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Abstract

Real-life complex systems are often required to have a high
level of autonomy, even in faulty situations. The diagnosabil-
ity analysis is the a priori study of the capability of a system
to be self-aware about its current state by analysing the obser-
vations received by the sensors. The repairability analysis is
the a priori study of the capability of a system to react to faults
by applying repair actions. Even though they are strongly re-
lated, these properties are generally analysed independently.
This paper builds upon the state of the art in both domains
and proposes a joint property, called self-healability, which
achieves a bridge between diagnosability and repairability.
We first revisit and extend the classical definitions of diag-
nosability and repairability. Then, we give our definition of
self-healability illustrated with several examples.

1 Introduction
Real-life complex systems are often required to have a high
level of autonomy, even in faulty situations. They are ex-
pected to be self-aware of their current state and reactive
to faults by applying repair actions that take them back to
nominal operation. In other words, such systems must be
self-healing (Ghosh et al. 2007). Designing self-healing
systems requires to be able to evaluate the joint degree of
self-awareness and reactiveness. In the scientific commu-
nity, these two properties are better known as diagnosability,
i.e. the capability of a system and its monitors to exhibit
different observables for different anticipated faulty situa-
tions, and repairability, i.e. the ability of a system and its
repair actions to cope with any unexpected situation. How-
ever these two properties are generally analysed indepen-
dently. On the one hand, the diagnosis community has pro-
posed a formal definition of diagnosability (Sampath et al.
1995; Cordier, Travé-Massuyès, & Pucel 2006) and devel-
opped several approaches to check it (Jiang et al. 2001;
Yoo & Lafortune 2002; Cimatti, Pecheur, & Cavada 2003;
Jéron et al. 2006; Travé-Massuyès, Escobet, & Olive 2006;
Schumann & Pencolé 2007). On the other hand, repairabil-
ity has received much less attention, and refers to the soft-
ware systems community that is more interested in control-
based approaches such as fault tolerance or dependability as
well as to the planning community that uses repair plans of-
ten without strong guarantees on their applicability.

A first naive approach could be suggested: first identify

the set of all possible basic faults, then analyse separately
their diagnosability (i.e. can the observed traces of any fault
always be matched back to that fault with certainty ?) and
their repairability (i.e. does there exist, for any fault, at least
one plan of actions capable of repairing it once it has oc-
curred ?). If one gets positive answers to both questions,
then the system is self-healing. But that would be too strong
a requirement because, as regards self-healability, complete
diagnosability may not be needed: consider for instance that
observations can always provide the information that fault
f1 or fault f2 has occurred, but the system is not always able
to discriminate them. One would conclude the system is not
diagnosable with respect to these faults. But, if one has a
repair plan rk that is fine for repairing both f1 and f2, then
this is enough to ensure self-healability! This example calls
for a more general and integrated definition of diagnosabil-
ity and repairability to serve the purpose of self-healability.
The basic idea that is developped throughout this paper is to
identify a set of so-called macrofaults (e.g. ’f1 or f2’) such
that these macrofaults are both diagnosable and repairable.

What our work shows is that facing diagnosability and
repairability together calls for extending the classical diag-
nosability concept. This extension defines diagnosability for
macrofaults that may overlap in terms of their underlying
sets of basic faults, unlike diagnosability that is classically
defined for partitions of basic faults. Self-healability is then
defined as achieving a bridge between diagnosability and re-
pairability. The strong form of self-healability checks that
there exists at least one set of macrofaults which can al-
ways be diagnosed with certainty and be repaired. It is then
shown that weakened forms of self-healability can be de-
fined. The first weakened property requires full repairability
of the macrofaults but accepts that they are diagnosed with
certainty only for a subset of the possible behaviours of the
system. The second property accepts partial repairability of
a subset of macrofaults but requires that they are diagnosed
with certainty for all the possible behaviours of the system.

Section 2 starts with some related work that helps posi-
tioning our work within the overall area of dynamic systems
supervision, then section 3 gives some preliminary defini-
tions and hypotheses on the faults, the observables and the
repair actions. Section 4 focuses on the strong form of self-
healability. We first give our definition of diagnosability,
which is an extention of the classical definition. We then



define repairability and conclude by joining these two prop-
erties to define self-healability. Section 5 defines two weak-
ened forms of self-healability, namely weak self-healability
and partial self-healability. Section 6 concludes by giving
some perspectives on the way self-healability can be ex-
tended to include temporal constraints. Another issue is to
show the part that (weakened) self-healability can play at
design time to help improving the system properties by aug-
menting either the observable events or the set of repair ac-
tions in a coordinated way.

2 Related Work
In (Ghosh et al. 2007) self-healing systems are presented
as a rather new and rapidly increasing domain of interest
in the software systems community. The definition keeps
relatively general, and is stated as:

Self-healability is the property that enables a system to
perceive that it is not operating correctly and, without
human intervention, make the necessary adjustments to
restore itself to normality.
That definition is related to the even more general defini-

tion of dependable systems, that defines the system as glob-
ally trustworthy with respect to its ability to always deliver
its service, or fault-tolerant systems, in which faults that oc-
cur do not affect the efficiency of the system. But there are
many ways to guarantee such a general property. Control-
lability of dynamic systems (Ramadge & Wonham 1989) is
a way to proactively modify the architecture of a system at
design time to hinder any occurrence of a catastrophic fault.
Another way is to achieve fault-tolerance by on-line mech-
anisms, to be used whenever a fault occurs. That might be
addressed through so-called passive approaches that rely on
robust feedback mechanisms accounting for possible devia-
tions from the normal behaviour. See for instance (Tornil,
Escobet, & Travé-Massuyès 2003)(Garcia, Bernussou, &
Arzelier 1994) in the continuous processes domain. In the
software domain, approaches like homeostasis rely on the
same idea, arguing that the distinction between health and
unhealth is sometimes tenuous and proposing to maintain a
stable internal state for the system despite external variations
(Shaw 2002).

On the contrary, self-healing systems are clearly recovery-
oriented: a clear difference is made between healthy and un-
healthy situations, and the system is monitored to
• detect when the system moves from a normal mode to a

faulty mode,
• diagnose the situation,
• choose and execute an appropriate recovery strategy.

That principle can be seen as an active approach in the
fault-tolerant systems community. It may however result,
as can be seen in (Saboori & Zad 2005), in integrating re-
covery modes in the global model of the system, making
then tenious the boundary between passive and active ap-
proaches.

Our work is clearly positioned towards self-healability,
adopting a diagnose/repair-based view. The model speci-
fying the (normal and faulty) behaviours of the system is

clearly separated from the repair strategies that are available
for bringing back the system from a faulty mode to a normal
mode. In the planning community, plan revision, plan adap-
tation and replanning techniques are variations of the same
general idea: in case of a disruption in the current execution
of a plan, the nominal plan is halted and some alternative
sequence of actions is executed, the latter being either pre-
computed off line or computed on line. Our work is some-
how related to the work in (Washington, Golden, & Bresina
1999), in which so-called alternate plans have been com-
puted off line and uploaded on a space system, and the mon-
itoring module tracks deviations and switch to one of such
alternate plans whenever needed, to put the system back in
a state in which the nominal plan can be restarted. But such
planning approaches show two shortcomings :
• full observability is assumed, turning diagnosis rather

straightforward, and
• there is no formal analysis of the ’self-healing’ property

of the system, i.e. there is no guarantee that there always
exists a plan execution that successfully repairs the system
whatever fault occurs.
Both issues are addressed in this paper.
Removing the assumption of full observability requires a

thorough analysis of diagnosability. Diagnosability covers a
set of properties that have been studied for many years in dif-
ferent fields. In the context of continuous systems, diagnos-
ability is stated in terms of detectability and isolability (Chen
& Patton 1994; Basseville 2001). In the DES context, the
first definitions have been proposed in (Sampath et al. 1995)
and several extensions exist for intermittent faults (Contant,
Lafortune, & Teneketsis 2004) and for more generic pat-
terns (Jéron et al. 2006). A unified diagnosability definition
for continuous systems and discrete-event systems is pro-
posed in (Cordier, Travé-Massuyès, & Pucel 2006). Check-
ing diagnosability is computationally complex and several
algorithms have been proposed (Yoo & Lafortune 2002;
Jiang et al. 2001; Cimatti, Pecheur, & Cavada 2003;
Schumann & Pencolé 2007). One of the main purpose of this
analysis is to provide an assistance for the design of the sys-
tem, like sensor placements (Travé-Massuyès, Escobet, &
Milne 2001) or communication protocol specifications (Pen-
colé 2005).

On the other hand, assuring, in any situation and at any
time, successfull repair, calls for the definition of a formal
repairability property, which to our knowledge has never
been thoroughly defined.

Ultimately, our work aims at combining diagnosability
and repairability to reach a self-healability property, consis-
tent with (Ghosh et al. 2007), that can be ensured at design
time.

3 Preliminaries
In this paper, we adopt the generic viewpoint defined in
(Cordier, Travé-Massuyès, & Pucel 2006). A system may be
a discrete-event system or a continuous system. Depending
on its inputs, the system may have several behaviours and
produce several outputs. We first define preliminary notions
that are used throughout this paper.



3.1 Faults
The set of possible faults F of the system is composed of
nf basic faults F = {f1, . . . , fnf}. This paper relies on the
following single fault assumption.
Assumption 1 If the behaviour of the system is faulty, only
one fault is present.

In the following and without loss of generality, fi denotes
either the type of the fault or its presence in the system.
Moreover, in order to be generic, we extendF with the sym-
bol norm which stands for the absence of fault. In the fol-
lowing, norm is considered just like any other fi of F .
Definition 1 (Macrofault) A macrofault Fj is a set of faults
Fj ⊆ F , Fj 6= ∅. If Fj is present in the system, it means that
one and only one of the basic faults fi ∈ Fj is present in the
system.

For instance, the macrofault {f1, f2} represents the fact
that either f1 or f2 is present, the macrofault {f2, norm}
means that either the fault f2 is present or there is no fault.

A macrofault may be a singleton (Fj = {fi}), i.e. basic
faults may be seen as special cases of macrofaults. A set of
macrofaults is then denoted by E(F) (with E(F) ⊆ 2F ).
Definition 2 (Covering set) A set of macrofaults E(F) is a
covering set of F if and only if ∀fi ∈ F ,∃Fj ∈ E(F) such
that fi ∈ Fj .

3.2 Observations
Depending on the type of system, observations consist of
sequences of observable events or sets of measured values
for observable variables. These observations are the observ-
able part of the system’s behaviour. This paper focuses on
defining the generic notion of self-healability which does not
require the distinction between these different types of ob-
servations. Thus, for the sake of generality, the observability
of the system is represented by the set OBS of all the pos-
sible observations of the system. σ ∈ OBS is called an
observable of the system.

In the case of discrete event systems (DES), OBS is usu-
ally specified through the set of observable events O =
{o1, ..., ono}. Complementing O with the set of unobserv-
able events U = {u1, ..., unu} determines the whole set of
events of the system E = O ∪ U . Faults are specific unob-
servable events F ⊆ U .

In the case of continuous systems, OBS is usually spec-
ified as the set of all possible observation tuples for observ-
able variables, i.e., OBS = {(o1, o2, ..., ok)} where k is the
number of sensoring devices. Faults can be thought as un-
known disturbances that affect the system’s behaviour and
hence the observations.

3.3 Repairs
We first define, in a simplified way, what a repair plan is.
Planning contexts may of course require more elaborated
definitions, but the global property definitions proposed in
this article remain the same. For our purpose, we do not re-
ally need to know what a repair plan is semantically speak-
ing, we merely need to have a set of such repair plans and to
be able to match them to (basic) faults.

Definition 3 (Repair Plan) A repair plan rk is defined as a
sequence of actions Ak = {ak1, ..., akn}, each aki belong-
ing to the set of all possible recovering basic actions (which
are seen as events in DES). A repair plan is always assumed
to be applicable (no preconditions). Each repair plan rk has
a goal gk which is the nominal state of the system in which
the repair plan is expected to bring the system back.

The set of available repair plans is denoted R =
{r1, ..., rnr} One can see that the definition of a repair plan
is independent from the faults it might apply to, one then
needs to establish that relation (just like signatures are sets of
observations that are related to faults). That is done through
the predicate Repair:

Repair(rk, fi) means that the repair plan rk, if executed
in a state in which fi is present, brings the system back to a
state in which the goal gk should be true and norm present1.

The Repair predicate can also be applied to a macro-
fault, and there is an equivalence between repairing a macro-
fault and repairing each of the basic faults belonging to the
macrofault, i.e.

Property 1 Repair(rk, Fj) ≡ ∀fi ∈ Fj , Repair(rk, fi).

4 Self-healability
Self-healability is intuitively defined by the following:

A system is self-healing if, and only if, after the occurence
of any basic fault, a diagnosis is issued that automatically

raises a repair plan fitted for the fault.

Behind this intuitive definition, two properties of the sys-
tem are hidden: diagnosability and repairability. What is
also hidden is what the system should be able to diagnose
and which plan should then be applied. In this section, we
first introduce these two notions to finally propose a first def-
inition for self-healability.

4.1 Diagnosability
A first requirement for a diagnosable system is that every
behaviour (faulty or not) must produce some observations.
If no observation is available, the system is not diagnosable
at all. Therefore, one requirement for self-healability is:

Property 2 The system is not silent: every possible be-
haviour has an associated observable.

In the case where the observations are the result of some
measurements (in a continuous system for instance), this
property is usually satisfied since the measures can be per-
formed whatever the behaviour of the system really is. In
the case of discrete-event models, this property implies some
consequences on the system itself because the observations
are usually events emitted by the system (in the literature
about DES, this property is usually called the liveness of the
observations (Sampath et al. 1995)).

Diagnosability analysis relies on the notion of fault signa-
tures (Cordier, Travé-Massuyès, & Pucel 2006). Intuitively,

1We consider that there always exists a repair plan rnorm such
that Repair(rnorm, norm), rnorm being the empty plan with a
set of actions Ak = ∅.
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Figure 1: An example.

a fault signature is the association between a fault and a set
of possible observations. The following definition defines
the concept of elementary signature, noted e-signature. An
e-signature corresponds to one observable in the presence of
the fault and in a given context.

Definition 4 (Fault e-signature) An e-signature σ of Fj is
an observable such that there exists a behaviour of the sys-
tem for which σ is observed when a fault fi ∈ Fj is present.

Example:
Figure 1 presents the global model of a discrete-event sys-

tem Σ. The set of basic faults is F = {norm, f1, f2, f3, f4}
and the fault events are not observable. The other events (i.e.
o1, o2, o3, o4 and o5) are observable.

o1o5∞ is an e-signature of the normal behaviour; it is
composed of one observation o1 followed by an infinite se-
quence of o5. o2∞ is an e-signature of the fault {f1} and of
the fault {f2}, therefore it is also an e-signature of {f1, f2},
but it can also be considered as an e-signature of, for in-
stance, {f1, f2, f3}.

The observation of an e-signature σ denotes that the fault
Fj may be present in the system. The presence of Fj is not
certain since it is possible that σ is also the e-signature of
another fault Fj′ .

Definition 5 (Characteristic e-signature) An e-signature
σ characterizes Fj if and only if in every behaviour that pro-
duces the e-signature σ, a fault fi ∈ Fj is present.

If an e-signature σ characterizes the presence of Fj , it
means that the observation of σ guarantees that the fault Fj

is certainly present in the system. Note that an e-signature
that characterizes Fj may characterise a fault Fj′ where
Fj′ ∩ Fj 6= ∅, and any e-signature characterizes the macro-
fault F .

In other words, when observing a characteristic σ, one is
sure that one of the fi ∈ Fj has occurred, and that other
fi′ which are not in Fj have not occurred. But each fi ∈
Fj may have other e-signatures that will be characteristic of
other macrofaults that also include fi.

Example : o3o2∞ is a characteristic e-signature of the fault
{f2} and of the fault {f1, f2}. o2∞ is a characteristic e-
signature of the fault {f1, f2}.

Definition 6 (Characteristic signature) A characteristic
signature of Fj is a set of e-signatures that characterise Fj .
Such a set is denoted Sig(Fj).

Example : {o1∞, o2∞}, {o2∞, o3o2∞},{o1∞, o3∞} are
the respective sets of all the e-signatures of {f1},{f2}, {f3}
but are not characteristic signatures of {f1},{f2}, {f3}.
{o4∞} is the set of all the e-signatures of {f4} and is a char-
acteristic signature of {f4}, noted Sig({f4}). {o1∞, o3∞}
is a characteristic signature of {f1, f3}, as well as {o3∞}
and {o1∞}.

Now, we are ready to propose a definition for diagnosabil-
ity that is suitable for self-healability. Classically, diagnos-
ability is formally defined on a partition of the basic faults of
F (Cordier, Travé-Massuyès, & Pucel 2006). In this paper,
the definition of diagnosability is extended to a covering set
of faults E(F) = {F1, . . . , Fm}.

Definition 7 (Diagnosability of a set of macrofaults) The
covering set E(F) is diagnosable if and only if there exists
m sets of characteristic signatures Sig(F1), . . . , Sig(Fm)
such that:
1.

⋃m
i=1 Sig(Fi) = OBS;

2. ∀i, j, i 6= j, Sig(Fi) ∩ Sig(Fj) = ∅.

In other words, the set PSig = {Sig(F1), . . . , Sig(Fm)}
is a partition of the e-signatures, and E(F) is diagnosable if
and only if a partition PSig exists such that the observation
of σ ∈ Sig(Fj) guarantees that Fj is present.
Example: The set of macrofaults E0(F) =
{{norm, f1, f2, f3, f4}} is diagnosable,
the partition of e-signatures is PSig0 =
{{o1o5∞, o∞1 , o∞2 , o3o

∞
2 , o∞3 , o∞4 }}. The set of

macrofaults E1(F) = {{norm}, {f1, f2, f3}, {f4}}
is diagnosable, the partition of e-signatures is
PSig1 = {{o1o5∞}, {o∞1 , o∞2 , o3o

∞
2 , o∞3 }, {o∞4 }}.

The set E2(F) = {{norm}, {f1, f2}, {f1, f3}, {f4}}
is also diagnosable and the corresponding partition is
PSig2 = {{o1o5∞}, {o∞2 , o3o

∞
2 }, {o∞1 , o∞3 }, {o∞4 }}.

The set E3(F) = {{norm}, {f1}, {f2}, {f3}, {f4}} is
not diagnosable because there are some cases in which
f1 and f2 are not discriminated (the same for f1 and
f3) . E4(F) = {{norm}, {f1}, {f2, f3}, {f4}} is not
diagnosable. E5(F) = {{norm}, {f1, f3}, {f2}{f4}} is
not diagnosable.

This diagnosability definition is generic and covers differ-
ent concepts. For instance, if there is a macrofault in E(F)
which contains norm and at least a basic fault fi, and E(F)
is diagnosable, it means the system is not fault-detectable
with respect to that set of macrofaults: some faulty be-
haviour, whatever the fault is, may not be detected. On the
contrary, if {norm} ∈ E(F) and E(F) is diagnosable and
none of the other macrofaults contain norm then all faulty
behaviours are detectable.

In the specific case where E(F) is a partition of the basic
faults with {norm} ∈ E(F), the diagnosability of E(F)



corresponds to the classical definition over a partition of ba-
sic faults (see (Cordier, Travé-Massuyès, & Pucel 2006)).

We use the predicate Diagnosable(E(F)) to tell that
E(F) is diagnosable.

Then the definition of the diagnosability of the system,
through the simple predicate Diagnosable, comes directly:

Definition 8 (Diagnosability) Diagnosable ≡ ∃E(F)
such that Diagnosable(E(F))

Let us remark that a system is always diagnosable as it is
always true that Diagnosable({F}).

4.2 Repairability
Repairability is actually straightforward and comes directly
from the basic definition of sets of macrofaults and through
the predicate Repair. First, a macrofault Fj is repairable if
and only if there exists a repair plan that repairs it:

Definition 9 (Repairability of a macrofault)
Repairable(Fj) ≡ ∃rk such that Repair(rk, Fj)

Then, considering the basic faults belonging to a macro-
fault, we have the implication:

Property 3 Repairable({fi, fj}) |= Repairable(fi) and
Repairable(fj)

The converse is of course not always true (only when a
common plan repairs both fi and fj).

The repairability of a set of macrofaults is then defined as
the repairability of all the macrofaults in the set:

Definition 10 (Repairability of a set of macrofaults)
Repairable(E(F)) ≡ ∀Fj ∈ E(F)Repairable(Fj)

The repairability of a system (that we simply note through
the predicate Repairable with no parameters) means that
there exists a set of macrofaults which covers all the basic
faults and that is repairable.

Definition 11 (Repairability of the system)
Repairable ≡ ∃E(F) such that Repairable(E(F))
and E(F) is a covering set

Example : If the only repair plan is r, with
Repair(r, {f1, f3}), we get Repairable({f1,f3}), and also
Repairable({f1}) and Repairable({f3}). However, the sys-
tem is clearly not repairable as the faults f2 and f4 are not
repairable.

4.3 Self-healability
Our first definition for self-healibility directly derives from
the definitions of diagnosability and repairability.

Definition 12 (Self-healing covering set) A covering set
E(F) is self-healing iff it is diagnosable and repairable,
i.e. SelfHealing(E(F)) ≡ Diagnosable(E(F)) and
Repairable(E(F))

Given a self-healing covering set E(F), the observation
of a signature σ ∈ OBS is always associated to a macro-
fault Fσ ∈ E(F) because E(F) is diagnosable. Moreover,
since E(F) is repairable, it means that there exists a repair
plan for Fσ (a repair plan that repairs any basic fault of Fσ),

therefore Fσ can be repaired. Finally, E(F) is a covering
set so every basic fault is covered by at least one macrofault,
so every basic fault can be healed.
Definition 13 (Self-healing system) A system is self-
healing iff there exists a self-healing covering set E(F), i.e.
SelfHealing ≡ ∃E(F) such that E(F) is a covering set
and SelfHealing(E(F)).
Example :
• Case 0 : Repairable(norm) and Repairable({f1,f3}) and

Repairable({f1,f2}) and Repairable(f4)

The set E2(F) = {{norm}, {f1, f2}, {f1, f3}, {f4}}
is diagnosable and repairable. The system is
then self-healing. It would also have been
the case if we had repair plans such that
Repairable({f1,f2,f3}) and Repairable(f4) because
E1(F) = {{norm}, {f1, f2, f3}, {f4}} is diagnosable.

• Case 1 : Repairable(norm) and Repairable({f1,f3}) and
Repairable(f2) and Repairable(f4)
No set of macrofaults is self-healing as there does not ex-
ist a repair plan for {f1, f2}. The system is thus not self-
healing.
As said previously, in a self-healing system every basic

fault can be repaired (even in cases where it cannot be fully
distinguished from other faults). This property is the strong
form of self-healability. In the next section, we propose
weakened forms of self-healability that can also be of in-
terest, for instance during the design step.

5 Weakened forms of self-healability
The strong form of self-healability seen above is exactly
what is needed when checking a system as it indicates that
each basic fault can always be repaired, either because it can
always be diagnosed and repaired, or because a macrofault
containing it can always be diagnosed and repaired. In other
words, it means that, for any occurrence of a fault, the obser-
vations and repair plans are sufficient to ensure a sufficiently
precise diagnosis enabling to trigger a repair plan.

However, weakened forms of self-healability are interest-
ing. For instance, when designing a system, it can be useful
to guide the designer to improve the current self-healability.
It can also be useful to identify a subpart of basic faults
which are self-healing even if the whole system is not.

In the following, we define two weakened forms of self-
healability. The first one, called weak self-healability, con-
sists in assuring that each fault can be diagnosed and re-
paired at least in some contexts. The second one, called
partial self-healability, consists in assuring that there exists
a subset of faults that are always self-healing.

5.1 Weak Self-Healability
A basic fault can manifest itself according to a set of e-
signatures. Weak self-healability is a way to decide if, at
least for a subset of its e-signatures, each basic fault is re-
pairable.

Weak Self-Healability relies on weak diagnosability and
repairability. Let us first define what we call weak diagnos-
ability.



Weak Diagnosability A covering set of macrofaults
E(F) is weakly diagnosable iff for each macrofault of
E(F), there exists at least an e-signature which charac-
terises it. However, it may also exist e-signatures which do
not characterize any macrofault of E(F).

Definition 14 (Weak Diagnosability of a set of macrofaults)
The set of n macrofaults E(F) is weakly diagnosable iff it
is a covering set and there exists a partition of e-signatures
PSig = {Sig1, . . . , Sigr} such that, r ≥ n, for all
i ∈ {1, . . . , r}, Sigi 6= ∅ and for all i ∈ {1, . . . , n}, the
signature Sigi characterizes the macrofault Fi.

Another way of expressing weak diagnosability is to say
that the covering set of macrofaults E(F) is weakly diag-
nosable iff there exists a set of macrofaults E′(F), such that
E′(F) is diagnosable and E(F) ⊆ E′(F).

We will note weak diagnosability of a set of macrofaults
WeaklyDiagnosable(E(F)) and consequently weak diag-
nosability of the whole system can be defined as

Definition 15 (Weak Diagnosability)
WeaklyDiagnosable ≡ ∃E(F) such that
WeaklyDiagnosable(E(F))

As seen before, a system is always diagnosable and thus it is
also always weakly diagnosable.
Example:

By definition, every diagnosable E(F) is also weakly
diagnosable, so E0(F), E1(F), E2(F) are weakly
diagnosable. If we consider the set E3(F) =
{{norm}, {f1}, {f2}, {f3}, {f4}}, it is not weakly di-
agnosable as {f1} has no characteristic e-signature.
In the same way, E4(F) is not weakly diagnos-
able. However, E5(F) is weakly diagnosable with
the corresponding partition of e-signatures PSig5 =
{{o1o

∞
5 }, {o∞1 o∞3 }, {o3o

∞
2 }, {o∞4 }, {o∞2 }}}. The first four

e-signatures characterize the first four macrofaults; the last
one, o∞2 , is a supplementary one which does not characterize
any macrofault of the set E5(F).

If DiagnosableSet(F) and WeaklyDiagnosableSet(F)
are the sets of sets of macrofaults E(F) such that E(F) is
diagnosable and weakly diagnosable, respectively. In this
example, we have {E0(F), E1(F), E2(F), E5(F)} ⊆
WeaklyDiagnosableSet(F) and by defini-
tion, one always gets: DiagnosableSet(F) ⊆
WeaklyDiagnosableSet(F).

Weak Self-healability The definition of weak self-
healability follows:

Definition 16 (Weak self-healability of a set of macrofaults)
The covering set of macrofaults E(F) is weakly self-healing
iff it is weakly diagnosable and repairable.

It can be shown from what was said before that the set
of macrofaults E(F) is weakly self-healing iff there exists
a set of macrofaults E′(F), such that E′(F) is self-healing
and E(F) ⊆ E′(F).

Definition 17 (Weak self-healability of the system) A
system is weakly self-healing iff there exists a covering set
E(F) that is weakly self-healing.

Here again we can use a predicate notation:
WeaklySelfHealing ≡ ∃E(F) such that

WeaklySelfHealing(E(F)).
Hence the following propositions:

Proposition 1 1. If a system is self-healing then it is weakly
self-healing.

2. If a system is weakly self-healing, it may not be self-
healing.

Proof: The proof of 1 comes from the definitions. The proof
of 2 comes from the case 1 of the following example.
Example :
• Case 0 : Repairable(norm) and Repairable({f1,f3}) and

Repairable({f1,f2}) and Repairable(f4)
The set E2(F) = {{norm}, {f1, f2}, {f1, f3}, {f4}}
is diagnosable and repairable. The system is then self-
healing and consequenly also weakly self-healing.

• Case 1 : Repairable(norm) and Repairable({f1,f3}) and
Repairable(f2) and Repairable(f4)
No set of macrofaults is self-healing. E5(F) =
{{norm}, {f1, f3}, {f2}{f4}} is not self-healing as it
is not diagnosable, but it is weakly self-healing as it is
weakly diagnosable and repairable. The system is thus
not self-healing but weakly self-healing.

• Case 2 : Repairable(norm) and Repairable(f1) and
Repairable(f2) and Repairable(f3)and Repairable(f4)
No set of macrofaults is either self-healing or weakly self-
healing as f1 can never be diagnosed with certainty (even
in some specific contexts). The system is thus not self-
healing and not weakly self-healing.

5.2 Partial Self-Healability
Another weakened form of self-healability is to guarantee
that a subset of macrofaults (or basic faults) are self-healing,
even if not all of them. The idea is to guarantee that there
exists a subset of basic faults which are self-healing, and
thus both diagnosable and repairable.

We first need to introduce the following definition.

Definition 18 (No-overlap property ) The set of sets Y has
the no-overlap property with the set of sets X iff Y ⊆ X and
∀y ∈ Y ∀x ∈ X \ Y x ∩ y = ∅.

If X = {{f1}, {f1, f2}, {f3}} then Y =
{{f1}, {f1, f2}} has the no-overlap property with X
but Y = {{f1}} has not.

Definition 19 (Partial Self-Healability of a set of macrofaults)
The (non covering) set of macrofaults E(F) is partially
self-healing iff there exists a set of macrofaults E′(F), such
that E′(F) is diagnosable and E(F) has the no-overlap
property with E′(F) and E(F) is repairable.

The no-overlap property is important as it ensures that
each macrofault of E(F) can be diagnosed in any context.

Definition 20 (Partial self-healability of the system) A
system is partially self-healing iff there exists a set E(F)
that is partially self-healing.



Here again we can use a predicate notation:
PartiallySelfHealing ≡ ∃E(F) such that

PartiallySelfHealing(E(F)).
Let us remark that, as we consider the normal behaviour

as a basic fault, denoted norm, and if there exists a repair
plan, for instance the empty one, associated to norm, then a
detectable system is always partially self-healing.

Example :
• Case 0 : Repairable(norm) and Repairable({f1,f3}) and

Repairable({f1,f2}) and Repairable(f4)
The set E2(F) = {{norm}, {f1, f2}, {f1, f3}, {f4}}
is diagnosable and repairable. The system is then self-
healing and consequenly also weakly and partially self-
healing.

• Case 1 : Repairable(norm) and Repairable(f1,f3) and
Repairable(f2) and Repairable(f4)
E6(F) = {{f4}} is partially self-healing as it exists a
covering set of macrofaults E2(F) such that E6(F) ⊂
E2(F), E6(F) and E2(F) has the no-overlap property,
E2(F) is diagnosable, and E6(F) = {{f4}} is re-
pairable. It shows that the basic fault f4 can be repaired
for any of its occurrences.
The set E9(F) = {{f1, f3}} is not partially self-healing.
It exists a covering set of macrofaults E2(F) such that
E9(F) ⊂ E2(F), E2(F) is diagnosable, and E9(F) =
{{f1, f3}} is repairable but E9(F) and E2(F) do not sat-
isfy the no-overlap property; it means that there exists at
least an e-signature, here o∞2 , which is an e-signature of
a macrofault of the considered set, here of {f1, f3}, but
also of another macrofault not in the considered set, here,
{f1, f2}. Even if E9(F) is repairable, it means that the
basic fault f1 cannot be repaired in any contexts. It would
only be true if we had also a repair plan for {f1, f2}.
The system is thus not self-healing but weakly self-
healing and partially self-healing.

• Case 2 : Repairable(norm) and Repairable(f1) and
Repairable(f2) and Repairable(f3) and Repairable(f4)
The system is not self-healing and not weakly self-
healing. However, as in case 1, E6(F) = {{f4}} is
partially self-healing and the system is thus partially self-
healing.

• Case 3 : Repairable(norm) and Repairable({f1,f2}) and
Repairable({f1,f3})
Again, the system is not self-healing and not weakly self-
healing. However, E7(F) = {{f1, f2}, {f1, f3}} is par-
tially self-healing as it exists a covering set of macrofaults
E2(F) such that E7(F) ⊂ E2(F), E7(F) and E2(F)
has the no-overlap property, E2(F) is diagnosable, and
E7(F) = {{f1, f2}, {f1, f3}} is repairable. The two
macrofaults {f1, f2} and{f1, f3} can be diagnosed with
certainty and are both repairable. It demonstrates that the
basic faults f1, f2 and f3 can thus be repaired for any of
their occurrences. The system is partially self-healing.
E8(F) = {{f1, f2, f3}} is not partially self-healing as
there does not exist any repair plan for {f1, f2, f3}. In
case we had a repair plan for {f1, f2, f3}, E7(F) =

{{f1, f2, f3}} would be partially self-healing (wrt to
E1(F)).
To end up with that property, one could notice that par-

tial self-healability could be related to a partial repairability
property. The search for a partially self-healing set of macro-
faults will indeed usually be driven by partial repairability:
if one knows that some faults are not repairable, it is enough
to check diagnosability for the remaining.

Partial repairability means that there exists a set of macro-
faults (not necessarily covering all the basic faults) that is
repairable.

Definition 21 (Partial repairability of the system)
PartiallyRepairable ≡ ∃E(F) such that
Repairable(E(F))

Property 4 Repairable |= PartiallyRepairable

In other words, partial self-healability is consistent
(though it is not mandatory) with a system that is only par-
tially repairable. On the other hand, a system that is self-
healing or weakly self-healing must necessarily be (fully)
repairable.

Property 5 SelfHealing |= Repairable

Property 6 WeaklySelfHealing |= Repairable

Property 7 PartiallySelfHealing |=
PartiallyRepairable

To summarize, a self-healing set of macrofaults is such
that each macrofault is diagnosable and repairable, which
means also, as it is a covering set, that each basic fault is
repairable (but not necessarily diagnosable).

A weakly self-healing set of macrofaults is such that, for
each macrofault, there exist some contexts, generally not
all, in which the macrofaults are diagnosable and repairable,
which means also, as it is a covering set, that there are
contexts, generally not all, in which each basic fault is re-
pairable.

A partially self-healing set of macrofaults characterises
the only subset of basic faults (the ones it covers) which are
always repairable (even if they are not necessarily diagnos-
able).

Other weakened forms of self-healability could be defined
and be interesting during the design phase of a system, as for
instance coupling weak and partial self-healability, i.e. the
sets of macrofaults which would not be but could become
weakly self-healing by adding some repair plans.

6 Discussion
The main contribution of this paper is to propose a thor-
ough and integrated definition of the self-healability of a
dynamic system, through the analysis of what the system
needs to recover from faults, when considering together its
diagnosis and repair capabilities. Interestingly enough, the
system does neither need to provide diagnosability for each
basic fault nor to command a set of distinct specialized re-
pair plans, one for each basic fault, but it needs to find a set
of ’sufficient’ diagnosable sets that can be matched to ’suffi-
cient’ repairs. As far as we know, it is the first time that such



a definition is issued. Of course that is only a first step that
calls for a lot of extensions.

First, in cases for which self-healability is met, there
may exist many different sets of macrofaults establishing the
property. An interesting concern is then to determine the
’best’ (e.g. the one that provides the most information to the
user, or the one that favours repairs that put back the system
in preferred states, etc), and the search strategy (and hence
the algorithms) to provide that optimal set of macrofaults.

Second, as we have shown, it is not always possible to find
a set of macrofaults ensuring self-healability, and one may
only get what we have called partial or weak self-healability.
These weakened properties are useful at design time because
it means that one needs to modify either the observables
or the repair plans (i.e. increase sensor or actuator perfor-
mance) that are available in the system. The interesting is-
sue is then to find the ’best’ set of macrofaults to isolate,
i.e. here the one that minimizes the needs for extra diagno-
sis/repair capabilities. As we have shown, we could look for
a set that is perfectly diagnosable but not repairable, or per-
fectly repairable but not always diagnosable, but such sets
may be far from being optimal: hence the most interesting
set of macrofaults to start with may very well be a set that is
neither perfectly diagnosable nor repairable.

Other issues that we would like to deal with in the fu-
ture are extensions of the current framework to address more
elaborated (and more realistic) cases, mainly:

• Multiple faults: if f2 occurs some time after f1, maybe
it is better to wait and apply a repair plan that will repair
both than applying two successive plans...? Then we will
need to be more precise in terms of the definition of repair
plans and their chracterization in terms of their capabili-
ties to repair only one or several faults, and to be able to
repair a fault even though another one has occurred, etc.

• Temporal constraints: a very important issue is to con-
sider the ’delay’ that is needed to diagnose a fault, due to
waiting for a sufficient number of observations; that delay
may counteract some emergency delay for an adequate
repair plan, i.e. the delay after which it will be too late to
apply the plan. Such delays should be incorporated into
our definitions to only match repair plans to macrofaults
when such delay constraints are not violated.
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