Timed Diagnosability Analysis based on Chronicles

H.E. Gougam A. Subias. Y. Pencolé

CNRS; LAAS; 7, avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077
Toulouse, France (e-mail: {gougam,subias,pencole}@laas.fr)

Abstract: Automated chronicle recognition is an efficient and robust method for fault diagnosis in timed discrete-event systems (TDES). This paper addresses the problem of diagnosability of TDES with regards to such a diagnosis method. We propose a fully automated chain to a priori check whether faults can be identified with certainty based on a given set of chronicles. To deal with the time aspects inherent to the chronicles, we first propose an automated translation of chronicles into a set of Labeled Time Petri Nets with Priorities. The diagnosability analysis is then performed on the state class graph of these nets and consists in determining whether the recognition of a chronicle is exclusive or not.

Keywords: diagnosis, diagnosability, discrete event systems, chronicles, Petri nets.

1. INTRODUCTION

To ensure that a diagnosis tool is able to isolate faults with certainty in a system, it must be able to observe a particular amount of information when the system operates. It is the reason why, nowadays, the design of such a tool must take place during the design of the system itself. The capability of a diagnosis tool to isolate faults with certainty is usually called diagnosability. Diagnosability covers a set of formal properties that have been studied for many years in different fields. In the context of discrete-event systems (DES) for instance, diagnosability analysis usually consists in analyzing, off-line, the system trajectories with respect to their observability to determine whether the diagnostic tool is able to diagnose faults online (Sampath et al. (1995)).

The work presented in this article proposes to extend the diagnosability analysis to the Timed Discrete Event Systems (TDES). The aim is to improve the characterization of diagnosability for a discrete event system by taking into account the notion of finite durations between the occurrence of two events. By introducing time, the objective is to determine whether durations between events must be taken into account by the diagnostic tool to improve the overall diagnosability. As opposed to the work of Khoumsi and Onédrao (2009), diagnosability problem here relies on a chronicle-based approach of diagnosis (Laborie and Krivine (1997), Cordier and Dousson (2000)) where the knowledge about the underlying system is gathered in a set of chronicles. The occurrence of a fault is diagnosed by analyzing the flow of observations and matching this flow with a set of available chronicles (Dousson et al. (1993)). A chronicle is a partial order of events with time constraints and is associated with the occurrence of a fault. For each chronicle recognized, the diagnosis approach then automatically returns the associated fault as a diagnostic candidate that explains the observed behavior. The set of chronicles used to perform the diagnosis is designed by expertise and/or learning techniques and is a crucial step. By introducing time intervals between two events, the state-space associated to the set of possible trajectories of a TDES is usually infinite. In order to perform any diagnosability analysis, it is then necessary to use an abstraction of this state-space. Some previous works address this problem and have defined a chronicle-based diagnosability analysis as a language-based analysis (Pencolé and Subias (2009)). The challenge of such diagnosability analysis is to deal with the combinatorial explosion of the chronicle instances. To solve this issue, we propose to use Time Petri Nets and to perform the diagnosability analysis on their State Class Graph. Our proposal is to formally extend the work of Pencolé and Subias (2009) by defining a full chain of systematic steps to analyze the diagnosability of a set of chronicles with the help of time Petri nets.

The paper is organized as follows. Section 2 recalls some preliminaries and describes the principles of our chronicle-based diagnosability analysis method. Section 3 presents the formal method to translate chronicles to Labeled Time Petri Nets with Priorities. Section 4 defines the composition step of the Petri nets that characterizes the state-space to explore when performing the analysis. Finally, Section 5 explains how the analysis is performed on the resulting State Class Graph to obtain diagnosability results and Section 6 illustrates this approach with an example.

2. PRELIMINARIES AND ANALYSIS PRINCIPLE

2.1 Preliminaries

The underlying system is supposed to behave like a timed model \(\mathcal{M} = (E,T) \) with \(E \) the set of dated event trajectories of the system (i.e. the system language) and \(T \) the set of time constraints between the occurrence dates of the events (see Figure 2). Among the events produced by the system some of them are observable as well as their occurrence date so that an observable timed model \((E_{OBS},T_{OBS}) \) can be characterized out of \(\mathcal{M} \).
projection. Any trajectory $\sigma_{OBS} \in E_{OBS}$ results from
the observable projection $P_{OBS}(\sigma)$ where σ is a trajectory
of E. P_{OBS} is the classical projection operator of each
trajectory σ that only retains in σ_{OBS} the observable
events of σ (Sampath et al. (1995)). The set of temporal
constraints restricted to observable events T_{OBS} is obtained
by considering T as a system of inequalities where the dates
of unobservable events occurrences are removed by the basic
inequalities operations (see Section 6). Finally, W_{OBS} is the
set of observable trajectories that the system can generate
(without taking the events date into account).

In a chronicle based diagnosis approach, the knowledge
that is available about the system is gathered into a set of
chronicles, also called a chronicle base. A chronicle model
c is a pair (S, T) where S is a set of observable events and
T a set of constraints between their occurrence dates. To
define a chronicle model, a human-friendly language has
been developed (Dousson et al. (1993)) based on predicates
like $\text{evt}, \text{noevt}, \text{occurs}$... see Section 3.2. The set of
trajectories of the system leading to the recognition of the
chronicle c is called the recognition language $L(c)$. Each
chronicle is also associated to its observable recognition
language C, that is the set of observable projections of
any trajectory of $L(c)$. Each abnormal situation or fault
f (i.e. a fault event like in (Sampath et al. (1995)) or a
fault pattern like in Jéron et al. (2006) or in Khomsi
and Ouédraogo (2009)) has a signature $\text{Sig}(f)$ that is the
observable behavior of the system when the fault occurs.
A chronicle model $c(f)$ is associated to a fault f when its
observable recognition language C_f is a subset of the fault
signature $C_f \subseteq \text{Sig}(f)$.

2.2 General principle of the analysis

In Pencolé and Subias (2009), under the single fault
assumption, checking the diagnosability of a fault f relying
only on a set of chronicles requires checking whether
two chronicles $c(f)$ and $c(f')$ are exclusive or not. Two
chronicles are exclusive if they cannot be recognized with
the same flow of event instances. It has been shown that the
proposed exclusiveness analysis can be performed relying on
two kinds of inputs:

- Check for the non exclusiveness of chronicles $c(f_1)$
 and $c(f_2)$: if $C_{f_1} \cap C_{f_2} \neq \emptyset$ then f_1 and f_2 are not
diagnosable.
- Check for the non exclusiveness between a chronicle
 $c(f)$ and a non faulty model of the monitored system
 $c(f_0)$: if $C_f \cap C_{f_0} \neq \emptyset$ then f is not diagnosable and
 more precisely f is not detectable.

Note that in the case where $C_f = \text{Sig}(f)$ checking for the
exclusiveness allows to conclude on the diagnosability
property. We propose in this paper a fully automated and
formal method to perform these exclusiveness tests based
on the available chronicle base and the system model M.
This method relies on three main steps:

Translation: The objective of this step is to translate
each chronicle model into Labeled Time Petri Net with
Priorities (LTPNPr). Labels are used for modeling the
events in the chronicle and priorities are introduced to
manage conflicts due to time evolution. This step is
developed in Section 3. Note that the objective of
this step is not to model a chronicle instance or the
recognition language of the chronicle model: the Petri
Net represents the chronicle model and the part of the
recognition language that is relevant to diagnosability.
The chronicle model gives the shortest words of the
recognition language that are considered as a faulty (or
normal) manifestation. The modeling of these words is
sufficient for exclusiveness analysis: at least one of these
words must be recognized to claim the fault occurred.
Several works address the modeling problem of chronicle
recognition relying on modeling tools such as colored
Petri nets (Bertrand et al. (2007)).

Product: The exclusiveness test aims to check that the
chronicles cannot be recognized by a common trajectory
of events. This step aims to construct from the LTPNPr
model of each translated chronicle a unique LTPNPr
called product) that models the possible common behav-
iors with synchronized events (see Section 4).

Exclusiveness test: The exclusiveness analysis must deal
with an important number of trajectories that may
induce the chronicle recognition what is called chronic
instances. These chronicles instances correspond to the
marked behaviors of the Petri Net. Thus, coping with
the time aspects in terms of delays requires to face to
unlimited state space as the complete enumeration of the
possible instances of each chronicle is not realistic. Our
proposal is to consider a time abstraction of the different
instances of a chronicle and to perform the exclusiveness
analysis on this time abstraction. The State Class Graph
(SCG) of Time Petri Nets gives this finite abstraction.

3. TRANSLATION OF CHRONICLES

3.1 Labeled Time Petri Net with Priorities

Time Petri Nets (TPNs) is a prominent tool to model
TDES as several effective analysis methods have been
proposed (P.M. Merlin (1976), Berthomieu and Vernadat
(2003)). TPNs extend Petri nets with temporal intervals
associated to transitions. Firing delay ranges are associated
to transitions. A TPN is a tuple $(P, T, Pre, Post, m_0, I_0)$ in
which $(P, T, Pre, Post, m_0)$ is a Petri net with P the set
of places, T the set of transitions, m_0 the initial marking
and $Pre, Post$ the forward and backward incidence functions.
$I : T \rightarrow I^+$ is the Static Interval function that associates
a time interval to each transition of the net. I^+ is the
set of non empty real intervals with non-negative rational
end-points. The left-end-point (resp. right-end-point) of
the interval associated to a transition t is the static earliest
(resp. latest) firing date of t. A TPN state is a couple
$s = (m, I)$ in which m is a marking and $I : T \rightarrow I^+$ is
a function associating a time interval to each transition
enabled by m. Initially, $s_0 = (m_0, I_0)$ with I_0 the restriction
of I to the transitions enabled by m_0. Every enabled
transition must be fired in the associated interval. This
interval is relative to the enabling date of the transition
and depends on the date of the last transition firing. Firing a
transition t after a delay θ from state $s = (m, I)$ is possible
iff:

$$m \geq \text{Pre}(t) \land \theta \in I(t)$$

$$\land (\forall t' \neq t, (m \geq \text{Pre}(t') \Rightarrow \theta \leq \sup(I(t')))).$$

The state $s' = (m', I')$ reached by firing the transition t is:
• the new marking m' classically defined by $m' = m - \text{Pre}(t) + \text{Post}(t)$
• for every transition t' enabled by m':
 (1) $I'(t') = I'(t') - \theta$ if $t' \neq t$ and $m - \text{Pre}(t') \geq \text{Pre}(t')$;
 the firing of t' is not affected by the firing of t
 (2) $I'(tr) = I(tr)$ otherwise.

Time Petri Net with Priorities (TPNPr) is an extension of TPN in which a priority relation on transitions is defined (Berthomieu et al. (2006)). In TPNs the time elapse can only increase the number of firable transitions; the firing of a transition cannot be forbidden by the time elapse. Priorities are used to complete firing conditions. In a TPNPr a transition t may fire from a state $s = (m, I)$ if t is enabled by the marking m, firable instantly and if no transition with higher priority satisfies these conditions.

A marked LTPNPr is a tuple $\langle P, T, \text{Pre}, \text{Post}, >, \ell, I_s, m_0 \rangle$, with:

• $\langle P, T, \text{Pre}, \text{Post}, I_s, m_0 \rangle$: a marked Time Petri net;
• $>: T \rightarrow T$: the priority relation, irreflexive, asymmetric and transitive, defined by its graph $Gr(>)$;
• $\ell : T \rightarrow X \cup \{\lambda\}$: the labeling application, where X is an alphabet and λ the empty sequence

Instead of translating each chronicle to a specific LTPNPr, we propose in this section, to develop a direct and systematic method to switch from any chronicle to the corresponding LTPNPr. For this, we consider several basic patterns from which a chronicle model can be composed and several systematic combination templates of these patterns.

3.2 Basic chronicle patterns

We consider six basic patterns derived from the chronicles’ description (Dousson et al. (1993)).

$\text{evt}(a, t) \land t \in [\alpha, +\infty]$: an event a occurs after α time units;

$\text{evt}(a, t) \land t \in [\alpha, \beta]$: an event a occurs between α and β time units;

$\text{evt}(a, t) \land \text{noevent}(b, [0, t])$: an event a occurs without any prior event b;

$\text{noevent}(a, [\alpha, \beta])$: no event occurs between α and β time units;

$\text{evt}(a, t) \land \text{occurs}(\text{m}, [\alpha, +\infty], b, [0, t])$: an event a occurs after at least m events b;

$\text{evt}(a, t) \land \text{occurs}(\text{m}, n, b, [0, t])$: an event a occurs after at least m events b and at most n events b;

Due to the lack of space, we only detail here the translation of the basic pattern $\text{evt}(a, t) \land \text{occurs}(\text{m}, n, b, [0, t])$. The other translations are simpler and can be found in (Gougam (2011)). The associated LTPNPr is given below and the graphical representation is given by figure 1:

\[
\begin{align*}
P &= \{p_{\text{init}}, p_{1}, p_{2}, p_{3}, p_{4}, p_{\text{ok}} \}, \\
T &= \{t_1, t_2, t_3, t_4, t_{\text{ok}} \}, \\
\text{Pre} &= \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & n + 1 - m & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \end{bmatrix}, \\
\text{Post} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix}, \\
Gr(>) = \{(t_1, t_2), (t_4, t_3), (t_4, t_{\text{ok}})\}.
\end{align*}
\]

![Fig. 1. $\text{evt}(a, t) \land \text{occurs}((m, n), b, [0, t])$](image)

The chronicle is recognized if all the “p_{ok}” places are marked. Initially, the place p_{init} is marked and m events of type b are expected to fire the transition t_2. Then, if at least $n - m + 1$ events b occur — i.e. a total of at least $n + 1$ events b — the chronicle is not recognized. On the other side, if an event a occurs before the $n - m + 1$ events b, then the chronicle is recognized. Finally, priorities ensure compliance of the LTPNPr with the chronicle bounds.

3.3 Pattern combinations

We consider three pattern combinations.

sequence(...): n fully ordered patterns, for example a sequence of two events

$\text{C1: } \text{evt}(a, t_1) \land \text{evt}(b, t_2) \land t_2 - t_1 \geq 4$.

divergence(...) an initial shared pattern precedes n parallel patterns, for example $\text{C2: } \text{evt}(a, t_0) \land \text{evt}(b, t_3) \land t_1 - t_0 > 4 \land t_3 - t_0 \geq 5$.

convergence(...) n parallel patterns precede a final shared pattern, for example $\text{C3: } \text{evt}(a, t_0) \land \text{evt}(b, t_3) \land t_1 - t_0 \geq 2 \land t_2 - t_3 \geq 5$.

We propose a systematic way to represent each of them. Let n chronicle models $c_i, i \in \{1, \ldots, n\}$ be represented by a LTPNPr $\{P_i, T_i, \text{Pre}_i, \text{Post}_i, >, \ell_i, I_{s_i}, m_{0i}\}$ with $p_{\text{init}_i} \in P_i$ and $p_{\text{ok}_i} \in P_i$. This LTPNPr of c_i comes from the representation of a basic pattern or the result of a previous combination.

To get $\text{sequence}(c_1, \ldots, c_n)$, the place p_{ok_i} is merged with $p_{\text{init}_{i+1}}$, formally:
As said previously the objective of this step is to represent the translation of any chronicle model will then consist in divergence(...) by adding priorities recognized with the same event flow can take all the possible in a single model the common behavior of two chronicles but sequence(...) lack of space but is defined in a very similar way, see Vernadat (2003)). The product $\mathcal{P}_1 \times \mathcal{P}_2$ is obtained by the grouping of the State Class Graph of the $\text{SCG}(\mathcal{P}_1, \mathcal{P}_2)$, with:

- $P = P_1 \cup P_2$;
- $T = T_1 \cup T_2 \cup T$ where, T is the set of synchronized transitions:

$$\begin{align*}
&\text{Post}_1(p, t_1) \quad \text{if } p \in P_1 \times T_1 \\
&\text{Post}_2(p, t_2) \quad \text{if } p \in P_2 \times T_2 \\
&\text{Post}(p, t) \quad \text{otherwise}
\end{align*}$$

with:

$$\begin{align*}
&\text{Pre}_1(p, t) \quad \text{if } (p, t) \in P_1 \times T_1 \\
&\text{Pre}_2(p, t) \quad \text{if } (p, t) \in P_2 \times T_2 \\
&\text{Pre}(p, t) \quad \text{otherwise}
\end{align*}$$

Then, their product leading to the recognition of the two chronicles (i.e. $\text{LTPNPr}(P, T, \text{Pre}, \text{Post}, \prec, \ell, I_s, m_0)$) defined as follows:

- $P = P_1 \cup P_2$;
- $T = T_1 \cup T_2 \cup T$ where, T is the set of synchronized transitions:

$$\begin{align*}
&\text{Post}_1(p, t_1) \quad \text{if } p \in P_1 \times T_1 \\
&\text{Post}_2(p, t_2) \quad \text{if } p \in P_2 \times T_2 \\
&\text{Post}(p, t) \quad \text{otherwise}
\end{align*}$$

with:

$$\begin{align*}
&\text{Pre}_1(p, t) \quad \text{if } (p, t) \in P_1 \times T_1 \\
&\text{Pre}_2(p, t) \quad \text{if } (p, t) \in P_2 \times T_2 \\
&\text{Pre}(p, t) \quad \text{otherwise}
\end{align*}$$

An example of such a product is presented on Figure 4.

5. EXCLUSIVENESS ANALYSIS AND DIAGNOSABILITY RESULTS

Let us consider $SC_f = \{c_1(f), \ldots, c_n(f)\}$ a set of chronicles associated to a fault f and a set of chronicles $SC_{f'} = \{c_1(f'), \ldots, c_m(f')\}$ associated to a fault f'. As previously explained (see Section 2) checking the non exclusiveness between at least one element of SC_f and one element of $SC_{f'}$ allows to conclude to the non diagnosability of the faults f and f'. The exclusiveness test is performed by analyzing the State Class Graph of the product LTPNPr built from two chronicles one wants to analyze. The State Class Graph (SCG) is obtained by the grouping of the LTPNPr states in terms of State Classes (Berthomieu and Vernadat 2003)). The SCG allows to abstract the time from the behavior of a TPN, therefore the transitions are not labeled with time information (see Figure 5).

From the SCG we first extract W_{OK} the set of trajectories leading to the recognition of the two chronicles (i.e. $N_2 = (P_2, T_2, \text{Pre}_2, \text{Post}_2, \prec_2, \ell_2, I_{s_2}, m_{20})$) be two LTPNPrs, with: $\forall t \in T, \ell_1(t) \neq \ell_2(t) = 0$ and $\forall t \in T = [0, +\infty[$.
leading to the marking of the \(p_{ok} \) places). Then, each of these trajectories is compared to \(W_{OBS} \) in order to conclude about the exclusiveness or not of the chronicles. If \(W_{OK} \cap W_{OBS} = \emptyset \) then the two chronicles are exclusive. If furthermore the faulty behavior associated to \(f \) (resp. \(f' \)) is totally recognized by \(SC_f \) (resp. \(SC_{f'} \)) then system is diagnosable. If \(W_{OK} \cap W_{OBS} \neq \emptyset \) the two chronicles are not exclusive and the two faults \(f \) and \(f' \) are not diagnosable. Moreover, the solution of the inequalities \(T_{OBS} \land T_c \) gives the precise intervals where the two chronicles are not exclusive. With \(T_c \) the time constraints on the paths leading to the recognition of both chronicles.

6. EXAMPLE

We have the system of figure 2, where \(a \) and \(b \) are normal observable events, \(\sigma_{uo} \) is a normal unobservable event and \(f_1, f_2 \) are unobservable faults. We want to study its diagnosability with the following base of chronicles:

- \(c_0: \vdash [0,8] a \) (i.e. an event \(a \) occurs before 8 time units), associated with the normal behaviour;
- \(c_1: \vdash [1,5] b \) (i.e. an event \(b \) occurs between 1 and 5 time units), associated with \(f_1 \);
- \(c_2: \vdash [3,8] b \) (i.e. an event \(b \) occurs after 3 and before 6 time units), associated with \(f_2 \).

![Fig. 2. The Model of the System](image)

We have then: \(E = \{(a, t_1), (a, t_1)(\sigma_{uo}, t_2), (f_1, t_3), (f_1, t_3)(b, t_4), (f_2, t_5), (f_2, t_5)(b, t_6)\} \) with:

\[
T = \{0 \leq t_1 \leq 8, 2 \leq t_2 - t_1 \leq 3, 0 \leq t_3 \leq 3, 1 \leq t_4 - t_3 \leq 2, 2 \leq t_5 - t_4 \leq 4, 1 \leq t_6 - t_5 \leq 2\}
\]

To study the diagnosability of the system, we must study the detectability of every fault, thus compare the chronicles associated with the normal behaviour with every chronicle associated with a fault, and then study the diagnosability by comparing each fault to the others.

In our example, and for the sake of simplicity, we will present the last step — i.e. comparison between faults.

The projection of the model over the observable space gives:

\[
E_{OBS} = \{(a, t_1), (b, t_4), (b, t_6)\}
\]

and:

\[
T_{OBS} = \{0 \leq t_1 \leq 8, 1 \leq t_4 \leq 5, 3 \leq t_6 \leq 6\}
\]

Figure 3 gives the translation to LTPNPrs of the chronicles \(c_1 \) and \(c_2 \).

For the chronicle \(c_1 \), first the place \(p_{init1} \) is marked. After 1 temporal unit, the transition \(t_1 \) is fired. Then we have two possibilities, either an event \(b \) occurs before 5 time units and in this case the chronicle is recognized, or no event \(b \) occurs (before 5 time units) and the chronicle is not recognized.

The same reasoning applies to the chronicle \(c_2 \).

By applying the algorithm of the product previously described, we obtain the LTPNPr of the figure 4.

![Fig. 3. Translation of the Chronicles](image)

![Fig. 4. Product of the Previous LTPNPrs](image)

We simply add a new transition labelled ‘b’ to represent the synchronized progression of the two chronicles, and put some priorities (represented by dashed arcs) to solve conflicts. Indeed, the transition from which the arc comes out has a higher priority than the transition in which the arc comes in. Thus, in case of simultaneous activation, the transition with a higher priority is triggered.

6.1 Results

Figures 5 represent the class graph of the product of the LTPNPrs corresponding to \(c_1 \) and \(c_2 \).

The analysis is done through several steps.

Step 1 In the example, class 8 corresponds to the marking of the places \(p_{ok} \) and \(p'_{ok} \) (figure 4) i.e. the recognition of the two chronicles. Two paths reach the class 8 (in bold on figure 5), \(b \) and \(bb \), so: \(W_{ok} = \{b, bb\} \).

Step 2 In the example: \(W_{OBS} = \{a, b\}, W_{ok} = \{b, bb\} \) so \(W_I = W_{ok} \cap W_{OBS} = \{b\} \neq \emptyset \)

Step 3 We look for the set \(E_{OBS} \) of event flow that can be generated by the system with the words associated to the paths belonging to \(W_{ok} \), i.e. with the elements of \(W_I \). The system can generate two different flows ‘b’:
What leads us to:

We presented, in this paper, a systematic chronicle-based analysis is valid only for the particular chronicle base, or the system to suit our needs. Because the performed analysis is valid only for the particular chronicle base, meaning that changing the base can change the result of the diagnosability analysis. So it may be interesting to study the relation between the diagnosability analysis and the choice of the chronicle base, thus helping in designing the latter.

Finally, and since our method relies on the state graph class analysis (we look for some particular paths in these class graphs), we may consider another approach based on formal verification method by transposing the problem to a reachability analysis and using model checking methods to conclude about the diagnosability.

REFERENCES

