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AbstractThis paper addresses the problem of checking diagnosability of supervision patterns
in discrete-event systems. With a supervision pattern, it is possible to represent a complex
behaviour of the system, and especially a faulty behaviour. As opposed to classical diagnosability
analysers that check by exploring the marking graph of the underlying net, the proposed method
relies on Petri net unfoldings and thus avoids the combinatorial explosion induced by the use
of marking graphs. The method is an adaptation of the twin-plant method to net unfolding: a
pattern is diagnosable if the unfolding representing the twin-plant does not implicitly contain
infinite sequences of events that are ambiguous.
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1. INTRODUCTION

Monitoring a system or a process in order to ensure
sustainable and optimal performance is a critical task that
requires the deployment of supervision tools such as sensors,
monitors, diagnosers, etc. In the context of discrete-event
systems (DES), the supervision task consists in analysing
the sequence of observed events and determining whether
an abnormal/faulty situation has occurred before deciding
what kind of actions to perform in order to recover the
optimal performance of the system. By the intrinsic nature
of DES, an abnormal situation is characterised by a partial
order of observable/non-observable events called an event
pattern.
In this paper, we address the problem of checking the
diagnosability of such patterns that is to provide a formal
way to answer the following question: given a DES and
a supervision pattern, is the supervisor always able to
determine with certainty that the pattern has occurred
or not in the system after observing a finite sequence
of events? This problem is well-known and many formal
analyses have already been proposed as in Jiang and Kumar
(2004) or in Jéron et al. (2006) but still the intrinsic nature
of the problem induces a combinatorial explosion which
is not taken into account in these previous works and
makes unrealistic their use in practice. In our proposal, we
tackle the problem with two original choices. The first
one is the use of Petri net to model patterns as well
as the system (Basile et al. (2009),Dotoli et al. (2009))
so that we benefit of the natural way to represent event
concurrency. The second one is the use of net unfoldings
(McMillan (1995),Esparza et al. (2002),Benveniste et al.
(2003)) in order to benefit of a representation as a partial
order of events which avoids the explicit enumeration of
event sequences that is performed by techniques based on
marking graphs like in Cabasino et al. (2012).

Analysing the diagnosability of a system can be intuitively
seen as looking for the existence of a diagnosis function
that returns "Normal", "Faulty" or "Ambiguous" for each
observable execution of the system. We do require some
properties on this function. First, the returned value must
be correct meaning that if it is equal to "Faulty" all possible
explanation of the observable trace must be "Faulty", and
the same apply for the "Normal" value, otherwise the answer
must be "Ambiguous". The function must also be bounded,
i.e. a faulty sequence yields a "Faulty" return value after a
bounded delay.
This intuitive vision rises some questions: how is the system
modeled? What is a faulty sequence, and how is it modeled?
What is a delay? The analysis method is driven by the
answers to these questions.
For instance, in Sampath et al. (1995) the system is modeled
by a finite state machine, a faulty sequence is a sequence
containing a fault event and the delay is the occurrence of
a number of events. Other choices can be imagined, a faulty
sequence for Jiang et al. (2003) is the multiple occurrences
of a particular event, in Jéron et al. (2006) a fault is a
sequence that is recognized by some pattern, Pencolé and
Subias (2009) model the faults by chronicles, and the delay
is an amount of time.
In this paper, we consider a system modeled by a formal
language, a pattern (which also modeled by a formal
language) that recognize faulty sequences, and a delay
is the occurrence of a number of event.
The paper is organised as follows. Section 2 recalls the
necessary background. Section 3 introduces a Petri net
representation of patterns. Section 4 presents the problem
and the proposed analysis method. Finally, Section 5
illustrate the method by an example.



2. BACKGROUND

This section briefly recalls the necessary theoretical back-
ground which this paper relies on.
Given an alphabet Σ, we define Σ∗ as the set of finite
sequences over Σ (including the empty sequence λ). Σ+

is the set of non empty sequences over Σ. A subset S
of Σ∗ is called a language over Σ. For every sequence
s ∈ S we define the set of the continuations of s in S:
S/s = {t ∈ S : st ∈ S}. The projection of a sequence s on
Σp ⊆ Σ is noted PΣp(s). Finally, the length of a sequence
s is denoted ‖s‖.

2.1 Labelled Petri nets

Definition 1. A labelled Petri net is a tuple 〈P, T,A, `, L,Σ〉
where:
• P : a set of places;
• T : a set of transitions with P ∩ T = ∅;
• A ⊆ (P × T ) ∪ (T × P ): a set of arcs;
• ` : P ∪ T → L ∪ Σ ∪ {λ}: a labelling function where
L is the set of place labels, Σ is the set of transition
labels and λ denotes the empty sequence;

Note that this definition is restricted to labelled Petri nets
with arcs of weight 1.
A marking is a multiset M of places, i.e. a map from P to
N which maps any place to the number of tokens contained
in it.
A marked and labelled Petri net is a tuple Θ =
〈P, T,A, `, L,Σ,M0〉 where 〈P, T,A, `, L,Σ〉 is a labelled
Petri net and M0 an initial marking.
The current state of a Petri net is defined by its marking.
Let •t = {p ∈ P : (p, t) ∈ A} be the preset of t and
t• = {p ∈ P : (t, p) ∈ A} its postset (we define similarly
the preset and postset of a place). The transition t is firable
from a given marking M iff: ∀p ∈ •t : M(p) > 0. Firing t
leads to a new markingM ′ such thatM ′ = (M \•t)∪t• and
which is denoted by M t−→M ′. A marking M is reachable
if there exists a firing sequence s = t0t1 . . . tn such that
M0

t0−→M1
t1−→ . . .

tn−→M , we can also write M0
s−→M .

Let < be the transitive closure of A — called the causal
relation, and ≤ the reflexive closure of <. The couple of
elements (x, y) ∈ (P ∪ T )2 is a conflict (denoted x # y) if
there exists two transitions t1, t2 ∈ T , such that t1 6= t2,
•t1 ∪ •t2 6= ∅ and (t1, x), (t2, y) ∈<.
Given a marked and labelled Petri Net Θ and a set of
markings Q, the G-type language (see Peterson (1977))
generated by Θ is given by: L(Θ) = {`(s) : s ∈ Σ∗ ∧
M0

s−→M ∧ ∃M ′ ∈ Q,M ′ ⊆M}.
To analyse Petri net reachability, one can compute the
marking graph of a marked net however it usually leads to
a combinatorial explosion. Another technique that attempts
to avoid this problem is the use of Petri net unfolding that
exploits partial orders (McMillan (1995)).

2.2 Petri net unfolding

A Petri net unfolding is another labelled Petri net that is
generally infinite.
Definition 2. The unfolding Φ = 〈PΦ, TΦ, AΦ, `Φ, P, T,
mΦ0〉 of a marked and labelled Petri net N = 〈P, T,A, `,
L,Σ,m0〉, is a labelled Petri net such that:
(1) ∀p ∈ PΦ : |•p| ≤ 1.
(2) Φ is acyclic, i.e. for any element x ∈ PΦ∪TΦ : ¬(x < x)
(3) Φ is finitely preceded, i.e., for every x ∈ PΦ ∪ TΦ , the

set of elements y ∈ PΦ ∪ TΦ such that y < x is finite.
(4) No x ∈ PΦ ∪ TΦ is in self-conflict ¬(x # x).
(5) `Φ(PΦ) ⊆ P , `Φ(TΦ) ⊆ T ;
(6) ∀t ∈ TΦ : •`Φ(t) is isomorphic to •t;
(7) ∀t ∈ TΦ : `Φ(t)• is isomorphic to t•.

We denote by min(Φ) = {x ∈ PΦ ∪ TΦ : @y ∈ PΦ ∪
TΦ, y < x}. A configuration C of an unfolding is a set of
causally-closed and conflict-free transitions of TΦ, formally:
t ∈ C ⇒ ∀t′ < t, t′ ∈ C and ∀t, t′ ∈ C : ¬(t # t′). The cut
of a configuration C is the set of places Cut(C) = (min(Φ)∪
C•) \ •C where C• = {p ∈ t•, t ∈ C} and •C = {p ∈
•t, t ∈ C} and `Φ(Cut(C)) characterises a marking of the
net N . The local configuration of a transition t ∈ TΦ is the
configuration [t] such that ∀t′ ∈ [t], t′ 6= t⇒ t′ < t.
McMillan (1995) shows the existence of a fragment of the
unfolding Φ also called the finite complete prefix such that
any reachable marking of N is represented by the cut of a
configuration of that fragment. The construction of such
a prefix relies on the search for cutoff points (McMillan
(1995), Esparza et al. (2002)). A cutoff point is a transition
tc ∈ TΦ such that its local configuration [tc] contains a
transition t′ such that `Φ(Cut([t′])) = `Φ(Cut([tc])) and
the relation [t′] ≺ [t] holds, where ≺ is an adequate order
(see Esparza et al. (2002)). The finite complete prefix of Φ
is then defined as the subset of elements x ∈ PΦ ∪ TΦ such
that x < tc where tc is a cutoff point of Φ.
The method described hereafter always uses the finite
complete prefix of the unfolding as a support, so from
now on, we use the notion of unfolding as a shortcut for
designing its finite complete prefix.

2.3 Synchronised product of labelled Petri nets

Let Θ1 = 〈P1, T1, A1, `1, L1,Σ1,m10〉 and Θ2 = 〈P2, T2, A2,
`2, L2,Σ2,m20〉 be two labelled Petri nets. The synchro-
nized product Θ = Θ1 ‖Σs

Θ2 over a set of transition labels
Σs is the labelled Petri net Θ = 〈P, T,A, `, L,Σ,m0〉 such
that:
• P = P1 ∪ P2;
• T = T̂1 ∪ T̂2 ∪ Ts,

where: T̂i = {t ∈ Ti : `i(t) 6∈ Σs}, i = 1, 2; and Ts =⋃
l∈Σs

{t1‖t2 : ∃(t1, t2) ∈ (T1×T2) : `1(t1) = `2(t2) = l};

• A = Â1 ∪ Â2 ∪As,
Âi = Ai\[(Pi×(Ti\T̂i))∪((Ti\T̂i)×Pi)], i = 1, 2; and
As ={(p, t) ∈ (P × T ) : p ∈ P1, t = t1 ‖ t2, (p, t1) ∈ A1}
∪{(p, t) ∈ (P × T ) : p ∈ P2, t = t1 ‖ t2, (p, t2) ∈ A2}
∪{(t, p) ∈ (T × P ) : p ∈ P1, t = t1 ‖ t2, (t1, p) ∈ A1}
∪{(t, p) ∈ (T × P ) : p ∈ P2, t = t1 ‖ t2, (t2, p) ∈ A2}



• `(p) =
{
`1(p) if p ∈ P1
`2(p) if p ∈ P2

;

• `(t) =


`1(t1) if t = t1 ‖ t2
`1(t) if t ∈ T1
`2(t) if t ∈ T2

;

• L = L1 ∪ L2;
• Σ = Σ1 ∪ Σ2;

• m0(p) =
{
m10(p) if p ∈ P1
m20(p) if p ∈ P2

.

This product can be constructed simply by taking the union
of the two nets, removing transitions with labels in Σs, and
for each (t1, t2) ∈ T1 × T2 where `(t1) = `(t2) 6= λ, add a
transition t1 ‖ t2 to the product inheriting their label and
arcs.
Let Qi be the set of final markings of Θi, i = 1, 2. We define
the set of final markings of the product Θ = Θ1 ‖Σs

Θ2 as
Q = {q = q1 ∪ q2 : (q1, q2) ∈ Q1 ×Q2}.
If Σs = Σ1 ∪ Σ2, the language generated by the product,
given Q, is defined as follow: L(Θ) = {s ∈ (Σ1 ∪ Σ2)∗ :
PΣi(s) ∈ L(Θi), i = 1, 2}. L(Θ) also verifies: s ∈ L(Θ) if
∃s1 ∈ L(Θ1),∃s2 ∈ L(Θ2) : PΣs

(s) = PΣs
(s1) = PΣs

(s2).

3. SUPERVISION PATTERNS

Detecting and diagnosing faults in an SED generally rely on
the existence of a fault model where a fault is represented
by the occurrence of a particular event (Sampath et al.
(1995)). Supervision patterns extend the expressiveness of
fault models by introducing more complex faulty behaviours
as proposed in Jiang and Kumar (2004) and in Jéron
et al. (2006), involving several partially ordered events. We
propose to represent a supervision pattern as a labelled
Petri net.
Definition 3. A supervision pattern is a marked labelled
Petri net 〈P, T,A, `, L,Σ,m0〉 such that:
(1) (labelling) L = {N,F};
(2) (initialization) ∀p ∈ P : m0(p) > 0⇒ `(p) = N ;
(3) (exclusivity) ∀p1, p2 ∈ P : `(p1) = N ∧ `(p2) = F ⇒

m(p1)×m(p2) = 0;
(4) (completeness) ∀m : (∃s = t1t2 . . . : m0

s−→ m),∀e ∈
Σ, ∃t ∈ T : (`(t) = e ∧ ∀p ∈ P,m(p) > 0);

(5) (recognition) ∀m : (∃s = t1t2 . . . tn : m0
s−→ m) :

(m′ tn−→ m ∧ ∃p ∈ P : m′(p) > 0 ∧ `(p) = F ⇒ ∃p ∈
P : m(p) = F ).

Condition 1 states that a place is either normal (labelled
with N), which means that the supervision pattern has
not occurred, or faulty (labelled with F ). Condition
2 states that the initial marking only involves normal
places. Condition 3 is the exclusivity condition: a marking
reachable from the initial marking never involves a normal
place on one hand and a faulty place on the other hand.
Condition 4 is the completeness condition: from any
reachable marking, any event of Σ can occur. Condition
5 is the recognition condition: once the pattern reaches a
faulty marking any successor marking is faulty.
A set of final markings Q = {{p ∈ P : `(p) = F}} is
associated to the supervision pattern.

3.1 Examples

We illustrate the notion of supervision patterns with two
examples. The patterns described below result from the
translation of the patterns proposed by Jéron et al. (2006).
Note that any pattern of Jéron et al. (2006) can be
translated into a pattern defined by Definition 3.

Event concurrency Let E = {e1, e2, . . . } be a set of
events. The pattern describing the concurrent occurrence
of these events is the labelled Petri net 〈P, T,A, `, L,E,m0〉
defined as follows:

• P = {p0} ∪
2⋃

i=1

|E|⋃
j=1
{pij};

• T = {t0} ∪
3⋃

i=1

|E|⋃
j=1
{tij};

• A =
⋃|E|

i=1{(p1i, t1i), (p2i, t2i), (p2i, t0), (p0, t3i)} ∪⋃|E|
i=1{(t1i, p2i), (t2i, p2i), (t3i, p0)} ∪ {(t0, p0)};

• `(p) =
{
F if p = p0
N otherwise ;

• `(t) =
{
λ if t = t0

ej if t=tij for any i∈{1,2,3} and
j∈{1,...,|E|}

;

• m0(p) =

1 if p ∈
|E|⋃
i=1
{p1i}

0 otherwise
.

p11

N

p12

N

· · · p1|E|

N

t11 e1 t12 e2 · · · t1|E|e|E|

p21

N

p22 N · · · p2|E|

N

e1 e2 e|E|

t0λ

p0 F

e1e|E| · · ·

Figure 1. A set of concurrent events.

Figure 1 depicts the graphical representation of the pattern.
Transition t0, as it is labelled with λ, is firable as soon as
every event of E has occurred. This example perfectly
illustrates the representation compactness of Petri net with
regards to automaton when modelling concurrency. In Jéron
et al. (2006), the corresponding pattern is represented with
an automaton with 2|E| states whereas the number of
required places to represent the same pattern as a net is
2|E|+ 1.

Multiple occurrences of the same event The pattern
representing k occurrences (k > 0) of the same event e
is characterised by the net 〈P, T,A, `, L,E,m0〉 defined as
follows:



• P =
k⋃

i=0
{pi};

• T =
k⋃

i=0
{ti};

• A =
⋃k

i=0{(pi, ti)} ∪
⋃k−1

i=0 {(ti, pi+1)} ∪ {(tk, pk)};

• `(p) =
{
F if p = pk

N otherwise ;

• `(t) = e,∀t ∈ T ;
• Σ = {e};

• m0(p) =
{

1 if p = p0
0 otherwise .

p0

N

t0

e

p1

N

t1

e

· · ·
tk−1

e

pk

F

tk

e

Figure 2. k occurrences of the same event e.

Figure 2 is the graphical representation of the pattern. This
pattern graphically looks like the automaton representing
the equivalent pattern in Jéron et al. (2006). This similarity
is due to the fact that this pattern is purely sequential (no
concurrency). However the supervision pattern defined by
Definition 3 only represents the evolution of the events in
the alphabet Σ = {e} of the pattern and not the events of
the underlying system as in Jéron et al. (2006).
Finally, this pattern is a generalization of the simple fault
pattern (k = 1) which can be used to represent the classical
diagnosability problem as in Sampath et al. (1995) and
more recently in Cabasino et al. (2012).

4. DIAGNOSABILITY OF SUPERVISION PATTERNS

The problem of supervision pattern diagnosability in
discrete event systems is defined in the following context.
The system is modeled by a language S over an alphabet
Σ, where Σ — the set of events generated by the system —
is partitioned into two subsets: Σo and Σu, respectively
representing the set of observable and unobservable events.
The supervision pattern R is a language over ΣR ⊆ Σu

that recognize R-faulty sequences.
Definition 4. A sequence s ∈ Σ∗ is said to be R-faulty if:
PΣR(s) ∈ R.
Definition 5. A language S is R-diagnosable if:

∃n ∈ N,∀s a faulty sequence of S,∀t ∈ S/s :
‖PΣo

(t)‖ ≥ n =⇒ P−1
Σo

(PΣo
(st)) ⊆ Ω.

To tackle the problem of R-diagnosability and given that
every formal language can be modeled by a G-type labeled
Petri net language, we propose to use labeled Petri nets to
model the system and the pattern.
Definition 6. A labeled Petri Net Θ is Ω-diagnosable if
L(Θ) is L(Ω)-diagnosable.

The problem can be redefined as being the analysis of the di-
agnosability of a labeled Petri net Θ = 〈P, T,A, `, L,Σ,m0〉
vis-a-vis a supervision pattern modeled by a labeled Petri
net Ω = 〈PΩ, TΩ, AΩ, `Ω, LΩ,ΣΩ,mΩ0〉.

The classical method to analyse the diagnosability of faults
in a discrete event system — introduced in Yoo and
Lafortune (2002) and Jiang et al. (2000), is the use of
a twin-plant on the observable events to detect normal and
faulty executions that share the same observable behavior —
if any — and thus conclude about the non-diagnosability of
the system by looking for such sequences that have infinite
number of observable events.
In the supervision pattern context, the same principle
applies. But, first, the supervision pattern behavior must
be taken into account by realising the synchronized product
of the pattern and the system.
The analysis method is detailed in the following.

4.1 Analysis stages

Figure 3 depicts the necessary stages to perform the diag-
nosability analysis. The proposed method is an adaptation
of the one in Jéron et al. (2006) to the Petri nets. The
main difference is firstly the use of a synchronized product
instead of a synchronous product and secondly the use of
a net unfolding technique.
First, let us emphasize on the fact that patterns of
Definition 3 are more concise than the ones of Jéron et al.
(2006) as the language generated by the proposed patterns
is usually not universal. The consequence is that the applied
product is not synchronous but synchronized.

Analysis

Γ = ΘΩ‖Σo
Θ′Ω

ΘΩ = Θ‖Σs
Ω Θ′Ω = Θ′‖Σ′sΩ′

Θ Ω Θ′Ω′

Figure 3. Stages of the diagnosability analysis.

We associate a set of final markings Q = {∅} to Θ
and QΩ = {{p ∈ PΩ : `(p) = F}} to Ω. Ω is defined
as Ω associated with the set of final markings QΩ =⋃

p∈`−1(N){{p}}.
Proposition 7. s ∈ S is R-faulty and L(Ω) = R ⇐⇒
s ∈ L(ΘΩ)
Proposition 8. s ∈ S is not R-faulty and L(Ω) = R ⇐⇒
s ∈ L(Θ′Ω)

Proof. from the language of Petri nets product, the
definition of R-faulty and the fact that ΣR = ΣΩ ⊂ Σ.

Finally, we define an "’" operator applicable to sequences,
alphabets, and labeled Petri nets, which transforms appro-
priately its operand by priming unobservable events and
places and transitions — if any — and keeping the rest as
is.
As a first stage, the net ΘΩ is computed as the synchronized
product of Θ and Ω over the set of synchronized labels



Σs = Σ ∩ ΣΩ. Θ′Ω is calculated in the same manner.
In practice, this product is done once, the results being
structurally identical, only the associated final markings
need to be calculated twice.
The synchronized product ΘΩ ‖Σo

Θ′Ω is performed (the
result of this product is commonly called the twin-plant)
and is denoted Γ.
Finally, the analysis consists in finding in Γ the possible
sequences c : m0

c−→ m, from m0 the initial marking of Γ
that lead to an ambiguous marking that can indefinitely
occur.
Definition 9. A marking m in Γ is ambiguous if: ∃p, p′ ∈
PΓ,m(p)×m(p′) 6= 0 ∧ `(p) = N ∧ `(p′) = F ′.
Proposition 10. A markingm of Γ is ambiguous ⇐⇒ ∃s ∈
L(Γ) : m0

s−→ m.

Proof. By construction of Γ.

Γ being finite, a sequences c : m0
c−→ m that occur

indefinitely is necessary a cycle.
Definition 11. c is a cycle in L(Γ) if ∃s ∈ Σ∗Γ,∃t ∈ Σ+

Γ :
∀n ∈ N, stn ∈ L(Γ) ∧ c = st

Theorem 12. Θ is not Ω-diagnosable ⇐⇒ Γ contains
ambiguous cycles.

Proof.
( =⇒ ) : Θ is not Ω-diagnosable if there are two sequences
one faulty (w1 ∈ L(ΘΩ)) the other non-faulty (w′2 ∈
L(Θ′Ω)), which are arbitrary long and have the same
observable behavior, which means there exists a sequence
w in L(Γ) with the same observable execution as w1 and
w2.
By hypothesis, the system can not produce cycles of

unobservable events, so the projection of w1 and w2 on
the observables must be arbitrary long, and so is the
projection of w.
PΣo(w) is arbitrary long, implies that w is arbitrary

long too, which implies that Γ has at least one cycle w.
(⇐= ) : Γ contains ambiguous cycles means that L(Γ)
contains cycles. Let w be a cycle in L(Γ), by definition:
∃s ∈ Σ∗Γ,∃t ∈ Σ+

Γ : ∀n ∈ N, stn ∈ L(Γ).
Γ being the product of ΘΩ and Θ′Ω, (∀n ∈ N, stn ∈
L(Γ)) implies (∀n ∈ N,∃s1t

n
1 ∈ L(ΘΩ),∃s′2t′n2 ∈ L(Θ′Ω) :

PΣo
(s1t

n
1 ) = PΣo

(s′2t′n2 )).
There is two sequences, one faulty (s1t

n
1 ∈ L(ΘΩ)) the

other non-faulty (s′2t′2 ∈ L(Θ′Ω)), which are arbitrary
long and have the same observable behavior, hence Θ is
not Ω-diagnosable.

4.2 Algorithm

Algorithm 1 looks for an ambiguous sequence that allows to
decide whether a given pattern is diagnosable. As explained
in the above section, it is applied to the labelled Petri net
Γ.
line 2: the function unfolding unfolds a labelled Petri net

Θ and returns the unfolding Φ and a data structure H
with the cutoff points t and their associated cut Cut(C(t))
(see Section 2.2). A cutoff point is a transition associated
to a transition in a cycle in the Petri net Θ.

Algorithm 1 Search for ambiguous sequences
1: diagnosability: function analysis(Θ)
2: 〈Φ, H〉 ← unfolding(Θ)
3: for all e in H.events do
4: if {N ′, F} 6⊆ `(`Φ(H[e])) ∧ {N,F ′} 6⊆
`(`Φ(H[e])) then

5: prune(H[e])
6: end if
7: end for
8: if H is empty then
9: return "diagnosable"

10: else
11: return "non-diagnosable"
12: end if
13: end function

lines 3-7: every element of H that does not lead to an
ambiguous marking is pruned.

lines 8-9: if H is empty then there is no ambiguous
marking which can indefinitely occurs, the pattern is
diagnosable.

lines 10-12: if H is not empty, i.e. there exists at least,
in the unfolding, a sequence containing a cutoff point
that leads to an ambiguous marking. It follows that this
ambiguous marking can occur indefinitely so the system
is not diagnosable.

Proposition 13. The algorithm 1 is correct.

Proof. The correctness of the algorithm is based on the
correctness of the following relation:
Θ contains accessible cycles ⇐⇒ Φ contains cut-off events.
( =⇒ ) : Θ contains cycles — infinite sequences — implies

that the total unfolding is infinte.
By hypothesis, Θ is n-safe, so the prefix Φ is necessary

finite.
The total unfolding is finite and the prefix is finite

means necessary that the prefix Φ contains cutoff events.
(⇐= ) : Let e be a cut-off event of Φ, so: ∃e′ ∈ TΦ:{

`Φ(Cut([e])) = `Φ(Cut([e′]) = Mc

[e′] ⊂ [e]

`Φ(Cut([e′]) = Mc implies ∃s ∈ T ∗,M0
s−→Mc

`Φ(Cut([e])) = Mc

[e′] ⊂ [e]

}
implies ∃t ∈ T+,M0

s−→Mc

so, ∃s ∈ T ∗,∃t ∈ T+ : M0
s−→ Mc

t−→ Mc, thereby, there
is accessible cycles in Θ

The following section illustrates the method with the help
of an example.

5. EXAMPLE

In order to illustrate every stage of the analysis, we present
here a very simple example: the underlying system is
modeled by Θ of Figure 4 and the pattern Ω is the one
of Figure 5 representing the occurrence of a single event.
Every event of Θ is observable except u and f . Therefore,
Σ = {a, b, u, f}, Σo = {a, b} and Σu = {u, f}.
First stage is the computation of the synchronized product
Θ ‖Σs Ω where Σs = Σ ∩ ΣΩ = {f} which leads to the net
ΘΩ represented on Figure 6.
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Figure 4. System Θ: f is a fault event, only a and b are
observable.
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Figure 5. Pattern Ω: occurrence of (at least) a fault event
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Figure 6. Synchronized product ΘΩ = Θ ‖Σs
Ω

Second stage is the computation of the twin-plant, that is
the synchronized product of ΘΩ with its primed version
Θ′Ω over the set of observables Σo = {a, b}. The result Γ is
depicted on Figure 7.
Last stage is the unfolding of Γ as represented in Figure 8
returned by the function unfolding of Algorithm 1. Note
that elements in a frame do not belong to the unfolding
but aim at better representing the cutoff points.
The function unfold also returns the table H (see Table
1) which associates to every cutoff point t of Γ the set of
labels associated to the places of Cut(C(t)) that would be
marked if t were fired.

Table 1. Cutoff points of H and the labels of
their resulting marking in Γ.

cutoff point labels of the resulting marking
t0 {p4, p10, p3, p9}
t1 {p4, p11, p3, p8}
t2 {p5, p10, p2, p9}
t3 {p5, p11, p2, p8}
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Figure 7. Twin-plant Γ = ΘΩ ‖{a,b} Θ′Ω
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Figure 8. Γ’s unfolding

Any element of H that does not lead to any ambiguity is
pruned, i.e. H[t0] and H[t3] which respectively lead to a
normal marking and a faulty marking (see places p2, p3, p8
and p9 in bold in Figure 7).
Finally, H is not empty as it still contains H[t1] and H[t2]:
there exist two infinite sequences, one is normal and the
other is faulty, which have the same observable behaviour,
thus the pattern Ω is not diagnosable in the system Θ.
Intuitively, this result is easy to find out on the system Θ
directly. Both sequences s1 = afbbb . . . and s2 = aubbb . . .
are infinite, produces the same observable behaviour so =
abbb . . . but one is faulty whereas the other is not.



6. CONCLUSION AND PERSPECTIVES

We proposed to analyse the Ω-diagnosability of a supervi-
sion pattern by adapting the notion of pattern and twin-
plant to Petri net and by using an unfolding technique.
The Ω-diagnosability is a concept introduced in Jéron et al.
(2006) and is a generalization of the classical notion defined
in Sampath et al. (1995). In Jiang et al. (2003), the notions
of K-diagnosability (diagnosability of K occurrences of the
same event) and [1,K]-diagnosability (diagnosability of J
occurrences of the same event, J ∈ [1,K]) are particular
cases of Ω-diagnosability with a particular set of supervision
patterns.
BLABLA A REVOIR DE TOUTE FACON, JE TRADUIS
PAS
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