ∈
PΓ ,M(p) × M(p′) 6= 0 ∧ ((`(p) = Fi ∧ `(p′) = N ′i) ∨
(`(p) = Ni ∧ `(p′) = F ′i )).
Definition 14. A set of supervision patterns Ωs is said to
be involved in an ambiguous marking M , if:

Fi ∈ `(M) ⇐⇒ Ωi ∈ Ωs

Definition 15. A sequence of transitions c ∈ T ∗Γ is ambigu-
ous if it leads to an ambiguous marking.
Definition 16. A set of supervision patterns Ωs is said to
be involved in sequence of transitions c ∈ T ∗Γ leading to a
marking M , if Ωs is involved in M .

We set QΓ = {q = q1 ∪ q2 : q1 ∈ `−1
ΘΠ

(Fi), q2 ∈
`−1
Θ′
Π

(N ′i), for i = 1..n}.
Proposition 17. A reachable markingM of Γ is ambiguous
⇐⇒ ∃c ∈ T ∗Γ : MΓ0

c−→M and `Γ (c) ∈ L(Γ ).
Definition 18. A sequence of transitions c ∈ T ∗Γ is an
admissible cycle in Γ if ∃s ∈ T ∗Γ ,∃t ∈ T+

Γ : ∀n ∈
N, `Γ (stn) ∈ L(Γ ) ∧ c = st.

From Definitions 15, 18 and Proposition 17
Proposition 19. c is an admissible cycle in Γ =⇒ c is an
ambiguous cycle.

The diagnosability analysis (generalization of Gougam et al.
(2013)) relies on the following result.
Theorem 20. Θ is not Ω-diagnosable ⇐⇒ Γ contains
ambiguous cycles.

The notion of discriminability proposed in this paper can
be analyzed based on the following:
Theorem 21. A subset Ωs ∈ 2Ω of supervision patterns is
said to be discriminable ⇐⇒ Ωs is not involved in any
ambiguous cycle of Γ .

So, the problem of patterns discriminability and Ω-
diagnosability can be reduced to finding ambiguous cycles
in Γ .
To sum up, the method includes:



(1) modelling the supervision patterns and the system
with labeled Petri nets;

(2) compute a meta-pattern and combine it with the
system;

(3) construction of a twin-plant;
(4) unfolding the labeled Petri net of the twin-plant;
(5) search for ambiguous cycles in the twin-plant;
(6) conclude on the discriminability of the patterns and

consequently on the system diagnosability.

5. FINDING AMBIGUOUS CYCLES

To find cycles in a Petri net, we will use Petri net
unfoldings. This technique — introduced by McMillan
(1995) — attempts to avoid the combinatorial explosion
inherent to the classical usage of marking graphs.

5.1 Petri net unfolding

A Petri net unfolding is another labeled Petri net that is
generally infinite.
Definition 22. The unfolding Φ = 〈PΦ, TΦ, AΦ, `Φ, P, T,
MΦ0〉 of a marked and labeled Petri net Θ = 〈P, T,A, `,
L,Σ,M0〉, is a labeled Petri net such that:
(1) ∀p ∈ PΦ : |•p| ≤ 1.
(2) Φ is acyclic, i.e. for any element x ∈ PΦ∪TΦ : ¬(x < x)
(3) Φ is finitely preceded, i.e., for every x ∈ PΦ ∪ TΦ, the

set of elements y ∈ PΦ ∪ TΦ such that y < x is finite.
(4) No x ∈ PΦ ∪ TΦ is in self-conflict ¬(x # x).
(5) `Φ(PΦ) ⊆ P , `Φ(TΦ) ⊆ T ;
(6) ∀t ∈ TΦ : •`Φ(t) is isomorphic to •t;
(7) ∀t ∈ TΦ : `Φ(t)• is isomorphic to t•;
(8) MΦ0 = {x ∈ PΦ : @y ∈ TΦ, y < x}.

Where < is the transitive closure of the arc relation AΦ
— called the causal relation, and ≤ the reflexive closure of
<. The couple of elements (x, y) ∈ (PΦ ∪ TΦ)2 is a conflict
(denoted x # y) if there exist two transitions t1, t2 ∈ TΦ,
such that t1 6= t2, •t1 ∪ •t2 6= ∅ and (t1, x), (t2, y) ∈<.
A configuration C of an unfolding is a set of causally-closed
and conflict-free transitions of TΦ, formally: t ∈ C ⇒
∀t′ < t, t′ ∈ C and ∀t, t′ ∈ C : ¬(t # t′). The cut of a
configuration C is the set of places Cut(C) = (MΦ0 ∪C•)\
•C where C• = {p ∈ t•, t ∈ C} and •C = {p ∈ •t, t ∈ C}
and `Φ(Cut(C)) characterizes a marking of the net Θ. The
local configuration of a transition t ∈ TΦ is the set of
transitions t′ ∈ TΦ such that t′ ≤ t.
For any bounded Petri net, McMillan (1995) shows the
existence of a fragment of the unfolding Φ also called the
finite complete prefix such that any reachable marking
of Θ is represented by the cut of a configuration of that
fragment. The construction of such a prefix relies on the
search for cut-off points (McMillan (1995), Esparza et al.
(2002)). A cut-off point is a transition tc ∈ TΦ such that
its local configuration [tc] contains a transition t′ such
that `Φ(Cut([t′])) = `Φ(Cut([tc])) and the relation [t′] ≺ [t]
holds, where ≺ is an adequate order (see Esparza et al.
(2002)). Let Tc be the set of cut-off events which local
configuration contains exactly one cut-off event. The finite
complete prefix of Φ is then defined as

⋃
t∈Tc{[t] ∪ t•}. For

every adequate order there is a different finite complete

prefix of Φ appropriate to analyze a particular property of
the Petri net. A partial order which leads to a complete
finite prefix appropriate for detecting cycles is the strict
set inclusion “⊂”.

5.2 Algorithm

Algorithm 1 looks for ambiguous cycles in the twin-plant
Γ .

Algorithm 1 Search for ambiguous cycles
1: procedure analysis(Γ )
2: Φ← unfolding(Γ )
3: H ← cut-offs(Φ)
4: for all e in H.events do
5: if `Φ(H[e]) is ambiguous then
6: prune(H[e])
7: end if
8: end for
9: end procedure

line 2: compute the unfolding of the Petri net Γ .
line 3: build a mapping between the cut-off events and
their associated markings. This step can be performed
while computing the unfolding by finding the maximal
cuts — which represent reachable markings — including
the postset of every cutoff event.

line 4–8: prune from H every non-ambiguous marking.
Once the algorithm is applied, we check H for possible
remaining markings. If there is any, every supervision
pattern involved in any marking is not discriminable and
the system is not Ω-diagnosable. Otherwise, the supervision
patterns are discriminable and the system is Ω-diagnosable.
The following section illustrates the method with the help
of an example.

6. EXAMPLE

The method previously presented was implemented and in
order to illustrate it, we present hereafter an example. The
system is modeled by Θ, Σuo = {e, f, g, k, h} represented
in bold in Figure 2. There is two patterns Ω1 and Ω2, the
first models the parallel occurrence of two events {b, g},
the second models the sequential occurrence of k and h.
The table 1 summarizes the size of the Petri nets obtained
at each step.

Table 1. Size of intermediary Petri nets of the
method

|P | |T |

System (Θ) 16 16
First pattern (Ω1) 5 7
Second pattern (Ω2) 3 6
Meta-pattern (Π) 8 13
Product of the system and the meta-pattern (ΘΠ) 24 27
Twin-plant (Γ ) 48 85
Unfolding of the twin-plant (Φ) 82 38

We can see that even though the example is not strongly
concurrent, the overhead in places and transitions is
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Figure 2. Modeling of the system and the pattern

reasonable. Plus, the completeness condition imposed on
supervision pattern results in extra transitions that are
striped away by the unfolding, whence the reduction of the
number of transitions from Γ to Φ.
Finally, the remaining markings inH will have the following
labels: {−, N1, N2, F

′
1, N

′
2} and {−, N ′1, N ′2, F1, N2}. This

means that Ω1 is not discriminable, and consequently that
Ω2 and the combination Ω1&Ω2 are discriminable.

7. CONCLUSION AND PERSPECTIVES

In this paper, we introduced the notion of discriminability
of supervision patterns and proposed a method to analyse
it. The discriminability of a pattern ensures that one can
detect the exclusive occurrence of this particular pattern,
which differs from its mere recognition without further
information about other patterns. We have also shown that
once the discriminability analysis is performed, we can
conclude about the diagnosability of the system with no
extra cost. Our approach relies on the construction of a
meta-pattern embedding all interesting behaviors. After

combining it with the system, we perform a twin-plant to
detect ambiguous sequences by using petri net unfoldings.
An interesting continuation of this work could be the
extension of the models to include timed systems and
patterns. This would permit us to monitor more complex
— and interesting — behaviors that can not be modeled
otherwise.
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