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Diagnosis and Supervision: Model-Based
Approaches

Marie-Odile Cordier, Philippe Dague, Yannick Pencolé
and Louise Travé-Massuyès

Abstract This chapter is devoted to diagnosis and supervision. It is organized as1

follows: after a section dedicated to the logical formalization of model-based diag-2

nosis, the focus is made on diagnosis of discrete event systems modeled by automata.3

In the last section, one presents more succinctly the works that allowed to make the4

bridge between the approaches proposed by the Artificial Intelligence community5

and those proposed by the Automatic Control community.6 AQ1

1 Introduction7

Diagnosis consists in observing a system (often by using sensors), in detecting from8

these observations possible dysfunctions or mode change (from normal to abnormal)9

and in identifying the fault(s) they evoke. Diagnosis can be carried out in the medical10

field but also in the industrial field or even the environmental, economic ones, etc.11

The first works in Artificial Intelligence (AI) dealing with diagnosis were, in the12

1980s, the expert systems based approaches, which appeared with the application13

to medical diagnosis and the Mycin system. These approaches relied on general on14

production rules whose condition part describes observable signs and symptoms and15

conclusion part the diagnoses they evoke. These associative approaches for diagno-16

sis have continued and gave rise to case-based reasoning approaches (see chapter17

“Case-Based Reasoning, Analogy, and Interpolation” of this volume) and, for18
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2 M.-O. Cordier et al.

dynamic systems, to chronicles (or scenarios) recognition approaches, where one19

associates to a set of temporally constrained events the diagnostic situation to which20

these events correspond.21

Despite their success, it has been often reproached associative approaches for cod-22

ing reasoning shortcuts, left without explanations capabilities relying on the function-23

ing of the system to be diagnosed. This motivated the introduction of model-based24

approaches, which rely on a description of the behavior of the supervised system,25

this model being possibly limited to the behavior of the so-called normal behavior26

of the system studied. It will be seen in the following that it is often relevant to join27

it, when available, fault models, describing also the behaviors resulting from the28

occurrence of a fault. One can distinguish between predictive models, which allow29

prediction of the system’s behavior, in particular the values observed by the sensors,30

and explanatory models, which allow explanation of observations resulting from the31

faults that occurred.32

Diagnosis problem interested a lot researchers in AI. It actually associates a mod-33

eling problem, therefore the choice of a formalism (based on logic, graphs or con-34

straints) for behavior representation of the system studied with its uncertainty and35

complexity, a diagnoses characterization problem and a heuristic algorithmic prob-36

lem for solving with satisfactory efficiency a task, which is most of the time NP-hard.37

And this field by the way influenced considerably AI research, since expert systems,38

default logic, fuzzy logic and non monotonic logics, constraints, causal graphs, qual-39

itative reasoning had often their first applications in this framework. As it will seen40

in this chapter, this field motivated also largely researchers in the Automatic Control41

field who, firstly more focused on control, expanded their interest to search of the42

causes of the dysfunctions detected.43

It can be finally noticed that diagnosis is not in general an end per se and that44

the issue is to “repair” the monitored system, which relates it directly to research in45

decision theory (see chapters “Multicriteria Decision Making” and “Decision Under46

Uncertainty” of this volume) and in planning (see chapter “Planning in Artificial47

Intelligence” of Volume 2). Last, diagnosis depends very directly on the means48

available for observing the system and research in diagnosis has direct links with49

systems design and observability and also their repairability if one is interested, as it50

is most often the case currently, in the design of autonomous and embedded systems,51

as well with their hardware features as their software ones.52

2 Logical Framework for Diagnosis53

The formalization of the theory of diagnosis at the end of the eighties has been54

firstly introduced separately regarding consistency-based diagnosis and regarding55

abductive diagnosis. In the first case, one requires only for a diagnosis, i.e., an56

assignment of behavioral modes – normal or abnormal – to each component of the57

system, to be consistent with the system model and the observations. In the second58

case, one requires additionally for a diagnosis to “explain”, jointly with the system59
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Diagnosis and Supervision: Model-Based Approaches 3

model, all or some of the observations. Initially, this second case was most often60

handled in the framework of “naturally abductive” models such as causal graphs or61

Bayesian models and called on concepts of set covering. It is only a bit later that62

both approaches converged, the logical framework allowing the whole spectrum from63

simple consistency to whole abductive to be expressed.64

2.1 Consistency-Based Logical Approach65

The theory of consistency-based diagnosis was expressed for the first time in a logical66

framework, which will no longer vary afterwards, in Reiter (1987). This framework67

claims to be valid for any system structurally described in terms of components, the68

model of the system being assumed to be given by a first-order theory. One assumes69

likewise to have available a (sound and complete) first-order solver for checking70

inconsistency, which, in its whole generality, can be only a semi-algorithm as first-71

order theory is undecidable. The theory developed is completely independent from72

the choice of this solver, that we can suppose adapted to such and such actual systems73

modeling formalism according to their characteristics (but the practical tasks of aid to74

modeling and to inference algorithms specification are not tackled in this framework).75

On the other hand, the expression and the computation of diagnoses themselves from76

the results of the solver come under propositional logic, as the target vocabulary –77

components normality or abnormality – is propositional.78

Definition 1 A system is a pair (SD, COMPS) where SD, the system description, is a79

finite set of first-order sentences (with equality) and COMPS, the system components,80

is a finite set of constants.81

An observations set OBS is a finite set of first-order sentences (with equality).82

An observed system is a triple (SD, COMPS, OBS) where (SD, COMPS) is a83

system and OBS an observations set.84

The elements of COMPS, which are the subjects of the diagnosis, appear in SD85

and possibly in OBS. The behavioral mode or diagnostic status of each component is86

represented by a distinguished unary predicate AB(.), historically borrowed from the87

circonscription theory (McCarthy 1986), which is interpreted as signifying abnormal.88

The assumptions about components modes, which determine their behaviors, are thus89

made explicit in SD (nothing forbids AB(.) to appear also in OBS, but in practice it is90

always possible to transfer such an occurrence into SD). Typically, SD formulas code91

from one side the behavioral models of the generic components (library reusable for92

any system using the same components), in the form:93

COMPONENT_TYPE(x) ∧ ¬AB(x) ⇒ Correct_model(x)94

/* correct functioning mode */95

COMPONENT_TYPE(x) ∧ AB(x) ⇒96

Fault_model_1(x)∨ ... ∨ Fault_model_n(x) ∨ U(x)97
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4 M.-O. Cordier et al.

/* Fault modes */98

¬Correct_model(x) ∨ ¬Fault_model_1(x), …,99

¬Fault_model_1(x) ∨ ¬Fault_model_2(x), …100

/* exclusion in twos of the different behaviors*/101

and from the other side the structural description of the system into its components102

in the form of ground formulas:103

INVERTER(C1), OR_GATE(C2), =(output(C1), input1(C2))104

RESISTOR(C3), =(resistance(C3),150).105

Correct_model(x) is a formula that expresses the normal behavior of com-106

ponent x, while Fault_model_i(x) is a formula that expresses the behavior107

of component x for the fault mode i. The predicate U(x) is added to represent108

the unknown fault mode, thus not accompanied by any model, in order to express109

that the knowledge of the fault modes cannot claim in general to be exhaustive. It110

is important to notice that, as the theoretical framework does not assume anything111

about the nature of the formulas in SD, nothing requires modeling faults and one can112

be satisfied with the only correct functioning models. By the way, it is this idea that113

prevailed at the origin of model-based diagnosis: show that, unlike all the previous114

approaches (in particular expert systems) based on the knowledge of the faults and115

their effects, it was possible to do diagnosis without any prior knowledge of faults116

and symptoms.117

As for the formulas in OBS, they describe measurements and are in general ground118

(but this is not mandatory), for example: =(port2(C3),2.63).119

A diagnosis is a mode assignment, normal or abnormal, to each component, which120

is consistent with both the system description and the observations. According to the121

context, a diagnosis will be identified either to a subset Δ of components (those that122

are abnormal) or to a conjunction D(Δ) of AB-literals, where the correspondence123

between Δ ⊆ COMPS and D(Δ) is defined by:124

D(Δ) = (∧AB(C)|C ∈ Δ) ∧ (∧¬AB(C)|C ∈ COMPS \ Δ).125

Definition 2 A diagnosis for (SD, COMPS, OBS) is a D(Δ) with Δ ⊆ COMPS126

such that: SD ∪ OBS ∪ {D(Δ)} �|= ⊥.127

As there are potentially 2|COMPS| possible diagnoses, one is often led to apply a128

parsimony principle and to be interested only in those diagnoses which are minimal129

for set inclusion (the subset of minimal size diagnoses may also be considered, but130

it is not in general the relevant concept).131

Definition 3 A minimal diagnosis is a diagnosis D(Δ) such that ∀Δ′ ⊂ Δ, D(Δ′)132

is not a diagnosis.133
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Diagnosis and Supervision: Model-Based Approaches 5

Remark 1 A diagnosis for (SD, COMPS, OBS) exists if and only if SD ∪ OBS is134

satisfiable, which will be always assumed in the following (otherwise, it means the135

model has to be revised). ∅ (i.e., (∧¬AB(C)|C ∈ COMPS)) is a diagnosis (and the136

only minimal diagnosis) if and only if the observations are consistent with the correct137

functioning of all the components. Therefore fault detection occurs when ∅ is no more138

a diagnosis.139

In order to locate the fault(s) after detection, it is natural to be interested in subsets140

of components – the minimal ones for set inclusion if possible – whose correct modes141

are by themselves (independently of the modes of the other components) inconsistent142

with the system model and the observations.143

Definition 4 A conflict set for (SD, COMPS, OBS) is a set C ⊆ COMPS such that144

SD ∪ OBS ∪ {¬AB(C)|C ∈ C } |= ⊥. A minimal conflict set is a conflict set C such145

that ∀C ′ ⊂ C , C ′ is not a conflict set.146

Each conflict set contains thus at least one abnormal component. Consequently147

a diagnosis Δ must have a nonempty intersection with each conflict set (one can148

restrain oneself to minimal ones).149

Definition 5 Let K be a sets collection. A hitting set for K is a set I ⊆ ∪E ∈K E150

such that ∀E ∈ K ,I ∩ E �= ∅. A minimal hitting set is a hitting set I such that151

∀I ′ ⊂ I , I ′ is not a hitting set.152

Theorem 1 (Characterization of minimal diagnoses) Δ ⊆ COMPS is a minimal153

diagnosis for (SD, COMPS, OBS) if and only if Δ is a minimal hitting set for the154

collection K of minimal conflict sets for (SD, COMPS, OBS).155

Theorem 1 provides an operational method for computing minimal diagnoses:156

one begins by computing all minimal conflict sets, then one computes the minimal157

hitting sets of the collection obtained in this way. An algorithm has been proposed158

by Reiter (1987) and corrected by Greiner et al. (1989), based on the construction159

and pruning of an acyclic direct graph (whose nodes are elements of K and labels of160

paths from the root to the leaves are the minimal hitting sets). As for the computation161

of all minimal conflict sets that involves an unsatisfiability test, it is in all generality162

a problem which is only semi-decidable; in practice, for real systems models, one163

deals with decidable fragments but the complexity class is in general NP-hard. An164

obvious but very inefficient algorithm would be to generate potential conflict sets165

candidates by a breadth first search of the lattice of subsets of COMPS, beginning by166

COMPS (detecting a fault boils down to show that COMPS is a conflict set and thus167

that ∅ is not a diagnosis), and continue by exploring the subsets of a set each time it168

has been proved to be a conflict set. This algorithm is improved by coupling conflict169

sets generation and minimal hitting sets computation: the call to the unsatisfiability170

checking solver is done at each node of the graph being developed by passing it as171

argument the conflict set candidate made up of the components that do not appear in172

the label of the path from the root to the node in question. One takes also advantage173

of the fact that the solvers (e.g., the resolution-based refutation method) may return,174
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6 M.-O. Cordier et al.

in case of unsatisfiability, the support of a refutation in the form of a conflict set that175

is in general strictly included into the conflict set passed as argument, which is used176

to label the node in question.177

Actually, the most popular diagnostic architecture adopted by the majority of real178

implementations is the GDE (General Diagnostic Engine), introduced in De Kleer179

and Williams (1987) (simultaneously and independently from Reiter 1987). It rests180

on the coupling of a problem solver and an ATMS (Assumption-based Truth Main-181

tenance System). Generally, the solver is based on constraints propagation: it prop-182

agates the values provided by OBS through the constraints expressing the system183

model SD (such a representation in the form of constraints, in particular equations184

from physics, is closer from models found in engineering than a first-order logic185

representation); that way it computes the output values of a component from its186

behavioral model equations and its input values. In this case the justifications trans-187

mitted to the ATMS are Horn clauses and the ATMS handles assumptions (namely the188

modes AB(C) or ¬AB(C) of each component) management by computing the labels189

(disjunctions of environments, where each environment is a conjunction of assump-190

tions), supports of each statement inferred by the solver, in particular the nogoods,191

those environments that are the supports of ⊥, i.e., the inconsistent assumptions sets.192

The framework of De Kleer and Williams (1987) is limited to the exclusive use of193

correct functioning modes: in the absence of faults modes, the assumptions are thus194

all of the type ¬AB(C), which can be simply encoded by the propositional symbol195

C. In this framework and with this representation of assumptions, one obtains thus196

an equivalence between nogoods and conflict sets.197

Property 1 If only behaviors expressing necessary conditions of correct functioning198

are modeled in SD and the assumptions ¬AB(C) are coded by the symbols C, then199

the minimal nogoods computed by an ATMS are exactly the minimal conflict sets.200

Moreover, in the absence of faults modes, one observes that changing, inside a201

minimal diagnosis Δ, the status ¬AB(C) of a component C in COMPS \ Δ into202

AB(C) cannot create any inconsistency, as no inference can be done from AB(C).203

One obtains thus in this case a complete characterization of the set of diagnoses from204

the set of minimal diagnoses.205

Property 2 If only behaviors expressing necessary conditions of correct functioning206

are modeled in SD, then any superset of a diagnosis is a diagnosis. The diagnoses207

are thus exactly all supersets of the minimal diagnoses.208

In general, propagation is not a complete algorithm and one has to resort to more209

general constraints solvers, which lead to justifications that are no longer necessarily210

Horn clauses. In this case, and also for the explicit handling of the negation in the211

assumptions if faults modes are considered, an ATMS is no more sufficient and one212

has to use a CMS (Clause Management System) and to adapt the computation of the213

hitting sets.214

To go further in the characterization of the set of diagnoses in the presence of faults215

modes, the concept of conflict set has to be generalized. For this, it is beneficial to216
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Diagnosis and Supervision: Model-Based Approaches 7

move from a set representation of a conflict to a logical representation in the form of217

a clause, more precisely a positive AB-clause (disjonction of positive AB-literals).218

Remark 2 A conflict set for (SD, COMPS, OBS) identifies with a positive AB-clause219

∨C∈COMPSAB(C) entailed by SD ∪ OBS:220

SD ∪ OBS |= ∨C∈COMPSAB(C).221

Hence the immediate generalization:222

Definition 6 A conflict for (SD, COMPS, OBS) is an AB-clause entailed by SD ∪223

OBS, i.e., an AB-clause which is an implicate of SD ∪ OBS. A positive conflict is a224

conflict whose all literals are positive. A minimal conflict is a prime implicate, i.e.,225

a conflict whose no proper sub-clause is a conflict.226

With this definition, the (minimal) conflict sets identify with the (minimal) pos-227

itive conflicts. Thus the (minimal) hitting sets for the collection of minimal conflict228

sets identify with the (prime) implicants of the collection of minimal positive con-229

flicts: one just has to identify the hitting set Δ with the AB-conjunction ∧C∈ΔAB(C).230

Moving from the set representation to the logical representation theorem 1 rephrases231

thus as:232

Theorem 2 D(Δ) is a minimal diagnosis for (SD, COMPS, OBS) if and only if233

∧C∈ΔAB(C) is a prime implicant of the collection of positive minimal conflicts for234

(SD, COMPS, OBS).235

It is important to notice that as and when new observations appear, i.e., the set OBS236

is growing, the collection of positive conflicts increases as well and as a result some237

prime implicants do not remain any more in general. That is to say that some mini-238

mal diagnoses disappear and are replaced by other ones (involving more abnormal239

components). This means that the diagnostic process is non-monotonic as a function240

of the observations. This non-monotony is essential and actually it exists a close241

relationship between the diagnosis theory and the default logic (see chapter “Knowl-242

edge Representation: Modalities, Conditionals, and Nonmonotonic Reasoning” of243

this volume): one expresses that the components are correct in the form of (normal)244

defaults and one obtains a bijection between minimal diagnoses and extensions of245

the default theory built in this way.246

Property 3 Let (SD, COMPS, OBS) be an observed system. Let DT be the following247

default theory: DT = ({: ¬AB(C)/¬AB(C)|C ∈ COMPS}, SD ∪ OBS). Then E is248

an extension of DT if and only if E = {π |SD ∪ OBS ∪ D(Δ) |= π} where D(Δ) is a249

minimal diagnosis for (SD, COMPS, OBS).250

The logical generalization of the concept of conflict allows one to characterize251

the set of all diagnoses, and not only of minimal diagnoses. One begins by defining252

a compact representation of the diagnoses, by considering the partial modes assign-253

ments to part of the components, such that all their extensions (by the modes normal254

or abnormal indifferently) to the rest of the components are diagnoses.255
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8 M.-O. Cordier et al.

Definition 7 A partial diagnosis for (SD, COMPS, OBS) is a satisfiable conjunction256

P of AB-literals such that, for any satisfiable conjunction P′ of AB-literals containing257

P as a sub-conjunction, SD ∪ OBS ∪ {P′} �|= ⊥. A kernel diagnosis is a minimal258

partial diagnosis, i.e., none of its proper sub-conjunctions is a partial diagnosis.259

With this definition, the kernel diagnoses provide a compact representation of all260

the diagnoses, these ones being exactly the total extensions of the kernel diagnoses.261

Property 4 (Characterization of the diagnoses) D(Δ) is a diagnosis if and only if it262

exists a sub-conjunction of D(Δ) which is a kernel diagnosis.263

Theorem 2 that characterizes the minimal diagnoses in terms of the positive con-264

flicts is generalized as a characterization of the kernel diagnoses (and thus of all the265

diagnoses) in terms of the conflicts.266

Theorem 3 (Characterization of the partial and kernel diagnoses) The partial diag-267

noses (resp. kernel diagnoses) for (SD, COMPS, OBS) are the implicants (resp.268

prime implicants) of the collection of minimal conflicts for (SD, COMPS, OBS).269

Note that this theorem shows that the collection (in the disjunctive sense) of the270

kernel diagnoses, as a disjunctive normal form, is analogous to the collection (in the271

conjunctive sense) of the minimal conflicts, as a conjunctive normal form.272

A sufficient condition guaranteeing that any superset of a diagnosis is a diagnosis273

has been given by the Property 2. Theorems 1 and 3 allow one to clarify the rela-274

tionship between this property of closure of the diagnoses collection by the superset275

operation, and thus the complete characterization of diagnoses in terms of minimal276

diagnoses, and the nature of the conflicts.277

Property 5 There is a one-to-one correspondence between the kernel diagnoses and278

the minimal diagnoses (by extending any kernel diagnosis by the normal mode of279

all the components that it does not contain) if and only if all minimal conflicts are280

positive. More precisely, the two following statements are equivalent:281

1. any superset of a minimal diagnosis is a diagnosis, i.e., if D(Δ) is a minimal282

diagnosis then ∀Δ’ such that Δ ⊆ Δ′ ⊆ COMPS, D(Δ′) is a diagnosis;283

2. all minimal conflicts for (SD, COMPS, OBS) are positive.284

Unfortunately one does not know an equivalent of the second statement of this285

property in terms of a syntactic characterization of SD ∪ OBS. Only sufficient con-286

ditions guaranteeing the positivity of the minimal conflicts do exist, in the form of287

restrictions on SD ∪ OBS. The most obvious one is to impose that any occurrence288

of an AB-literal in SD ∪ OBS, put in conjunctive normal form, be positive. It is sat-289

isfied as soon as only the correct behavior of components is modeled, in the form of290

necessary conditions, which is the assumption of the Property 2.291

Let add that in practice one limits oneself to compute the preferred diagnoses,292

according to a given criterion. It can be for example a probabilistic criterion if293

prior probabilities of the components behavioral modes are available. Diagnoses can294

420043_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:15/12/2018 Pages: 35 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Diagnosis and Supervision: Model-Based Approaches 9

thus be generated in decreasing probability rank by using Bayes rule for evaluating295

conditional probabilities after each observation. One can use quantitative probabili-296

ties but also content oneself with relative orders of magnitude between probabilities.297

It can be also an explanatory criterion (see Sect. 2.2). Most of the time the preferred298

diagnoses are minimal and the selection according to the chosen preference criterion299

is thus done among minimal diagnoses, even for a model for which it is known that300

minimal diagnoses are not enough to characterize all diagnoses.301

2.2 Abductive Approach302

Graphs Based Approach303

The very first approaches for diagnosis relied on causal models (see chapter “A304

Glance at Causality Theories for Artificial Intelligence” of this volume) representing305

in the form of arcs the causal relationships between the faults situations (D, for306

defects) that could affect the system and their effects, in particular their observable307

ones (M, for manifestations). Among these works, one can quote those from Reggia308

et al. (1983), Peng and Reggia (1990) which propose to use the covering sets theory to309

characterize the diagnoses. Arcs and nodes are associated to conditional probabilities310

and a plausibility measure is computed to rank the diagnoses.311

Abductive Logical Approach312

A limitation of the diagnosis approaches that are exclusively abductive is that they313

suppose a priori the “completeness” of the causal model, which has to describe all314

the faults and all the manifestations of these faults. An attempt to overcome this315

limitation is to take into account uncertain causal relationships by distinguishing316

strong causal link and weak causal link. Another one is, after having analyzed the317

differences between abductive and consistency-based approaches (Poole 1989), to318

try to reconcile them (Console and Torasso 1990). The idea is to distinguish among319

the observations those that the model has to explain (for example, the abnormal320

observations) from those whose only the consistency with the model is required (for321

example the exogenous or normal observations). It is examined in the papers (Console322

and Torasso 1991; Ten Teije and Van Harmelen 1994) which propose a synthesis of the323

various definitions that may result from it. This can be expressed in the same logical324

framework than previously by a logical diagnosis theory extending consistency-based325

diagnosis by abductive diagnosis. Similarly to Sect. 2.1, the following definitions,326

properties and theorems are obtained.327

Definition 8 Let (SD, COMPS, OBS) be an observed system and OBS = I ∪ O a328

partition of OBS, where O are those observations one wants to explain. An abductive329

diagnosis for (SD, COMPS, I ∪ O) is a D(Δ) with Δ ⊆ COMPS such that: SD ∪330

I ∪ {D(Δ)} �|= ⊥ and SD ∪ I ∪ {D(Δ)} |= O.331
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10 M.-O. Cordier et al.

Definition 9 A partial abductive diagnosis for (SD, COMPS, I ∪ O) is a satisfiable332

conjunction P of AB-literals such that, for any satisfiable conjunction P′ of AB-literals333

containing P as a sub-conjunction, SD ∪ I ∪ {P′} �|= ⊥ and SD ∪ I ∪ {P′} |= O. A334

kernel abductive diagnosis is a minimal partial abductive diagnosis, i.e., such that335

none of its proper sub-disjunctions is a partial abductive diagnosis.336

Property 6 (Characterization of the abductive diagnoses) D(Δ) is an abductive337

diagnosis if and only if it exists a sub-conjunction of D(Δ) which is a kernel abductive338

diagnosis.339

Theorem 4 (Characterization of the kernel abductive diagnoses) Assume that SD,340

I and O are finite sets of formulas (each one being thus represented by a unique for-341

mula resulting from the conjunction of its elements). The kernel abductive diagnoses342

for (SD, COMPS, I ∪ O) are the prime implicants of � ∧ {(SD ∧ I) ⇒ O}, where343

� is the conjunction of the minimal conflicts for (SD, COMPS, I ∪ O).344

Notice that the logical concept of observations entailment used by the abductive345

diagnosis is unsuitable as soon as the observations are more precise than the predic-346

tions made from the models: one has in this case to resort to an abstraction of the347

observations (Cordier 1998; Besnard and Cordier 1994), represented by an observa-348

tions lattice, and extend the definition of abductive diagnosis to that of explanatory349

diagnosis (explaining at best the observations).350

2.3 Extensions351

After having presented the formal framework of logical diagnosis, we quote rapidly352

below the issues that gave rise to later works.353

When the number of diagnosis candidates is too large, it is important to use354

preference criteria to rank them. It is thus possible to generate the most probable355

diagnoses, from the prior faults probabilities (possibly qualitative) and use of Bayes356

rule (De Kleer 1992, 2006). One may also turn towards the sequential diagnosis,357

which consists in taking advantage of a succession of observations for reducing358

gradually the number of diagnoses. Some works had for purpose the choice of the359

best (in the sense of information theory, i.e., minimizing an entropy function) next360

observation in the framework of the sequential diagnosis. This issue meets the one361

of active testing (Feldman et al. 2009; Siddiqi and Huang 2010).362

The diagnosis definitions and particularly the preferences (such as the proba-363

bilities) used to rank diagnoses are based in general on the assumption of faults364

independence. Some works are interested in the case of dependent faults such as365

cascading faults. A category of faults particularly difficult to diagnose is made up366

of faults affecting the structure (connectivity) of the system. Appear in this category367

the shortcuts between connections of a printed circuit board that result in hidden368

interactions (because not taken into account a priori in the model).369
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Diagnosis and Supervision: Model-Based Approaches 11

Rather early, when the application of the theory to real cases has been undertaken,370

arose the problem of handling uncertainty, both at the level of the model and at the371

level of the observations. It is especially important as the theory of consistency-based372

diagnosis only detects and makes explicit the causes of an inconsistency between373

the model of the system and the real system: inferring from that a malfunction of the374

system rests thus entirely on the correction of the model. Uncertainty is generally375

handled by resorting to an abstraction (Torta and Torasso 2003; Chittaro and Ranon376

2004), or by qualitative models (that come under another important field in AI, the377

qualitative reasoning (see chapter “Qualitative Reasoning” of this volume)), or by378

expressing the values of the model parameters and of the observations by numerical379

intervals. According to the case, qualitative simulation or interval-based CSP are380

used as solvers (Dague et al. 1990).381

Two research issues that emerged only at a later stage after the seminal works in382

the domain and are among the most active presently are diagnosability analysis and383

decentralized diagnostic architectures. The first, diagnosability, appeared around384

twenty years ago, arises from the assessment that the problem of designing and385

deploying a diagnostic architecture for a system must be tackled in advance at the386

very moment of the system design and not once the system has been produced and387

choices critical for the diagnosis, such as the number and the location of the sensors388

and thus the observation capacity of the system, have been fixed. For a given set of389

anticipated faults modeled in addition of the correct functioning of the system and a390

given set of observable quantities or events, the diagnosability analysis of the model391

answers the question to know if any occurrence of one of the faults will be always392

unambiguously identifiable in a finite time thanks to the observations only. Research393

in the field focused mainly on discrete event systems, modeled by transitions systems394

such as automata or Petri nets (see Sect. 3.6).395

The second, more recent, concerns the diagnostic architectures either decentral-396

ized (local diagnosers communicating with a diagnostic supervisor in charge of pro-397

viding the global diagnosis) or distributed (local diagnosers communicating between398

them for finding the global diagnosis), essential in particular for diagnosing systems399

that are by nature distributed (peer-to-peer networks, composite web services, etc.)400

but also systems made up of proprietary subsystems whose models are private for401

confidentiality reasons. Distribution may be related to the model, the observations,402

the algorithms, the software and hardware diagnostic architecture. Such architectures403

are presented in the case of discrete event systems in the Sect. 3.5.404

Among the important problems, one can quote the preventive diagnosis, which405

consists in being able to detect a problem to come, before it occurs. This issue received406

attention later, probably because of the difficulty to get predictive models (such as407

wear models). Approaches different from model-based ones will have probably to408

be used in this case.409

The issue of a tight coupling between diagnosis and repair or reconfiguration,410

critical in particular for autonomous systems, has been studied by using planning411

techniques (Sun and Weld 1993; Nejdl and Bachmayer 1993; Friedrich et al. 1994).412

A last, important and difficult, problem is taking time into account. It is presented413

in the Sect. 3.1 and illustrated by the discrete event systems in the Sect. 3.2.414
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12 M.-O. Cordier et al.

3 Diagnosis of Discrete Event Systems415

3.1 Temporal Representation and Diagnosis416

The previous section presents a theory that does not handle the representation of417

time and temporal reasoning. From this theory some extensions have been proposed418

that deal with several dimensions about time. Brusoni et al. propose in their paper419

A spectrum of definitions for temporal model-based diagnosis (Brusoni et al. 1998)420

a classification of these different extensions which take into account situations and421

successive observations as time-varying contexts; the system can also evolve between422

the production of two sets of observations (it is a time-varying behavior); faults can423

also produce observable effects after a given finite duration that can be represented as424

causal graphs (temporal behavior). Most of the time, these extensions can be repre-425

sented by adding a time variable in the SD formulas associated with time constraints.426

Time is therefore reified. In practice, given a representation of the problem, it is427

necessary to look for compatible solvers that can manage inference and consistency428

tests by dealing with the selected representation of time (continuous, discrete or even429

both in hybrid systems).430

Time variations in physical systems that are only due to system inputs do not431

add any new difficulty as this case can be interpreted as a discretized sequence of432

statical diagnosis problems. However, most of the systems are actually dynamical,433

they have internal states that memorize the past so that the behavior of the system434

not only depends on its current inputs but also on its current state. Time can be435

represented in a discretized way as a sequence of instantaneous events, in this case,436

the system is modeled as a discrete event system (see Sect. 3.2). Time can also437

be seen as a continuous variable that is described in differential equations, typically438

studied by the control theory community (FDI, see Sect. 4): AI and FDI methods have439

actually been compared (see Sect. 4). Based on the time granularity that is chosen in440

a model, continuous time can be symbolically abstracted as a set of instants that can441

be partially ordered, as time intervals, or as sequences of dates. In this last case, if442

the space of physical quantities is discrete, a concise representation of the temporal443

behavior can be done as a set of episodes, otherwise sequence of numerical intervals444

can be used. Some ATMS extensions are proposed to efficiently deal with these time445

data structures. It is possible to use the generic diagnosis theory that is described446

above by using an explicit variable that encodes time. However, the complexity447

of the model to acquire and the complexity of the inference and consistency test448

algorithms drastically increase. This theoretical framework can still be applied as449

long as the faults within the system are permanent (always present). If faults occur450

at the supervision time and if their effect is permanent after their occurrence, there451

is no fundamental changes as the evolution of the conflict sets is still monotonic.452

Dealing with intermittent faults is more difficult and is possible only if the evolution453

of such intermittent faults is slower than the evolution of the system itself and the454

speed of observation acquisition.455

420043_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:15/12/2018 Pages: 35 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Diagnosis and Supervision: Model-Based Approaches 13

Most of the contributions, even the ones dealing with time, aim at solving the456

diagnosis problem based on observation logs after the system has stopped: this is the457

off-line diagnosis problem. Then the AI and FDI communities independently started458

to develop some works about on-line diagnosis. The system is observed at operating459

time in order to react (repair, control) when a discrepancy with the expected behavior460

is detected and maintain an operating state that is as satisfactory as possible.461

Two types of methods can be distinguished.462

1. In chronicle recognition methods, the objective is to recognize, within the flow463

of observations, some observable patterns that caracterize faulty situations. A464

chronicle is a set of events associated with time constraints. Specialized algorithms465

perform on-line chronicle recognition so that a decision about how to react after466

a fault has been diagnosed can still be made at operating time (Dousson 1996;467

Carle et al. 2011).468

2. The second type of methods, that is typically model-based, relies on the behav-469

ioral description of the system but has to deal with the on-line observation flow470

incrementally. Assuming that only one fault has occurred or is permanent within471

the supervision time is not realistic as the supervision time is long. Moreover it472

must be considered that some faults are repaired during the supervision.473

In the next sub-section, we focus on the methods where the system is modeled as474

a discrete event system (DES). This type of models is particularly relevant when the475

underlying system reacts to events (reactive systems), such that the opening/closing476

of a valve, the reception of messages, the occurrence of a fault. This type of mod-477

els can also be relevant even if the system is continuous but can be discretized as478

a DES (Lunze 1994). From the initial work from Sampath et al. (1996), a set of479

contributions are proposed about the diagnosis of discrete event systems in the AI480

community as well as in the FDI community.481

3.2 Models of Discrete Event Systems482

A DES is a dynamical system whose state can be described by state variables and483

the domain of each variable is discrete. The behavior of the DES is caracterized by484

the occurrence of discrete events that instantaneously modify the internal state of485

the DES. This representation is obviously well-suited to describe systems that are486

naturally discrete, such as communication networks that aim at receiving, sending487

messages, automated production line systems that produce objects step by step, etc.488

But this representation is also well-suited for systems that can be discretized, resulting489

for example from a qualitative reasoning method (Travé-Massuyès and Dague 2003).490

To model DES, several formalisms from the language theory can be used such491

as the process algebra, Petri nets and automata. With the help of these formalisms,492

the behavioral language of the DES can be represented in a concise manner. In493

order to present and illustrate the diagnosis problem of DES, we use here the
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14 M.-O. Cordier et al.

formalism of transition system/automaton (see chapter “Theoretical Computer494

Science: Computational Complexity” of Volume 3) which has been used in most495

of the seminal works of the field.496

Definition 10 An automaton A is a 5-tuple 〈Q, E, T , I , F〉 such that497

• Q is a finite set of states,498

• E is a finite set of events,499

• T ⊆ Q × E × Q is a finite set of transitions 〈q, e, q′〉,500

• I ⊆ Q is a set of initial states,501

• F ⊆ Q is a set of final states.502

The event e over the transition t = 〈q, e, q′〉 triggers the transition. The language503

L(A) ⊆ E� generated by the automaton A is the set of event sequences from E which504

can be associated with a transition path in A from an initial state q0 of I to a final505

state of F , such a path is also called a trajectory.506

Definition 11 A trajectory of an automaton A = 〈Q, E, T , I , F〉 is a sequence of507

transitions traj = q0
e1→ . . .

em→ qm such that: q0 ∈ I , qm ∈ F , and ∀i ∈ {1, . . . , m},508

〈qi−1, ei, qi〉 ∈ T . A trajectory can also be denoted as 〈(q0, . . . , qm), (e1, . . . , em)〉.509

The set of possible behaviors of a system is represented as an automaton SD, each510

behavior being caracterized as a trajectory in SD.511

Definition 12 The model of the system is an automaton512

SD = 〈QSD, ESD, T SD, I SD, FSD〉.513

As any trajectory q0
e1→ . . .

em→ qm of the system depends on a previous trajectory514

of the system q0
e1→ . . .

em−1→ qm−1, the SD automaton can then be such that FSD = QSD
515

(any state is final). In other words, the language L(SD) is prefix-closed.516

In general, a DES can be modeled in a modular way as a set of n components517

COMPS = {C1, . . . , Cn} that define the structural model of the supervised system.518

Each component Ci is modeled as an automaton SDi = (Qi, Ei, Ti, Ii, Fi). The model519

of the system is obtained by applying a synchronized product on the automata520

(SDi)i={1,...,n}. The product relies on a set of synchronisation relations Sync that are521

generally a set of constraints ei = ej that model the fact that the event ei of Ci and the522

event ej of Cj must always occur at the same time. The global model SD is obtained523

by computing the subset of trajectories from the Cartesian product
∏n

i=1 SDi that is524

restricted to the trajectories when all the constraints of Sync are satisfied. This syn-525

chronized product is denoted ⊗Sync or simply ⊗ when the synchronisation constraints526

are defined without ambiguity. From this, it follows:527

SD = SD1 ⊗ · · · ⊗ SDn.528

420043_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:15/12/2018 Pages: 35 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Diagnosis and Supervision: Model-Based Approaches 15

3.3 Faults, Observations and Diagnosis of DES529

The automaton SD that represents the system, actually models its normal and530

abnormal behaviors, and especially the behaviors of interest in the monitoring531

task. The abnormal behaviors are modeled by labeling transitions with fault events532

ef ∈ F ⊆ ESD that represent the fact that the system starts to be faulty.533

Any diagnosis reasoning requires the observation of the system. In the context of534

the DES, observations are events, usually resulting from the generation of a piece535

of information from sensors. In a DES, there are observable events ESD
OBS ⊆ ESD and536

non-observable events ESD
¬OBS ⊆ ESD. Among the non-observable events, there are537

the fault events. Any trajectory τ of the system is then associated with its observable538

trace σ(τ) that is defined as the sequence of observable events that is produced when539

τ is indeed the trajectory realized by the system (projection of τ on the observable540

events ESD
OBS).541

If it is assumed that the observations of the system are perfectly known (no uncer-542

tainty about the observed event types and the observed dates), the observation of the543

system is then defined as a sequence of observable events.544

Definition 13 The observation of the system, denoted OBS, is the sequence of545

observable events that is produced by the system within the time frame of the diag-546

nosis reasoning.547

The diagnosis task consists in comparing the effective observation of the system548

with the prediction of the model as the possible set of observable traces, and then to549

determine the set of non-observable events (especially the fault events) that explain550

the current state of the system (Cordier and Thiébaux 1994).551

Definition 14 A diagnosis problem is described as a 3-uple (SD, OBS, F) where552

SD is the model of the system, OBS is the observation of the system et F is a set of553

fault events.554

In order to determine the faults, it is firstly necessary to search for the set of555

system’s trajectories in the model SD whose observable trace matches OBS exactly.556

Definition 15 (Trajectory Diagnosis) A diagnosis Δ for the problem (SD, OBS, F)557

is a trajectory of SD whose observable trace σ(Δ) is exactly OBS.558

With this definition, the diagnosis problem does not depend on faults (it can be559

defined as a couple (SD, OBS)). However, the diagnosis can also be defined in a560

more concise way as a set of faults. This second definition is closely related to the561

one for statical systems.562

Definition 16 (Fault Diagnosis) A diagnosis Δ of the problem (SD, OBS, F) is a563

set of faults Δ ⊆ F such that there exists a trajectory τ from SD that exactly contains564

the set of fault events Δ and its observable trace σ(τ) is exactly OBS.565

It can be noticed that the set of trajectory diagnoses of a system can also be repre-566

sented as an automaton, more precisely it is a sub-automaton of SD, each trajectory567

in it has an observable trace that is exactly OBS.568
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16 M.-O. Cordier et al.

Fig. 1 Model of the system,
ob, oc, r are the observable
events

1

2

3

4 5

6

7

8

ob

f

oc

oc

ob

e
ob
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ob

e

r

r

Fig. 2 Diagnoses of the
system (Fig. 1) given the
observed sequence
OBS1 = (oc, ob) 1

2 4 5 6

3 4 5

f

oc

oc e ob

ob e

Example 1 Figure 1 illustrates a system with a set of observable events ob, oc and569

r. If the observed sequence is OBS1 = (oc, ob), the set of diagnoses are the one570

presented as an automaton in Fig. 2, the fault f is not certain and the possible states571

of the system are 4, 5, 6. If the observed sequence is OBS2 = (oc, oc), the unique572

diagnosis is presented in Fig. 3: the occurrence of the fault f is indeed certain and573

the unique possible state is 7.574

An observation OBS consisting of a sequence of observed events can also be rep-575

resented as an automaton with one initial state and one final state. The diagnosis can576

then be computed by performing a synchronized product ⊗ between the automaton577

SD and the one that describes OBS. The synchronization constraints Sync are applied578

on the observable events: an observable event o must occur in SD and in OBS in the579

same order. Representing OBS this way is interesting as it can be extended to repre-580

sent uncertain observations. In this case the automaton OBS does not represent one581

sequence of observable events only but several possible sequences (Grastien et al.582

2005). From this follows the next theorem:583

Theorem 5 The automaton SD ⊗ OBS describes the set of trajectory diagnoses584

from the problem (SD, OBS).585

1 2 4 5 7
f oc e oc

Fig. 3 Diagnosis of the system (Fig. 1) given the observed sequence OBS2 = (oc, oc)
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Diagnosis and Supervision: Model-Based Approaches 17

3.4 Diagnoser Approach and Other Centralized Approaches586

One of the seminal works to compute diagnosis on DES is in Sampath et al. (1996) and587

is based on the computation of a diagnoser (see Fig. 4). A diagnoser is a deterministic588

automaton that describes the set of observable behaviors of the system in a similar589

way as an observer would do. It is built by ε-reduction from the automaton SD590

where ε represents any non-observable event of SD. A diagnoser transition is labeled591

with an observable event. A state of a diagnoser describes the set of states of SD592

that are reachable from its initial states and that are reachable by trajectories that593

produce the observable sequence. Associated with each state of SD the diagnoser594

state also records sets of fault events that have occurred on such trajectories. For595

a given sequence of observable events, the diagnoser state thus describes the set596

of possible reached states and the set of possible faults that have occurred before597

reaching one of these states.598

The diagnoser is a finite state machine that results from the off-line compilation599

of the diagnosis problem and its use for on-line diagnosis is performed by a simple600

algorithm. Indeed, the on-line algorithm consists in triggering the observed events601

of OBS in sequence and the result of the algorithm is contained in the diagnoser state602

that is reached. The problem of this method is about the time/space complexity of603

the computation of the diagnoser. In Marchand and Rozé (2002), Schumann et al.604

(2004), other computation methods have been proposed to improve the efficiency605

on average of the diagnoser computation. These methods rely on binary decision606

diagrams (BDD).607

Other methods use different formalisms to build an equivalent diagnoser such608

as communicating automata, Petri nets, process algebra (Rozé and Cordier 2002;609

Jiroveanu and Boel 2006; Console et al. 2002). Other works (Lamperti and Zanella610

2003) propose specialized data structures and specific algorithms to solve the diag-611

nosis problem. On the other hand, Grastien and Anbulagan (2013) propose the use612

Fig. 4 The global model SD
(with ESD

OBS = {o1, o2} and
F = {f1, f2}) (Top) and its
diagnoser (Down). Label N
(normal) means the absence
of any fault

1 2 3

4

e1

o1

f2

o2

f1

o1

(1, N) (1, N), (4, f1) (3, f2)
o1

o2

o2

o1 o2
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18 M.-O. Cordier et al.

of generic SAT techniques and translate the diagnosis problem into a succession of613

propositional formulas (CNF). It is also possible to use probabilistic models that can614

model the likelihood of transitions between states. One preference criteria is then615

to keep the transitions that are the most probable, this can be done for instance by616

applying the Viterbi algorithm such as in Aghasaryan et al. (1997).617

Three extensions of the classical diagnosis problem have been mainly investigated.618

In the first one, the hypothesis that OBS is certain is removed (Lamperti and Zanella619

2003; Grastien et al. 2005). It is, in this case, impossible to assert that there is a620

unique sequence of observations, either because the knowledge about the real order621

of the observed events is not perfect or because events can be lost or corrupted (noise).622

This might be due to imprecise or even faulty sensors, or the communication network623

between the sensors and the diagnoser. One solution then consists in representing the624

observations as an automaton that contains the set of possible observed trajectories.625

Then Theorem 5 can be used as in Grastien et al. (2005). The second extension of the626

problem is about on-line diagnosis that is well-suited for the on-line monitoring of627

dynamical systems such as communication networks. In this context, OBS is partly628

known (a prefix of OBS is known). On-line diagnosis then leads to incremental629

diagnosis that consists in updating the diagnosis from a previous diagnosis in a new630

time window when new observed events are available (Pencolé and Cordier 2005;631

Grastien et al. 2005). Incremental diagnosis has also be extended to deal with large632

scale systems where it is not possible to efficiently update the diagnosis with the flow633

of observations. In Su and Grastien (2013), the principle is to compute a diagnosis for634

a given time window independently from any other time window and Su et al. (2014)635

analyses the minimal amount of information to retain between time window to assert636

the diagnosis is correct along the time. Finally, a more recent extension is about the637

diagnosis of behavioral patterns (Jéron et al. 2006; Pencolé and Subias 2018). In the638

classical problem, the model represents faults as the occurrence of single events. With639

behavioural patterns, it is also possible to represent in the model a set of events that640

might not be considered independently as faulty but some specific ordering of their641

occurrence can still be abnormal (for instance, in traffic light systems, the sequence642

of green, yellow, red is normal while green, red, yellow is not).643

3.5 Distributed and Decentralized Approaches644

Most of the systems that are monitored and diagnosed have a large size so that a645

centralized method, as described in the previous sub-section, is not efficient enough.646

To illustrate this inefficiency, it can be noticed that the synchronized product over647

the components’models is in O(2n) where n is the number of components. This648

complexity makes a centralized approach impossible to implement on a realistic649

system. Based on the distributed nature of a system as a network of components,650

it is then possible to design decentralized or even distributed diagnosis methods651

that are more scalable. The model is then described as a set of components’models652

and a set of connections and the global model is not explicitly computed. Several653
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Diagnosis and Supervision: Model-Based Approaches 19

formalisms have been proposed to model the system in a distributed way: automata654

where the connections are represented by shared events, communicating automata655

where the connections are represented by messages on input/output ports (Pencolé656

and Cordier 2005), Petri nets where interactions are modeled by shared transitions or657

places (Fabre et al. 2005; Jiroveanu and Boel 2006), process algebra (Console et al.658

2002) where the synchronization is represented as a cooperation operator.659

There exist several methods implementing the collaboration of several local diag-660

nosers to solve a diagnosis problem. Several types of methods can be distinguished661

depending on the supervision architecture. In a so-called coordinated architecture,662

each diagnoser is in charge of observing local sites and determining a global diagno-663

sis based on its observation sites. Then a coordinator analyzes the global diagnoses664

of each diagnoser and provides a unique and coordinated one (Debouk et al. 2002).665

In this type of architecture, local diagnosers must still know the global model of the666

system so such an architecture has a scalability issue. A second architecture where667

the local diagnosers do not need to know the global model is the decentralized archi-668

tecture. As opposed to the coordinated architecture, local diagnosers only have a669

local knowledge about the system (a subset of components, also called a cluster).670

Local diagnosers perform diagnosis only over the components they know. The local671

diagnoses, once computed by the local diagnosers, are sent to a global diagnoser that672

is in charge of checking the global consistency of the local diagnoses (Pencolé and673

Cordier 2005; Lamperti and Zanella 2003; Grastien et al. 2005; Pencolé et al. 2018)674

by checking whether the local diagnosed trajectories are globally synchonizable.675

The last investigated architecture is the distributed architecture. The main difference676

with the decentralized architecture is that there is no global diagnoser. The result677

of the diagnosis is not global but only local. Each local diagnoser is in charge of678

handling the global consistency of its diagnosis by interacting with other local diag-679

nosers (Fabre et al. 2005). The diagnosis algorithms then depend on the selected680

architecture. Computing a global diagnosis might be a necessity to decide about681

a global repair or a global reconfiguration of the system, in this case, coordinated682

or decentralized methods should be used. If the decision is local then a distributed683

architecture is sufficient.684

In the case of distributed or decentralized architectures, the complexity of685

the algorithms mainly depends on checking the global consistency of the local686

diagnoses that depends on the number of involved components. To improve this687

global consistency checking, a BDD-based synchronization algorithm is proposed in688

Schumann et al. (2010). Another way to increase the average efficiency of the algo-689

rithms is to analyze off-line the structural model of the system (the topology) to690

precompile basic synchronization strategies that can be then applied on-line. For691

instance in KanJohn and Grastien (2008), this analysis is based on junction trees.692

In Pencolé et al. (2006), the analyzis consists in determining off-line clusters of693

components based on which a local diagnoser is always accurate: it is certain to694

always have a global consistent diagnosis without any synchronization with other695

components out of the given cluster (Fig. 5). AQ2696
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Fig. 5 Principle of a
decentralized diagnosis

Set of local models Local diagnoses

diagnosis

diagnoses

synchronization synchronization

Global model Global diagnosis

3.6 Diagnosability697

The off-line analyses of DES properties related to the diagnosis problem is essential698

to implement efficient on-line diagnosis algorithms (such properties like diagnosis699

accuracy of clusters, topology properties as cited in the sub-section above). Among700

these properties, diagnosability is the most studied one (see Sect. 2.3).701

Intuitively, in the context of DES, a system is diagnosable if, in case of an ambigu-702

ous diagnosis (faulty or not) at a given time, it is always sufficient to wait for a new703

finite set of observations to refine the diagnosis and prune the ambiguity and obtain704

a diagnosis that is certain. The first formal definitions of this property are proposed705

in Sampath et al. (1995). Several extensions have then be defined, by considering706

intermittent faults (Contant et al. 2004), or by extending faults to behavioral pat-707

terns (Jéron et al. 2006; Gougam et al. 2017; Ye and Dague 2017). A definition that708

unifies the one for continuous systems and the DES is proposed in Cordier et al.709

(2006). Checking the diagnosability is a complex problem. The first solution is pre-710

sented in Sampath et al. (1995) and consists in checking in the diagnoser (see Fig. 4)711

whether there is no indeterminate cycles (cycles of states where the diagnosis is712

ambiguous). Then another solution that is polynomial in the number of states in the713

global model is based on the synchronization of the model with itself (some twin714

models) where the synchronizations are performed on the observable events only. It715

consists in checking in this product for infinite sequence of critical pairs (a sequence716

that represents a faulty sequence in one twin and a non-faulty sequence in the other717

one) (Jiang et al. 2001; Yoo and Lafortune 2002). Other algorithms improving the718

efficiency of this method can also be found in Cimatti et al. (2003), Schumann and719

Pencolé (2007).720

One of the objectives of checking diagnosability is to provide a feedback to the721

design of the system, by essentially adding new sensors (Travé-Massuyès et al. 2001;722

Ribot et al. 2008), or by respecifying communication protocols between components723

of the system (Pencolé and Cordier 2005). Some extensions about the diagnosability724

of distributed systems are also proposed in Provan (2002), Pencolé (2004), Ye and725

Dague (2012). One method also extends the diagnosability problem to deal with726

uncertain observations (Su et al. 2016). Another extension is about self-healability727

that combines diagnosability and repairability. A system is said to be self-healing if728

it is able to perceive its own faults and, without any human intervention to perform729

necessary actions to recover. Self-healability can hold in a system even if the system730
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is not fully diagnosable and not fully repairable. The required level of diagnosability731

is the one that can always make the repair decision certain. In Cordier et al. (2007),732

this level of diagnosability is based on a selection of macrofaults are diagnosable733

and repairable.734

4 Bridge Between Model-Based Diagnosis Rooted in AI735

and in Automatic Control736

In the field of DES, the AI community (known as DX community) and the Automatic737

Control community (known as FDI – Fault Detection and Isolation–community) have738

converged from the start on the same formalisms and jointly developed diagnosis739

methods. On the contrary, for continuous systems, these communities have worked in740

parallel for a long time, ignoring their respective results. Although there are common741

principles, each community has developed its own concepts and methods, guided by742

different modeling approaches, and relying on analytical models and linear algebra743

for the first and on logical formalisms for the latter. However, in the 2000s, under the744

impetus of the BRIDGE group “Bridging AI and Control Engineering model based745

diagnosis approaches” within the Network of Excellence MONET II and its French746

counterpart, the IMALAIA group “Integration of Methods Combining Automatic747

Control and AI” linked to GDR I3, the French Association for Artificial Intelligence748

AFIA, and GDR MACS, an increasing number of researchers from these two com-749

munities have sought to understand and integrate approaches of their respective fields750

to provide more effective diagnostic systems (Travé-Massuyès 2014).751

First of all, we draw up a panorama of the approaches proposed by the FDI752

community, and then present a comparative analysis of the concepts and techniques753

used in the two communities in Sect. 4.2, followed by the works which integrate754

techniques of both communities in Sect. 4.3.755

4.1 FDI Community and Approaches for Continuous756

Systems: Quick Panorama757

Like the methods of the DX community (cf. Sect. 2), the fault detection and diagnosis758

methods of the FDI community are based on behavioral models that establish the759

constraints between the system inputs and outputs, i.e., the set of measured variables760

Z , as well as the internal states, i.e., the set of unknown variables X . The variables761

z ∈ Z and the variables x ∈ X are functions of time. These models are formulated762

either in the time domain (then known as state space models) or in the frequency763

domain (then known as transfer functions in the linear case).764
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The books (Gertler 1998; Blanke et al. 2003, 2015; Dubuisson 2001) are very765

good reviews that include the references to original papers, to which the reader can766

refer.767

The central concept of FDI methods is that of residual and one of the main768

problems is the generation of residuals. Consider the model of a system under the769

form of a set of differential and/or algebraic equations SM (z, x) with variables z and770

x. SM (z, x) is said to be consistent with the observed trajectory z, if there exists a771

trajectory of x such that the equations of SM (z, x) are satisfied.772

Definition 17 (Residual generator for SM (z, x)) A system that takes as input773

a subset of measured variables Z̃ ⊆ Z and generates as output a scalar r, is a774

residual generator for the model SM (z, x) if for all z consistent with SM (z, x),775

limt→∞ r(t) = 0.776

When the measurements are consistent with the system model, the residuals tend777

to zero as t tends to infinity, otherwise some residuals may be different from zero.778

Evaluating the residuals and assigning them a Boolean value – 0 or non-0 – requires779

statistical tests that account for the statistical characteristics of noises (Dubuisson780

2001; Gao et al. 2015). There are three main families of methods for generating781

residuals.782

• The methods based on testable relations rely on unknown variables elimination.783

These methods generate residuals from relations inferred from the model which784

only involve measured variables and their derivatives. These relations are called785

Analytical Redundancy Relations (ARRs). For linear systems, the so-called parity786

space approach is used to eliminate unknown state variables and obtain ARRs787

by projection onto a particular space called the parity space (Chow and Will-788

sky 1984). Extensions of this approach to nonlinear systems have been proposed789

(Staroswiecki and Comtet-Varga 2001). The structural approach (Armengol et al.790

2009) allows one to obtain the just determined equation sets of a model from which791

ARRs can be inferred (Krysander et al. 2008).792

• The methods based on state estimation are based on estimating unknown vari-793

ables. They take the form of observers or optimized filters, such that the Kalman794

filter, and provide an estimation of the state of the system and its outputs. Numer-795

ous diagnosis solutions rely on state estimation, particularly for hybrid systems796

(cf. Sect. 4.3). In this case, the continuous state is augmented by a discrete state that797

corresponds to the operation mode (normal or faulty) of the system components.798

• The methods based on parameter estimation focus on the value of the parameters799

which directly represent physical characteristics. Fault detection is performed by800

comparing the estimated value of the parameters to their nominal value. These801

methods are used for both linear and nonlinear systems.802

Note that in the linear case, the equivalence between observers, parity space and803

parameter estimation has been established (Patton and Chen 1991).804
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4.2 Comparative Analysis and Concept Mapping805

for the Model-Based Logical Diagnosis Approach806

and the Analytical Redundancy Approach807

The correspondences in terms of principles, concepts, and assumptions between808

the model-based diagnostic methods from Automatic Control and those from AI809

were showed by the French community, concretized by the IMALAIA group men-810

tioned above. This work is recorded in the collective paper (Cordier et al. 2004). The811

comparative analysis is based on the comparison of the so-called structured resid-812

uals approach, or parity space approach (Chow and Willsky 1984), and the logical813

theory of diagnosis as proposed by Reiter (1987), Kleer et al. (1992) and presented814

in Sect. 2.815

The parity space approach is based on the off-line computation of a set of ARRs816

from a model SM decomposed in a behavior model BM and an observation model817

OM . The equations of the model SM are constraints which can be associated with818

components but this information is not represented explicitly.819

The ARRs define constraints for the observable variables O of the system, that820

is to say the input and output variables, and are obtained by techniques allowing to821

eliminate state variables that are unknown. Each ARR can be put in the form r = 0,822

where r is called residual.823

Definition 18 (ARR for SM (z, x)) A relation of the form r(z, ż, z̈, . . . ) = 0 is an824

ARR for the model SM (z, x) if for all z consistent with SM (z, x), the relation is825

satisfied.826

If the behavior of the system satisfies the constraints of the model, then the residu-827

als are zero because the ARRs are satisfied, otherwise some of them may be different828

from zeros and the corresponding ARRs are said violated. Each fault Fj has an asso-829

ciated theoretical signature FSj = [s1j, s2j, . . . , snj] given by the binary evaluation830

(0 or not 0) of each of the residuals. We can then define the signature matrix FS.831

Definition 19 (Signature Matrix) Given a set of n ARRs, the signature matrix FS832

associated to a set of nf faults F = [F1, F2, . . . , Fnf ] is the matrix that crosses ARRs833

as rows and faults as columns, and whose columns are given by the theoretical834

signatures of the faults.835

Diagnosis consists in the online comparison of the “observed signature”, vector836

of the residuals evaluated with the observations, and the theoretical signatures of the837

nf anticipated faults. In the logical theory of diagnosis, the description of the system838

is component oriented and rests on first order logic in its original version. This has839

been discussed in detail in Sect. 2.1.840

A diagnosis for the system (SD, COMPS, OBS) is a set Δ ⊆ COMPS such that841

the assumption that the components of Δ are the only ones to be faulty is consistent842

with the observations and the description of the system, that is SD ∪ OBS ∪ {AB(C) |843

C ∈ Δ} ∪ {¬AB(C) | C ∈ COMPS \ Δ} is satisfiable.844

420043_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:15/12/2018 Pages: 35 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24 M.-O. Cordier et al.

Most FDI works do not explicitly use the concept of component given that the845

behavior model BM represents the global system. When models based on the concept846

of component are used, topological knowledge is implicitly represented by shared847

variables. Conversely, the DX approach explicitly represents the topology of the848

system and the behavior models of the components. The main difference is that849

the hypothesis of correct behavior of a component, which underlies its model, is850

represented explicitly by the predicate AB. If F is a formula representing the correct851

behavior of a component C, SM contains only F while SD contains the formula852

¬AB(C) ⇒ F .853

To compare the approaches, the system representation equivalence (SRE) property854

resulting in the fact that SM is obtained from SD by substituting all the occurrences855

of the predicate AB(.) by ⊥ is considered true. It is also assumed that the same856

observation language OBS is used, constituted by a conjunction of equality relations857

that assign a value v to each observable variable. Finally, the faults relate to the same858

entities considered as components, without loss of generality. The comparison is859

based on a theoretical framework to precisely establish the correspondence between860

the different concepts. This framework is provided by the signature matrix FS, for861

which each row is associated with an ARR and each column with a component862

(under the assumption that the faults relate to components). It relies on the concept863

of support of an ARR:864

Definition 20 (ARR Support) The support of an ARR ARRi, noted supp(ARRi), is865

the set of components whose columns in the signature matrix FS have a non zero866

element on the ARRi row.867

In addition, the following two properties are added:868

Property 7 ARR–d–completeness A set E of ARRs is said to be d-complete if:869

• E is finite;870

• ∀OBS, if SM ∪ OBS |=⊥, then ∃ARRi ∈ E such that {ARRi} ∪ OBS |=⊥.871

Property 8 (ARR–i–completeness) A set E of ARRs is said to be i-complete if:872

• E is finite;873

• ∀C , set of components such that C ⊆ COMPS, and ∀OBS, if SM (C ) ∪874

OBS |=⊥, then ∃ARRi ∈ E such that supp(ARRi) is included in C and875

{ARRi} ∪ OBS |=⊥.876

We then obtain the following result:877

Property 9 Assuming the SRE property and that OBS is the set of observations for878

the system given by SM (or SD), then:879

1. If ARRi is violated by OBS, then supp(ARRi) is a conflict set;880

2. Given E a set of ARRs:881

• If E is d-complete, and if there exists a conflict set for (SD, COMPS, OBS),882

then there exists ARRi ∈ E violated by OBS;883
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• If E is i-complete, then given a conflict set C for (SD, COMPS, OBS), there884

exists ARRi ∈ E violated by OBS such that supp(ARRi) is included in C .885

The first result can be intuitively explained by the fact that inconsistencies between886

model and observations, appraised by the conflicts in the DX approach, are appre-887

hended by ARRs violated by OBS in the FDI approach. In consequence, the support888

of an ARR can be defined as a potential conflict. This result echoes the notion of889

possible conflict proposed in Pulido and Gonzalez (2004). The second result provides890

existence and completeness results, the first referring to detectability and the second891

to isolability.892

We then show below that in the presence of the same assumptions about the man-893

ifestation of faults (their observability), commonly called exoneration assumptions,894

and in particular the absence of ARR-exoneration, a result linking the diagnoses on895

both sides can be obtained.896

Definition 21 (ARR-exoneration) Given OBS, any component in the support of an897

ARR satisfied by OBS is exonerated, i.e., considered as normal.898

This assumption states that faults having no observable manifestation through a899

non-zero residual are exonerated.900

Theorem 6 Under the i-completeness assumption, the diagnoses obtained by the901

FDI approach in the case of no ARR-exoneration are identical to the (non empty)902

diagnoses obtained by the DX approach.903

Let us note that the assumptions generally adopted by the two communities are904

different, the FDI community implicitly adopting the ARR-exoneration assumption.905

In addition, the computation of fault signatures limits the number of anticipated906

faults. Conventionally, only single faults are considered. Conversely, in the logical907

diagnosis theory, no assumption is made a priori about the number of faults, even if908

preferences can be introduced to privilege minimal or highest probability diagnoses.909

This ensures logically correct results. It can also be noted that in the FDI approach,910

computation of ARRs and fault signatures is done offline and only a consistency911

test is required online. This can be advantageous if computational time constraints912

come into play. In the logical theory diagnosis, all the processing is done online,913

the advantage being that only the models are to be updated if the system undergoes914

changes. Note that the two approaches can be combined to take advantage of both.915

One can cite DX works which adopt the FDI idea of offline generation of the RRAs916

(Loiez and Taillibert 1997; Washio et al. 1999; Pulido and Gonzalez 2004). One can917

also cite the works, presented in more detail in the Sect. 4.3, which take advantage918

of explicitly representing the causal influences underlying the model of the system919

and those concerned with diagnosis of hybrid systems.920
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26 M.-O. Cordier et al.

4.3 Approaches Taking Advantage of Techniques of Both921

Fields922

Diagnosis Based on Influence Graphs/Causal Graphs923

In the 1990s, the synergies between the Qualitative Reasoning community924

(Travé-Massuyès and Dague 2003; Weld and De Kleer 1989) (see also chapter “Qual-925

itative Reasoning” of this volume) and the Model-Based Diagnosis community con-926

cretized in a set of works proposing to use causal models for diagnosis reasoning927

(see chapter “A Glance at Causality Theories for Artificial Intelligence” of this vol-928

ume). Unlike causal graphs pointed in Sect. 2.2, influence graphs rely on a structure929

expressing the dependencies between variables in the model of the system explicitly,930

known as influences thus making it possible to provide explanations as to why normal931

or abnormal values of variables. This structure is commonly called a causal graph.932

Dependencies are obtained directly from expert knowledge (Gentil et al. 2004) or933

from causal ordering techniques (Travé-Massuyès et al. 2001; Pons et al. 2015) or934

also from bond graph models (Dague and Travé-Massuyès 2004; Chatti et al. 2014).935

The very first works were limited to labeling the causal influences by the signs giv-936

ing the direction of variation of the cause variable with respect to the effect variable,937

thus obtaining a signed oriented graph (Kramer and Palowitch 1987). Subsequently,938

the parametrization of influences was sophisticated as they were labeled by quanti-939

tative local models, such as those used by the FDI community.940

By way of example, the principles of the causal fault detection and isola-941

tion method CaEn2 (Travé-Massuyès et al. 2001; Travé-Massuyès and Calderon-942

Espinoza 2007) are given below. Fault detection is an online process that assesses943

the consistency of sensor measures with respect to the behavioral model of the sys-944

tem. The detection of a variable as abnormal is interpreted as the violation of the945

influences implied in the estimation of the variable, i.e., the ascending influences946

in the causal graph. Each influence being associated with a component, this allows947

one to characterize a set of components constituting a conflict set. The influences948

of CaEn2 have a “delay” attribute corresponding to a pure delay in the input-output949

function associated with the influence. This information is used to generate conflict950

sets whose components are labeled by a time label indicating the date at the latest951

at which the fault occurred on the component. Diagnoses are obtained from conflict952

sets by an incremental algorithm that generates hitting sets while managing time953

labels (Travé-Massuyès and Calderon-Espinoza 2007).954

Diagnosis of Hybrid Systems955

The works on hybrid systems have been steadily increasing since the pioneering956

works in the early 2000s (McIlraith et al. 2000). Hybrid systems make it possible957

to represent double continuous and discrete dynamics that cohabit in many modern958

systems. Most systems are indeed made up of a set of heterogeneous interconnected959
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components, orchestrated by a supervisor whose commands, of discrete nature,960

induce different operation modes. Hybrid system modeling as well as associated961

diagnosis algorithms use continuous and discrete mathematics, so that hybrid sys-962

tems open a predilection area for integrating methods from the two FDI and DX963

communities.964

The NASA Livingstone diagnosis engine (Williams and Nayak 1996), which965

flew onboard the DS-1 probe, was one of the first to qualify as hybrid. This engine966

was rooted in the AI model-based diagnosis framework, relying on a model written967

in propositional logic, and behavioral equations accounting for continuous aspects968

abstracted in the form of logical relations (qualitative constraints). However, quali-969

tative abstraction imposed monitors between the sensors and the model to interpret970

the actual continuous signals in terms of discrete modalities. The difficulty in decid-971

ing proper thresholds and the poor sensitivity of the fault detection procedure led972

subsequent works to consider true hybrid models, associating differential equation973

and discrete event models. As proposed in Bayoudh et al. (2008a), Bayoudh and974

Travé-Massuyès (2014), a hybrid model can be represented in the form of a 6-tuple:975

S = (ζ, Q, E, T , K, (q0, ζ0))

where:976

• ζ is the vector of continuous variables;977

• Q is the set of discrete system states, each representing an operating mode of the978

system;979

• E is the set of events corresponding to discrete commands, autonomous mode980

transitions, or occurrence of faults; events corresponding to autonomous mode981

transitions are subject to guards that depend on continuous variables;982

• T ⊆ Q × E → Q is the transition function; it is possible to attach probabilities to983

the transitions;984

• K = ∪Ki is the set of constraints linking the continuous variables, taking the form985

of differential and possibly algebraic equations modeling the continuous behavior986

of the system in the different modes qi ∈ Q;987

• (ζ0, q0) ∈ ζ × Q is the initial condition of the hybrid system.988

In the hybrid state (ζ, Q), only the discrete state qi ∈ Q is representative of the989

operating mode of the system and provides the diagnosis. However, the evolution990

of the discrete state is interlinked to the evolution of the continuous state, which is991

why the problem of diagnosis is often brought back to the problem of estimating the992

complete hybrid state.993

In theory, hybrid estimation presupposes to consider all the sequences of possible994

modes with the continuous evolution associated with them, which results in expo-995

nential complexity. Consequently, many suboptimal methods have been proposed996

for which we can distinguish the three following families of methods:997

• Methods based on multimode filtering, rather anchored in the Automatic Control998

field (Blom and Bar-Shalom 1988; Hofbaur and Williams 2004; Benazera and999
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Travé-Massuyès 2009), are formulated in a probabilistic framework. They track1000

the different “hypotheses”, that is to say the sequences of modes and their associ-1001

ated continuous evolution, over a limited time window and merge the continuous1002

estimates according to a likelihood measure resulting in a belief state in the form1003

of a probability distribution over the states at the current time.1004

• Methods based on particle filtering (Arulampalam et al. 2002) are based on sam-1005

pling and rely on a Bayesian update of the belief state. With enough samples,1006

they approximate the optimal Bayesian estimate but are not well adapted to the1007

problem of the diagnosis because the probabilities of faults are generally very low1008

in comparison with the probabilities of the nominal states of the system.1009

• Methods that address hybrid aspects in a dedicated manner adopt strategies to1010

retrieve the trajectory of the system when it has been discarded due to the approx-1011

imation of the estimation method (Nayak and Kurien 2000; Benazera and Travé-1012

Massuyès 2003).1013

Let us note that (Bayoudh et al. 2008b; Vento et al. 2015; Sarrate et al. 2018)1014

propose an alternative approach to complete hybrid diagnosis that only estimates the1015

discrete state, i.e. the operating mode. It combines the parity space approach based on1016

ARRs as defined in Sect. 4.2 for processing the information provided by continuous1017

dynamics with the DES diagnoser method as presented in Sect. 3.4 (Sampath et al.1018

1995).1019

Recent works address hybrid system diagnosability integrating a twin plant1020

approach as presented in Sect. 3.6 for DES with mode distinguishability methods1021

coming from the FDI community (Grastien et al. 2017). This work is based on1022

abstracting the hybrid automaton model. The continuous dynamics are abstracted1023

remembering only two pieces of information: discernability between modes (when1024

they are guaranteed to generate different observations) and ephemerality (when the1025

system cannot stay forever in a given set of modes). Iterative abstractions can be1026

checked for diagnosability with the standard DES twin plant method that provides1027

a counterexample in case of non-diagnosability. The absence of such a counterex-1028

ample proves the diagnosability of the original hybrid system. In the opposite case,1029

the counterexample is analyzed to refine the DES. This procedure is referred as a1030

counterexample guided abstraction refinement (CEGAR) scheme. It supports the1031

proposals of Zaatiti et al. (2017, 2018) in which Qualitative Reasoning (see chapter1032

“Qualitative Reasoning” of this volume) is used to compute discrete abstractions.1033

Abstractions as timed automata allow one to handle time constraints that can be1034

captured at a qualitative level.1035

5 Conclusion1036

Model-based diagnosis found its formal bases in the 1980s for static systems and1037

in the 1990s with regard to dynamic systems. Since then, developments have been1038

constant and promising, and have in fact become industrialized in several industrial1039
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domains such as automotive, aeronautics, space. An important point for the French1040

diagnosis community is the real collaboration of the Automatic Control and AI1041

communities, which brought their respective approaches close together by showing1042

their proximity and their specificities. This has been quite productive on both sides.1043

In the domain of dynamic systems, interest has developed over the last few years1044

on hybrid systems, making it possible to deal with double dynamics, discrete and1045

continuous, and to account for the heterogeneity of current systems. It is a privileged1046

area for the collaborations between the two communities.1047

One of the current topics is the improvement of the efficiency of existing algo-1048

rithms to scale up and approach large systems such as those proposed by the DX1049

competition, for instance electronic circuits comprising several thousand compo-1050

nents. This involves the use of data structures like BDDs or or very efficient algo-1051

rithms like SAT, taking into account the structure of the systems. This also involves1052

distributed approaches that divide the problem in a set of problems that are as inde-1053

pendent as possible.1054

Another major pathway concerns the properties of the systems from the diag-1055

nosis point of view, namely the in depth study of diagnosability, observability, and1056

repairability for enabling the design of systems which can be monitored, diagnosed1057

and repaired optimally. A last line of work concerns the monitoring of distributed1058

systems for which detection, diagnosis, and return to nominal operating conditions1059

requires good collaboration between methods and tools proposed by the FDI and AI1060

communities. This is also true for planning and decision making.1061

Finally, as in any situation where model and real world coexist, attention must be1062

paid to the problems linked to the quality and precision of the model, compared to1063

the quality of the information (accuracy, precision, etc.) gathered on the real system,1064

through sensors that can be imperfect and subject to faults. For all these developments,1065

it can be noted that this involves dialogue and co-operation with researchers from1066

many fields, in particular those from the AI community. This is obviously a challenge1067

but also an opportunity for reciprocal fertilization.1068

For detailed references on the topic of diagnosis, it is best to consult the pro-1069

ceedings of the international conference DX (Principles of diagnosis), which brings1070

together every year researchers in the field (DX 2018).1071
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