
Timed Diagnosability Analysis based on
Chronicles

H.E. Gougam A. Subias. Y. Pencolé

CNRS; LAAS; 7, avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077

Toulouse, France (e-mail: {gougam,subias,pencole}@laas.fr)

Abstract: Automated chronicle recognition is an efficient and robust method for fault diagnosis
in timed discrete-event systems (TDES). This paper addresses the problem of diagnosability of
TDES with regards to such a diagnosis method. We propose a fully automated chain to a priori
check whether faults can be identified with certainty based on a given set of chronicles. To deal
with the time aspects inherent to the chronicles, we first propose an automated translation of
chronicles into a set of Labeled Time Petri Nets with Priorities. The diagnosability analysis is
then performed on the state class graph of these nets and consists in determining whether the
recognition of a chronicle is exclusive or not.

Keywords: diagnosis, diagnosability, discrete event systems, chronicles, Petri nets.

1. INTRODUCTION

To ensure that a diagnosis tool is able to isolate faults
with certainty in a system, it must be able to observe a
particular amount of information when the system operates.
It is the reason why, nowadays, the design of such a tool
must take place during the design of the system itself. The
capability of a diagnosis tool to isolate faults with certainty
is usually called diagnosability. Diagnosability covers a set
of formal properties that have been studied for many years
in different fields. In the context of discrete-event systems
(DES) for instance, diagnosability analysis usually consists
in analyzing, off-line, the system trajectories with respect to
their observability to determine whether the diagnostic tool
is able to diagnose faults online (Sampath et al. (1995)).
The work presented in this article proposes to extend the
diagnosability analysis to the Timed Discrete Event Sys-
tems (TDES). The aim is to improve the characterization
of diagnosability for a discrete event system by taking
into account the notion of finite durations between the
occurrence of two events. By introducing time, the objective
is to determine whether durations between events must be
taken into account by the diagnostic tool to improve the
overall diagnosability. As opposed to the work of Khoumsi
and Ouédraogo (2009), diagnosability problem here relies
on a chronicle-based approach of diagnosis (Laborie and
Krivine (1997), Cordier and Dousson (2000)) where the
knowledge about the underlying system is gathered in a
set of chronicles. The occurrence of a fault is diagnosed
by analyzing the flow of observations and matching this
flow with a set of available chronicles (Dousson et al.
(1993)). A chronicle is a partial order of events with time
constraints and is associated with the occurrence of a fault.
For each chronicle recognized, the diagnosis approach then
automatically returns the associated fault as a diagnostic
candidate that explains the observed behavior. The set of
chronicles used to perform the diagnosis is designed by
expertise and/or learning techniques and is a crucial step.

By introducing time intervals between two events, the
state-space associated to the set of possible trajectories of
a TDES is usually infinite. In order to perform any diagnos-
ability analysis, it is then necessary to use an abstraction of
this state-space. Some previous works address this problem
and have defined a chronicle-based diagnosability analysis
as a language-based analysis (Pencolé and Subias (2009)).
The challenge of such diagnosability analysis is to deal
with the combinatorial explosion of the chronicle instances.
To solve this issue, we propose to use Time Petri Nets
and to perform the diagnosability analysis on their State
Class Graph. Our proposal is to formally extend the work
of Pencolé and Subias (2009) by defining a full chain of
systematic steps to analyse the diagnosability of a set of
chronicles with the help of time Petri nets.
The paper is organized as follows. Section 2 recalls some
preliminaries and describes the principles of our chronicle-
based diagnosability analysis method. Section 3 presents
the formal method to translate chronicles to Labeled Time
Petri Nets with Priorities. Section 4 defines the composition
step of the Petri nets that characterises the state-space to
explore when performing the analysis. Finally, Section 5
explains how the analysis is performed on the resulting
State Class Graph to obtain diagnosability results and
Section 6 illustrates this approach with an example.

2. PRELIMINARIES AND ANALYSIS PRINCIPLE

2.1 Preliminaries

The underlying system is supposed to behave like a
timed model M = (E, T ) with E the set of dated event
trajectories of the system (i.e. the system language) and
T the set of time constraints between the occurrence
dates of the events (see Figure 2). Among the events
produced by the system some of them are observable as
well as their occurrence date so that an observable timed
model (EOBS , TOBS) can be characterized out of M by



projection. Any trajectory σOBS ∈ EOBS results from
the observable projection POBS(σ) where σ is a trajectory
of E. POBS is the classical projection operator of each
trajectory σ that only retains in σOBS the observable
events of σ(Sampath et al. (1995)). The set of temporal
constraints restricted to observable events TOBS is obtained
by considering T as a system of inequalities where the dates
of unobservable events occurrences are removed by the basic
inequalities operations (see Section 6). Finally,WOBS is the
set of observable trajectories that the system can generate
(without taking the events date into account).
In a chronicle based diagnosis approach, the knowledge
that is available about the system is gathered into a set of
chronicles, also called a chronicle base. A chronicle model
c is a pair (S, T ) where S is a set of observable events and
T a set of constraints between their occurrence dates. To
define a chronicle model, a human-friendly language has
been developed (Dousson et al. (1993)) based on predicates
like evt, noevt, occurs... see Section 3.2. The set of
trajectories of the system leading to the recognition of the
chronicle c is called the recognition language L(c). Each
chronicle is also associated to its observable recognition
language C, that is the set of observable projections of
any trajectory of L(c). Each abnormal situation or fault
f (i.e. a fault event like in (Sampath et al. (1995)) or a
fault pattern like in Jéron et al. (2006) or in Khoumsi
and Ouédraogo (2009)) has a signature Sig(f) that is the
observable behavior of the system when the fault occurs.
A chronicle model c(f) is associated to a fault f when its
observable recognition language Cf is a subset of the fault
signature Cf ⊆ Sig(f).

2.2 General principle of the analysis

In Pencolé and Subias (2009), under the single fault
assumption, checking the diagnosability of a fault f relying
only on a set of chronicles requires checking whether
two chronicles c(f) and c(f ′) are exclusive or not. Two
chronicles are exclusive if they cannot be recognized with
the same flow of event instances. It has been shown that the
proposed exclusiveness analysis can be performed relying
on two kinds of inputs:
• Check for the non exclusiveness of chronicles c(f1)
and c(f2): if Cf1 ∩ Cf2 6= ∅ then f1 and f2 are not
diagnosable.
• Check for the non exclusiveness between a chronicle
c(f) and a non faulty model of the monitored system
c(f0): if Cf ∩ Cf0 6= ∅ then f is not diagnosable and
more precisely f is not detectable.

Note that in the case where Cf = Sig(f) checking for
the exclusiveness allows to conclude on the diagnosability
property. We propose in this paper a fully automated and
formal method to perform these exclusiveness tests based
on the available chronicle base and the system modelM.
This method relies on three main steps:
Translation: The objective of this step is to translate

each chronicle model into Labeled Time Petri Net with
Priorities (LTPNPr). Labels are used for modeling the
events in the chronicle and priorities are introduced
to manage conflicts due to time evolution. This step
is developed in Section 3. Note that the objective of

this step is not to model a chronicle instance or the
recognition language of the chronicle model: the Petri
Net represents the chronicle model and the part of the
recognition language that is relevant to diagnosability.
The chronicle model gives the shortest words of the
recognition language that are considered as a faulty (or
normal) manifestation. The modeling of these words is
sufficient for exclusiveness analysis: at least one of these
words must be recognized to claim the fault occurred.
Several works address the modeling problem of chronicle
recognition relying on modeling tools such as colored
Petri nets (Bertrand et al. (2007)).

Product: The exclusiveness test aims to check that the
chronicles cannot be recognized by a common trajectory
of events. This step aims to construct from the LTPNPr
model of each translated chronicle a unique LTPNPr
(called product) that models the possible common behav-
iors with synchronized events (see Section 4).

Exclusiveness test: The exclusiveness analysis must deal
with an important number of trajectories that may
induce the chronicle recognition what is called chronicle
instances. These chronicles instances correspond to the
marked behaviors of the Petri Net. Thus, coping with
the time aspects in terms of delays requires to face to
unlimited state space as the complete enumeration of the
possible instances of each chronicle is not realistic. Our
proposal is to consider a time abstraction of the different
instances of a chronicle and to perform the exclusiveness
analysis on this time abstraction. The State Class Graph
(SCG) of Time Petri Nets gives this finite abstraction.

3. TRANSLATION OF CHRONICLES

3.1 Labeled Time Petri Net with Priorities

Time Petri Nets (TPNs) is a prominent tool to model
TDES as several effective analysis methods have been
proposed (P.M. Merlin (1976), Berthomieu and Vernadat
(2003)). TPNs extend Petri nets with temporal intervals
associated to transitions. Firing delay ranges are associated
to transitions. A TPN is a tuple 〈P, T, Pre, Post,m0, Is〉 in
which 〈P, T, Pre, Post,m0〉 is a Petri net with P the set of
places, T the set of transitions, m0 the initial marking and
Pre, Post the forward and backward incidence functions.
Is : T → I+ is the Static Interval function that associates
a time interval to each transition of the net. I+ is the
set of non empty real intervals with non-negative rational
end-points. The left-end-point (resp. right-end-point) of
the interval associated to a transition t is the static earliest
(resp. latest) firing date of t. A TPN state is a couple
s = (m, I) in which m is a marking and I : T → I+ is
a function associating a time interval to each transition
enabled bym. Initially, s0 = (m0, I0) with I0 the restriction
of Is to the transitions enabled by m0. Every enabled
transition must be fired in the associated interval. This
interval is relative to the enabling date of the transition and
depends on the date of the last transition firing. Firing a
transition t after a delay θ from state s = (m, I) is possible
iff:

m ≥ Pre(t) ∧ θ ∈ I(t)
∧(∀t′ 6= t), (m ≥ Pre(t′)⇒ θ ≤ sup(I(t′))).

The state s′ = (m′, I ′) reached by firing the transition t is:



• the new marking m′ classically defined by m′ = m−
Pre(t) + Post(t)
• for every transition t′ enabled by m′:

(1) I ′(t′) = I(t′)−θ if t′ 6= t andm−Pre(t) ≥ Pre(t′):
the firing of t′ is not affected by the firing of t

(2) I ′(tr) = Is(tr) otherwise.
Time Petri Net with Priorities (TPNPr) is an extension of
TPN in which a priority relation on transitions is defined
(Berthomieu et al. (2006)). In TPNs the time elapse can
only increase the number of firable transitions; the firing
of a transition cannot be forbidden by the time elapse.
Priorities are used to complete firing conditions. In a
TPNPr a transition t may fire from a state s = (m, I)
if t is enabled by the marking m, firable instantly and if no
transition with higher priority satisfies these conditions.
A marked LTPNPr is a tuple 〈P, T,Pre,Post,�, `, Is,m0〉,
with:
• 〈P, T,Pre,Post, Is,m0〉: a marked Time Petri net;
• �: T → T : the priority relation, irreflexive, asymmet-
ric and transitive, defined by its graph Gr(�);
• ` : T → X ∪ {λ}: the labeling application, where X is
an alphabet and λ the empty sequence

Instead of translating each chronicle to a specific LTPNPr,
we propose in this section, to develop a direct and
systematic method to switch from any chronicle to the
corresponding LTPNPr. For this, we consider several basic
patterns from which a chronicle model can be composed and
several systematic combination templates of these patterns.

3.2 Basic chronicle patterns

We consider six basic patterns derived from the chronicles’
description language (Dousson et al. (1993)).
evt(a, t) ∧ t ∈ [α,+∞[: an event a occurs after α time

units;
evt(a, t) ∧ t ∈ [α, β[: an event a occurs between α and β
time units;

evt(a, t) ∧ noevent(b, [0, t[): an event a occurs without
any prior event b;

noevt(a, [α, β[): no event a occurs between α and β time
units;

evt(a, t) ∧ occurs((m,+∞),b, [0, t[): an event a occurs
after at least m events b;

evt(a, t) ∧ occurs((m,n),b, [0, t[): an event a occurs af-
ter at least m and at most n events b;

Due to the lack of space, we only detail here the translation
of the basic pattern evt(a, t) ∧ occurs((m,n),b, [0, t[).
The other translations are simpler and can be found in
(Gougam (2011)). The associated LTPNPr is given below
and the graphical representation is given by figure 1:
• P = {pinit, p1, p2, p3, p4, pok}.
• T = {t1, t2, t3, t4, tok}.

• Pre =


1 1 0 0 0
0 m 0 0 0
0 0 1 1 1
0 0 0 n + 1−m 0
0 0 0 0 0
0 0 0 0 0

, Post =


1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
• Gr(�) = {(t2, t1), (t4, t3), (t4, tok)}.

•


`(t1) = b

`(t2) = λ

`(t3) = b

`(t4) = λ

`(tok) = a

,


Is(t1) = [0,+∞[
Is(t2) = [0, 0]
Is(t3) = [0,+∞[
Is(t4) = [0, 0]
Is(tok) = [0,+∞[

.

• m0(p) =
{

1 if p = pinit

0 otherwise .

pinit

t1 b

p1

[0, 0] t2

p2

bt3

p3

[0, 0] t4

p4

atok

pok

m

n−m+ 1

Fig. 1. evt(a, t) ∧ occurs((m,n),b, [0, t[)

The chronicle is recognized if all the “pok” places are
marked. Initially, the place pinit is marked and m events
of type b are expected to fire the transition t2. Then, if at
least n−m+1 events b occur — i.e. a total of at least n+1
events b — the chronicle is not recognized. On the other
side, if an event a occurs before the n −m + 1 events b,
then the chronicle is recognized. Finally, priorities ensure
compliance of the LTPNPr with the chronicle bounds.

3.3 Pattern combinations

We consider three pattern combinations.
sequence(...): n fully ordered patterns, for example a

sequence of two events
C1: evt(a, t1) ∧ evt(b, t2) ∧ t2 − t1 ≥ 4.

divergence(...) an initial shared pattern precedes n par-
allel patterns, for example C2: evt(a, t0) ∧ evt(b, t3)∧
C1 ∧ t1 − t0 ≥ 4 ∧ t3 − t0 ≥ 5.

convergence(...) n parallel patterns precede a final
shared pattern, for example C3: evt(a, t0) ∧ evt(b, t3)∧
C1∧t3 − t0 ≥ 2 ∧ t2 − t3 ≥ 5.

We propose a systematic way to represent each of them. Let
n chronicle models ci, i ∈ {1, . . . , n} be represented by a
LTPNPr 〈Pi, Ti, P rei, Posti,�i, `i, Isi

,m0i〉 with piniti ∈
Pi and poki ∈ Pi. This LTPNPr of ci comes from the
representation of a basic pattern or the result of a previous
combination.
To get sequence(c1, . . . , cn), the place poki is merged with
piniti+1, formally:



• P =
⋃n

i=1 Pi\{pok1, ..., pokn−1} and T =
⋃n

i=1 Ti.

• Pre(p, t) =


Prei(poki, t)

if (p = piniti+1) and
(t∈Ti),∀i∈{1,...,n−1}

Prei(p, t) if (p, t) ∈ Pi × Ti,
∀i∈{1,...,n}

0 otherwise
.

• Post(p, t) =


Posti(poki, t)

if (p = piniti+1) and
(t∈Ti),∀i∈{1,...,n−1}

Posti(p, t) if (p, t) ∈ Pi × Ti,
∀i∈{1,...,n}

0 otherwise
.

• Gr(�) =
⋃n

i=1 Gr(�i).
• `(t) = `i(t) if (t ∈ Ti),∀i ∈ {1, ..., n}, with:
X =

⋃n
i=1 Xi.

• Is(t) = Isi
(t) if (t ∈ Ti),∀i ∈ {1, ..., n}.

• m0(p) =
{

1 if p = pinit1
0 otherwise .

divergence(c1, . . . , cn) requires adding a place pinit0 and
a transition t0, this latter will be the preceding transition
of all piniti places:
• P =

⋃n
i=1 Pi ∪ {pinit0} and T =

⋃n
i=1 Ti ∪ {t0}.

• Pre(p, t) =


Prei(p, t) if (p, t) ∈ Pi × Ti

1 if (p, t) = (pinit0, t0)
0 otherwise

,

∀i ∈ {1, ..., n}.

• Post(p, t) =


Posti(p, t) if (p, t) ∈ Pi × Ti

1 if (p, t) = (piniti, t0)
0 otherwise

,

∀i ∈ {1, ..., n}.
• Gr(�) =

⋃n
i=1 Gr(�i);

• `(t) =
{
`i(t) if t ∈ Ti

λ otherwise ,∀i ∈ {1, ..., n},

with: X =
⋃n

i=1 Xi.

• Is(t) =
{
Isi

(t) if t ∈ Ti

[0, 0] otherwise ,∀i ∈ {1, ..., n}.

• m0(p) =
{

1 if p = pinit0
0 otherwise .

convergence(c1, . . . , cn) is not detailed here due to the
lack of space but is defined in a very similar way, see
(Gougam (2011)).
The translation of any chronicle model will then consist in
recursively applying the correct pattern to the chronicle
model. For instance, the translation of C2 consists in apply-
ing sequence(...) to C1 first and then divergence(...)
on C2.

4. PRODUCT OF PETRI NET MODELS

As said previously the objective of this step is to represent
in a single model the common behavior of two chronicles but
also the independent behaviors of each chronicle. Indeed
the time intervals at the end of which two chronicles can be
recognized with the same event flow can take all the possible
relative positions of two intervals (disjunction, overlapping,
inclusion).We have then defined a specific product for
LTPNPrs obtained by adding transitions labeled with syn-
chronized events (common events) and by adding priorities
relations involving these new transitions if necessary. More
formally, let N1 = 〈P1, T1,Pre1,Post1,�1, `1, Is1 ,m10〉

and N2 = 〈P2, T2,Pre2,Post2, �2, `2, Is2 ,m20〉 be two
LTPNPrs, with: ∀t ∈ Ti, `i(t) 6= λ⇒ Is(t) = [0,+∞[.
Their product N1 ? N2 is the LTPNPr 〈P, T,Pre,Post,�
, `, Is,m0〉 defined as follows:
• P = P1 ∪ P2;
• T = T1 ∪ T2 ∪ Ts where, Ts is the set of synchronized

transitions:
Ts =

⋃
e∈X1∩X2

{t1‖t2 : ∃(t1, t2) ∈ (T1 × T2)

, with `1(t1) = `2(t2) = e};

• Pre(p, t) =



Pre1(p, t) if (p, t) ∈ P1 × T1
Pre2(p, t) if (p, t) ∈ P2 × T2
Pre1(p, t1) if p ∈ P1 ∧ t = t1‖t2 ∈ Ts

Pre2(p, t2) if p ∈ P2 ∧ t = t1‖t2 ∈ Ts

0 otherwise

;

• Post(p, t)=



Post1(p, t) if (p, t) ∈ P1 × T1
Post2(p, t) if (p, t) ∈ P2 × T2
Post1(p, t1) if p ∈ P1 ∧ t = t1‖t2 ∈ Ts

Post2(p, t2) if p ∈ P2 ∧ t = t1‖t2 ∈ Ts

0 otherwise

;

• Gr(�) = Gr(�1) ∪Gr(�2) ∪Grs, with:

Grs =
⋃

ts=t1‖t2


2⋃

i=1

 ⋃
(ti,t)∈Gr(�i)

{(ts, t)} ∪

⋃
(t,ti)∈Gr(�i)

{(t, ts)}

 ∪ {(ts, t1), (ts, t2)}

 ;

• `(t) =


`1(t) if t ∈ T1
`2(t) if t ∈ T2
`1(t1) if t = t1‖t2 ∈ Ts

, with: X = X1∪X2;

• Is(t) =


Is1(t) if t ∈ T1
Is2(t) if t ∈ T2
[0,∞[ if t ∈ Ts

;

• m0(p) =
{
m10(p) if p ∈ P1
m20(p) if p ∈ P2

.

An example of such a product is presented on Figure 4.

5. EXCLUSIVENESS ANALYSIS AND
DIAGNOSABILITY RESULTS

Let us consider SCf = {c1(f), . . . , cn(f)} a set of chronicles
associated to a fault f and a set of chronicles SCf ′ =
{c1(f ′), . . . , cn(f ′)} associated to a fault f ′. As previously
explained (see Section 2) checking the non exclusiveness
between at least one element of SCf and one element of
SCf ′ allows to conclude to the non diagnosability of the
faults f and f ′. The exclusiveness test is performed by
analyzing the State Class Graph of the product LTPNPr
built from two chronicles one wants to analyze. The State
Class Graph (SCG) is obtained by the grouping of the
LTPNPr states in terms of State Classes (Berthomieu and
Vernadat (2003)). The SCG allows to abstract the time
from the behavior of a TPN, therefore the transitions are
not labeled with time information (see Figure 5).
From the SCG we first extract WOK the set of trajectories
leading to the recognition of the two chronicles (i.e.



leading to the marking of the pok places). Then, each
of these trajectories is compared to WOBS in order to
conclude about the exclusiveness or not of the chronicles. If
WOK

⋂
WOBS = ∅ then the two chronicles are exclusive.

If furthermore the faulty behavior associated to f (resp
f ′) is totally recognized by SCf (resp SCf ′) then system
is diagnosable. If WOK

⋂
WOBS 6= ∅ the two chronicles

are not exclusive and the two faults f and f ′ are not
diagnosable. Moreover, the solution of the inequalities
system TOBS ∧ Tc gives the precise intervals where the two
chronicles are not exclusive. With Tc the time constraints
on the paths leading to the recognition of both chronicles.

6. EXAMPLE

We have the system of figure 2, where a and b are normal
observable events, σuo is a normal unobservable event
and f1, f2 are unobservable faults. We want to study its
diagnosability with the following base of chronicles:

• c0: ·
[0,8]−→ a (i.e. an event a occurs before 8 time units),

associated with the normal behaviour;
• c1: ·

[1,5]−→ b(i.e. an event b occurs between 1 and 5 time
units), associated with f1;
• c2: ·

[3,6]−→ b (i.e. an event b occurs after 3 and before 6
time units), associated with f2.

0

3 4

1 2

f1 [0, 3]

f2 [2, 4]
b [1, 2]

a [0, 8]

σuo [1, 3]

Fig. 2. The Model of the System

We have then: E = {(a, t1), (a, t1)(σuo, t2), (f1, t3),
(f1, t3)(b, t4), (f2, t5), (f2, t5)(b, t6)} with:

T ={0 ≤ t1 ≤ 8, 2 ≤ t2 − t1 ≤ 3, 0 ≤ t3 ≤ 3,
1 ≤ t4 − t3 ≤ 2, 2 ≤ t5 ≤ 4, 1 ≤ t6 − t5 ≤ 2}

To study the diagnosability of the system, we must study
the detectability of every fault, thus compare the chronicles
associated with the normal behaviour with every chronicle
associated with a fault, and then study the diagnosability
by comparing each fault to the others.
In our example, and for the sake of simplicity, we will
present the last step — i.e. comparison between faults.
The projection of the model over the observable space gives:

EOBS = {(a, t1), (b, t4), (b, t6)}
and:

TOBS =


0 ≤ t1 ≤ 8
1 ≤ t4 ≤ 5
3 ≤ t6 ≤ 6

Figure 3 gives the translation to LTPNPrs of the chronicles
c1 and c2.
For the chronicle c1, first the place pinit1 is marked. After
1 temporal unit, the transition t1 is fired. Then we have

pinit

t1 [1, 1]

[5, 5] b

pok

(a) c1

[3, 3]

[4, 4]b

pok
′

(b) c2

Fig. 3. Translation of the Chronicles
two possibilities, either an event b occurs before 5 time
units and in this case the chronicle is recognized, or no
event b occurs (before 5 time units) and the chronicle is
not recognized.
The same reasoning applies to the chronicle c2.
By applying the algorithm of the product previously
described, we obtain the LTPNPr of the figure 4.

p1

[1, 1]

p2

b[5, 5]

p3 pok

p′1

[3, 3]

p′2

b [4, 4]

p′3pok
′

b

Fig. 4. Product of the Previous LTPNPrs

We simply add a new transition labelled ‘b’ to represent
the synchronized progression of the two chronicles, and
put some priorities (represented by dashed arcs) to solve
conflicts. Indeed, the transition from which the arc comes
out has a higher priority than the transition in which the
arc comes in. Thus, in case of simultaneous activation, the
transition with a higher priority is triggered.

6.1 Results

Figures 5 represent the class graph of the product of the
LTPNPrs corresponding to c1 and c2.
The analysis is done through several steps.

Step 1 In the example, class 8 corresponds to the marking
of the places pok and p′ok (figure 4) i.e. the recognition of
the two chronicles. Two paths reach the class 8 (in bold on
figure 5), b and bb, so: Wok = {b, bb}.

Step 2 In the example: WOBS = {a, b},Wok = {b, bb} so
WI = Wok ∩WOBS = {b} 6= ∅

Step 3 We look for the set EOBS of event flow that can
be generated by the system with the words associated to
the paths belonging to Wok, i.e. with the elements of WI .
The system can generate two different flows ‘b’:



0

1

2 3

4

56

7

8

λ

λ

b

λ
b

λ
b

λ

b

class 0: p1, p
′
1 class 1: p1, p

′
2 class 2: p2, p

′
2

class 3: p1, p
′
4 class 7: p2, p

′
4 class 8: p4, p

′
4

Fig. 5. The Class Graph and the Marking of Some Classes

• when f1 happens:
s1OBS

= {(b, t4)} with: t1OBS
= { 3 ≤ t4 ≤ 6

• when f2 happens:
s2OBS

= {(b, t2)} with: t2OBS
= { 1 ≤ t2 ≤ 5

so: EOBS = s1OBS
∪ s2OBS

and TOBS = t1OBS
∧ t2OBS

.
We have to compare TOBS with Tc — the temporal
constraints associated with the flow Ec leading to the
recognition of both chronicles.

Step 4 The only path ‘b’ leading to the class 8, in our
case, is given by: Ec = {(b, t′1)} with: Tc =

{
3 ≤ t′1 ≤ 6

Now, we have to resolve the inequalities system TOBS ∧ Tc:
3 ≤ t4 ≤ 6
1 ≤ t2 ≤ 5
3 ≤ t′1 ≤ 6
t4 = t2 = t′1

What leads us to: 3 ≤ t′1 ≤ 5
So, for every flow (b, t′1) where 3 ≤ t′1 ≤ 5, the two chroni-
cles are not exclusive, so the system is not diagnosable. For
every other flow, the two chronicles are exclusive. In this
case, we can conclude on the diagnosability of the system
only if the observable recognition language of c1 (resp. c2)
is the signature of the fault f1 (resp. f2).

7. CONCLUSION

We presented, in this paper, a systematic chronicle-based
approach to analyze diagnosability of timed discrete events
systems. First, we developed a method to systematically
translate every chronicle to a labeled time Petri nets with
priorities, and perform mutual exclusiveness test based
on an adequate labeled time Petri nets with priorities
product. This method allows us to refine the results of the
diagnosability analyses.
A possible continuation of this work would be the study of
return on design, i.e. the modification of the chronicle base
or the system to suit our needs. Because the performed
analysis is valid only for the particular chronicle base,

meaning that changing the base can change the result of
the diagnosability analysis. So it may be interesting to
study the relation between the diagnosability analysis and
the choice of the chronicle base, thus helping in designing
the latter.
Finally, and since our method relies on the state graph
class analysis (we look for some particular paths in these
class graphs), we may consider another approach based on
formal verification method by transposing the problem to
a reachability analysis and using model checking methods
to conclude about the diagnosability.

REFERENCES
Berthomieu, B., Peres, F., and Vernadat, F. (2006). Bridg-

ing the gap between timed automata and bounded time
Petri nets. In Proceedings of Formal Modeling and
Analysis of Timed Systems (FORMATS’06), LCNS 4202.

Berthomieu, B. and Vernadat, F. (2003). State class
constructions for branching analyzis of systems. In Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS’03). Warsaw, Poland.

Bertrand, O., Carle, P., and Choppy, C. (2007). Chronicle
modelling using automata and colored Petri nets. In
18th Internation Workshop on Principles of Diagnosis
(DX’07), 243–248. Nashville, TN, USA.

Cordier, M. and Dousson, C. (2000). Alarm driven
monitoring based on chronicles. In 4th Sumposium on
Fault Detection Supervision and Safety for Technical
Processes (SafeProcess), 286–291. Budapest, Hungary.

Dousson, C., Gaborit, P., and Ghallab, M. (1993). Situation
recognition: representation and algorithms. In IJCAI:
International Joint Conference on Artificial Intelligence,
166–172. Chambéry, France.

Gougam, H. (2011). Diagnosticabilité des systèmes à
événement discrets à base de chroniques. Technical
report, Université Paul Sabatier.

Jéron, T., Marchand, H., Pinchinat, S., and Cordier, M.O.
(2006). Supervision patterns in discrete event systems
diagnosis. In WODES06: Workshop on Discrete Event
Systems.

Khoumsi, A. and Ouédraogo (2009). Diagnosis of faults in
real-time discrete event systems. In SAFEPROCESS’09,
1557–1562.

Laborie, P. and Krivine, J.P. (1997). Automatic generation
of chronicles and its application to alarm processing in
power distribution systems. In 8th international work-
shop of diagnosis (DX97). Mont Saint-Michel, France.

Pencolé, Y. and Subias, A. (2009). A chronicle-
based diagnosability approach for discrete timed-
event systems: Application to web-services. Jour-
nal of Universal Computer Science, 15(17), 3246–
3272. doi:http://www.jucs.org/doi?doi=10.3217/jucs-
015-17-3246.

P.M. Merlin, D.F. (1976). Recoverability of communication
protocols: Implication of a theoretical study. IEEE Trans.
Comm., 24(9), 1036–1043.

Sampath, M., Sengputa, R., Lafortune, S., Sinnamohideen,
K., and Teneketsis, D. (1995). Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Control,
40, 1555–1575.


