
WS-DIAMOND
Web Services – DIAgnosability, MONitoring and Diagnosis

The Ws-DIAMOND Team*

Abstract/
Self-healing software is one of the challenges for IST
research. The WS-DIAMOND project aims at making a step
in this direction by developing a framework for self-healing
Web Services. In particular, the project aims at:
- Defining an framework for self-healing service execution

of conversationally complex Web Services, where
monitoring, detection and diagnosis of anomalous
situations, due to functional or non-functional errors, are
carried on and repair/ reconfiguration is performed, thus
guaranteeing reliability and availability of Web Services;

- Defining a methodology and tools for service design that
guarantee effective and efficient diagnosability/
repairability during execution.

The research builds upon results in different areas such as
model-based diagnosis, semantic Web Services, cooperative
information systems and Web Service composition. It goes
beyond a number of current projects in the area of Service
Oriented Computing, which do not consider the monitoring,
diagnosing and repairing of Web Services. This paper
describes the achievements in the first phase of the project.

Introduction
Ws-DIAMOND is a Strep Project funded by the EU
commission under the FET-Open framework. It started in
September 2005 and will run until 2008. The project aims
at making a step in the direction of Self Healing Web
Services. The project, in particular, addresses two different
issues concerning Self Healing capabilities:
- The first goal of WS-Diamond is to develop a

framework for self-healing Web Services. A self-

/(*) WS-DIAMOND (IST-516933) partners: Dipartimento di Informatica
– Università di Torino (coordinator), Vrije Universiteit Amsterdam,
Diparimento di Elettronica e Informatica Politecnico di Milano,
Universitaet Klagenfurt, Université Paris Sud, LAAS Toulouse, IRISA
Université Rennes 1, Universitaet Vienna.

WS-DIAMONDers: L. Console, D. Ardagna, L. Ardissono, S. Bocconi,
C. Cappiello, M.O. Cordier, P. Dague, K. Drira, J. Eder, G. Friedrich,
M.G. Fugini, R. Furnari, A Goy, K. Guennoun, A. Hess, V. , Ivanchenko,
X. Le Guillou, M. Lehmann, J. Mangler, Yingmin Li, T. Melliti, S.
Modafferi, E. Mussi, Y. Pencole, G. Petrone, B. Pernici, C. Picardi, X.
Pucel, S. Robin, L. Rozé, M. Segnan, A. Tahamtan, A Ten Tejie, D.
Theseider Dupré, L. Trave Massuyes, F. Van Harmelen, T. Vidal.

Contact address: Luca Console, Dipartimento di Informatica, Università
di Torino, Corso Svizzera 185, I-10149 Torino (Italy). Email:
luca.console@di.unito.it

WS-DIAMOND is funded by the European Commission, IST, FET-
OPEN framework, under grant IST-516933.

healing Web Service is able to monitor itself, to
diagnose the causes of a failure and to recover from the
failure, where a failure can be either functional, such as
the inability to provide a given service, or non-
functional, such as a loss of service quality. The focus of
WS-Diamond is on composite and conversationally
complex Web Services, where composite means that the
Web Service relies on the integration of various other
services, while conversationally complex means that
during service provision a Web Service needs to carry
out a complex interaction with the consumer application.

- The second goal of WS-Diamond is to devise
guidelines (and tools) for designing services in such a
way that they can be easily diagnosed and recovered
during their execution.

During the first phase the project concentrated on the first
issue and this will be the focus of this paper.
 Why is self-healing critical for Web Services?
Computing facilities are increasing at a very rapid pace,
presenting new forms of interaction, such as in portable
and mobile devices, home and business intelligent
appliances. This led to the development of complex
services to support human activities), in particular creating
networks of co-operating services (Web Services). Various
complex and intelligent services are becoming available, to
support most of our activities, possibly creating a new
social environment for interacting and co-operating with
other people. The same availability of these services will
be critical for allowing us to carry on such activities, in the
same way as today we cannot work without having access
to corporate or external knowledge sources. The
availability and reliability of services will be of paramount
importance. Indeed the reliability and availability of
software and the possibility of creating self-healing
software are recognized as one of the major challenges for
IST research in the next years (ISTAG 2004).
 Current standards for Web Service design and execution
do not include the support for self-healing execution.
Simple approaches to perform recovery after failures have
been developed but none of them includes approaches to
detect the actual causes of the problem (fault diagnosis)
and does not support recovery based on fault localization.
 WS-DIAMOND proposes the adoption of Model-based
diagnosis to tackle this problem. Indeed MBD recently
extended its focus from “traditional domains” (artefacts) to
new ones, including in particular software systems,
communication networks, distributed systems. Particularly
significant with respect to this project is the application to

DX-07, Nashville, TN, USA May 29-31, 2007

243

software diagnosis in which the same basic technologies
have been successfully applied to debug programs (Mateis
et al. 00; Mayer et al. 02) and. component-based software
(Grosclaude 04; Peischl et al. 06). The same approach has
been applied to the case of Web Services (Mayer et al.,
06). The focus of those works is different from our work
since they aim at debugging) problems in the composition
of Services (orchestration), rather than diagnosing (and
repairing) problems arising during service execution.
 The paper describes the results of the first phase of WS-
DIAMOND. We first introduce an application that will be
used as an example in the paper. Then we overview the
results we achieved, discussing the assumptions we made
in this first phase; we introduce the conceptual framework
and architecture we developed for the platform supporting
self-healing service execution. In the following sections we
discuss the approach we adopted to diagnosis and repair
planning. We conclude discussing directions of research in
the project.

An application scenario
The main application scenario that we selected is an e-
commerce scenario, concerned with a company (called
FoodShop) that sells food products on the Web. The
company has an online shop (that does not have a physical
counterpart) and several warehouses (WH1, …, WHn)
located in different areas that are responsible for stocking
unperishable goods and physically delivering items to
customers, depending on the area each customer lives in.
Customers interact with the FoodShop Company in order
to place their orders, pay the bills and receive their goods.
In case of perishable items, that cannot be stocked, or in
case of out-of-stock items, the FoodShop Company must
interact with one or more suppliers (SUP1, …, SUPm).
 In the following we describe the business process that
brings from the customer order to the parcel delivery,
which is of course executed through the cooperation of
several services. In particular, in each business process
instance we have one instance of the Shop service, one
instance of a Warehouse service, and one or more
instances of Supplier services. It is important to point out
that the business process includes activities that are
actually carried out by humans, such as the preparation of
the supply package or the physical delivery to the
customer. However, we will assume that these activities
have an electronic counterpart (a so called wrapper) in the
Web Services, whose goal is to track the process execution.
For example, when a Supplier physically sends supplies to
a Warehouse, we assume that the person responsible for
assembling the supply clicks on a “sent” button on her PC
that saves down the shipping note. On the other hand, the
person receiving the physical supply clicks on a “received”
button on her PC entering in the data shown on the
shipping note. Thus we do not make any distinction
between electronic and non-electronic activities.

The FoodShop business process

Figure 1: Abstract view of the FoodShop business process.

Figure 1 depicts a high-level view of the business process
(some of the details described below are not explicitly
shown for the sake of readability). When a customer places
an order, the Shop service first selects the Warehouse that
is closest to the customer’s address, and that will thus take
part in process execution. Ordered items are then split into
two categories: perishable (they cannot be stocked, so the
warehouse will have order them directly) and unperishable
(the warehouse should have them in stock). Perishable
items are handled directly by the Shop, while unperishable
items are handled by the Warehouse, although all of them
are eventually collected by the Warehouse in order to
prepare the parcel for the customer. At this point the Shop
checks whether the ordered items are available, either in
the Warehouse or from the Suppliers (we have not
considered items exchanges among different warehouses,
in order not to make the example too complicated). If they
are, they are temporarily reserved in order to avoid
conflicts between several orders. Once the Shop receives
all the answers on item availability, it can decide whether
to give up with the order (again, in order to keep things
simple, this happens whenever there is at least one
unavailable item) or to proceed. In the former case, all item
reservations are canceled and the business process ends. If
the order goes on, the Shop computes the total cost (items
plus shipping) with the aid of the Warehouse that provides
the shipping costs depending on its distance from the
customer location and the size of the order. Then it sends
the bill to the customer, that can decide whether to pay or
not. If the customer does not pay, all item reservations are
canceled and, again, the business process terminates. If the
customer pays, then all item reservations are confirmed and
all the Suppliers (in case of perishable or out-of-stock
items) are asked to send their goods to the Warehouse.
The Warehouse will then assemble a package and send it
to the customer.

Receive order
and select
warehouse.

Split orders.
Contact

Warehouse
and suppliers.

Compute bill
and ask

customer for
payment

Cancel
everything

Check
availability
and reserve

Cancel

Prepare supplies
and ship to
warehouse

Check
availability
and reserve

Cancel
Compute

costs

Receive
supplies.

Assemble and
deliver parcel
to customer

Shop Supplier WarehouseCustomer

DX-07, Nashville, TN, USA May 29-31, 2007

244

Ws-DIAMOND architecture
Since the overall goal of achieving self healing behaviour
is very ambitions, we started by defining in a precise way
the requirements we wanted to address in the project and
specifically in the first phase.
 First of all, we concentrated on the first goal of the
project, that is the design and development of a platform
for supporting the self healing execution of Web Services.
This means that we are concentrating on the problems that
occur at run time, while the design issues will be faced in a
second phase of the project. A second very general
consideration is that we are not considering the issue of
debugging a service; in other words we assume that code
has been debugged. This led us to defining:
- The types of faults that can occur and we want to

diagnose, that is:
- functional faults and specifically semantic data errors

(such as wrong data exchanges, wring data in
database, wrong inputs from user, ..);

- quality of service faults (e.g., delays, quality of data).
 In this paper we will focus on the former.
- The types of observations/tests that can be available to

the diagnostic process:
- alarms raised by services during their executions;
- data exchanged by services;
- internal data to a service (we will return later on

privacy issues).
- The types of repair/recovery actions that can be

performed, such as compensating, re-doing, replacing
activities.

In this first phase of the project, moreover we decided to
concentrate on orchestrated services (i.e., the case where
there is an service orchestrating sub-services, see (Peltz,
2003), even if some of the solutions we are proposing
already take into account the case of choreographed
services (Peltz, 2003).
 The main achievements in the first phase of the project
are the following:
- We proposed a Semantic Web Service definition

language which includes features that are needed o
support the diagnostic process (e.g., observability of
some parameters); moreover we started to analyze how
these semantic annotations can be learned from service
execution logs.

- We extended Web Service execution environments to
include features which are useful to support the
diagnostic/fault recovery process. In particular, an
architecture supporting self-healing service execution
has been defined. The architecture provides support for
 associating a diagnostic service with each service (see
below), for gathering observations about service
execution (e.g., data exchanged between services) and
provides a set of recovery and repair actions. The
architecture also includes a monitoring service aimed at
identifying Quality of Service and communication

problems, and a repair module aimed at supporting the
execution of recovery plans on the basis of the
diagnostic information.

- We characterized diagnosis and repair for Web Services.
In particular we defined a catalogue of faults and
possible observations and we proposed an architecture
for the surveillance platform (diagnostic service, see
below). The core of the platform is a diagnostic problem
solver and thus we proposed algorithms for performing
the diagnostic process, focusing the attention on
functional faults. In particular, the diagnostic
architecture is a decentralized one where a diagnoser is
associated with each individual service; a supervisor is
then associated to the orchestrator service or to the
process owner. We defined a communication protocol
between local diagnosers and the supervisor, assuming
that no knowledge about the internal mechanisms of a
Web Service is disclosed by its local diagnoser. A global
diagnosis can be computed by the supervisor after
exchanging information with local diagnosers (invoking
only those that are relevant to solve the specific problem
under analysis). The correctness of the algorithms has
been proved formally.

- Repair has been then characterized as a planning
problem, where the goal is to build the plan of the
recovery actions to be performed in order to recovery
from errors. The actions are those supported by the
execution environment discussed above and involve
backtracking the execution of some services,
compensating some of the actions that were performed,
re-doing activities or replacing faulty activities (or
services) with other activities (services).

This led to a set of architectural choices that will be
introduced in the next sections.

DIAMONDS and Self Healing layer
A DIAMOND is associated with each service and with the
orchestrator and is in charge of the enhanced service
execution and monitoring, diagnosis and recovery planning
and execution. The DIAMOND associated with a basic
service is depicted in Figure 2.

alarms/
events

recovery
actions

Self-Healing layer

Service Execution
Engine

Local
Diagnoser

Local
Recovery
Execution

Figure 2: Web Service’s DIAMOND

DX-07, Nashville, TN, USA May 29-31, 2007

245

 The self-healing layer is the set of extensions to the
Service Execution Engine that has been designed in the
project and that enables monitoring, diagnosis and repair
(see below).
 The DIAMOND includes diagnosis and repair:
- Alarms and events generated by the service go to the

DIAMOND (to Local Diagnoser)
- The Local Diagnoser owns privately the model of the

service and is in charge of explaining alarms (events) by
either
- Explaining them with internal faults
- Blaming other services (from which inputs have been

received) as the cause of the problem
 See below for the interaction between Local and Global

Diagnosers.
- The Local Recovery Execution module receives

recovery actions to be performed from the Global
Recovery Planner (see below). It is also admitted that
repair actions are selected by the Local Recovery
Execution.

- Recovery actions are passed to the Self-healing layer
The DIAMOND associated with the orchestrator is made
of two parts (see Figure 3):
- A Global Diagnoser and Recovery Planner (left part)
- A Local Diagnoser and Local Recovery Execution

module (right part,)
The latter is meaningful as an orchestrated service may in
turn be a sub-service of a higher-level composed service.
 The Global Diagnoser interacts with Local Diagnosers to
compute a global diagnosis; it does not have access to local
models. The diagnosis is computed in a decentralized way.
The Recovery Planner operates sequentially after a global
diagnosis has been computed. It generates a plan for
recovery and passes it to Local Recovery Execution
modules.

Self-healing layer
The platform for service execution supports the following
features:
- associating a diagnostic service with each service;
- gathering observations about service execution (e.g.,

data exchanged between services), which are input to
diagnosis;

- providing a monitoring service aimed at identifying
problems during execution, including Quality of Service
and communication problems;

- providing a set of recovery and repair actions (that can
be exploited by the repair planner);

- providing a repair module aimed at supporting the
execution of recovery plans.

Such a layer can thus be seen as a set of new functionalities
on top of a service execution platform (engine)

Diagnostic approach
The approach we adopted for diagnosis is a model-based
one and is based on a decentralized paradigm:
 We associate with each basic service a local diagnoser,
owning a description of how the service is supposed to
work (a model); the role of local diagnosers is to provide
the global diagnoser with the information needed in order
to identify the causes of a global failure.
 We provide a global diagnoser which is able to invoke
local diagnosers and relate the pieces of information they
provide, in order to reach a diagnosis for the overall
complex service. In case the supply chain has several
levels, several global diagnosers may form a hierarchy,
where a higher level global diagnoser sees the lower level
ones as local diagnosers.
 We choose to adopt such an approach because this
enables to recursively partition Web Services into
aggregations of sub-services, hiding the details of the
aggregation to higher-level services. This is in accordance
with the privacy principle which allows designing services
at enterprise level (based on intra-company services) and
then use such services in extranets (with other enterprises)
and public internets. The global diagnoser service only
needs to know the interfaces of local services and share a
protocol with local diagnosers. This will mean, in
particular, that the model of a service is private to its local
diagnoser and needs not be made visible to other local
diagnosers or to the global one.
 Each local diagnoser interacts with its own Web Service
and with the global diagnoser. The global diagnoser
interacts only with local diagnosers. More precisely, the
interaction follows the pattern described in the following:
 During service execution, each local diagnoser receives
information from the self healing layer (monitoring the
activities carried out by its Web Service, logging the
messages it exchanges with the other peers). The diagnoser
exploits an internal “observer” component collecting the
messages and locally saving them for later inspection.
Notice that when a Web Service composes a set of sub-
suppliers, the local diagnoser role must be filled by the
global diagnoser of the sub-network of cooperating
services. On the other hand, an atomic Web Service can

Self-Healing layer

Service
Execution Engine

Global
Diagnoser

Global
Recovery
Planner

alarms/
events

recovery
actions

Local
Diagnoser

Local
Recovery
Execution

Figure 3: Orchestrator’s DIAMOND

DX-07, Nashville, TN, USA May 29-31, 2007

246

have a basic local diagnoser, that does not need to exploit
other lower-level diagnosers in order to do its job.
 When a local diagnoser receives an alarm message
(denoting a problem in the execution of a service), it starts
reasoning about the problem in order to identify its causes,
which may be internal to the Web Service or external
(erroneous inputs from other services). The diagnoser can
do this by exploiting the logged messages. The local
diagnoser informs the global diagnoser about the alarm it
received and the hypotheses it made on the causes of the
error. The global diagnoser starts invoking other local
diagnosers and relating the different answers, in order to
reach one or more global candidate diagnoses that are
consistent with reasoning performed by local diagnosers.
 According to the approach discussed above, each local
diagnoser needs to have a model of the service in its care.
We assume that each Web Service is modeled as a set of
inter-related activities which show how the outputs of the
service depend on its inputs. The model of a complex
service, in particular, specifies a partially ordered set of
activities which includes internal operations carried out by
the service and invocations of other suppliers (if any).
 The model of a Web Service enables diagnostic
reasoning to correlate input and output parameters and to
know whether an activity carries out some computation
that may fail, producing as a consequence an erroneous
output. Thus fault localization is performed at the level of
the activities of a service.
 Symptom information is provided by the presence of
alarms, which triggers the diagnostic process; by the
absence of other alarms; or by additional test conditions on
logged messages introduced for discrimination.
 The goal of diagnosis is then to find activities that can be
responsible for the alarm, performing discrimination to the
purpose of selecting the appropriate recovery action. When
an alarm is raised in a Web Service Wi, its local diagnoser
Ai receives it. Ai must explain it, Each explanation may
ascribe the malfunction to failed internal activities and/or
abnormal inputs. It may also make predictions of additional
output values, which can be exploited by the global
diagnoser in order to validate or reject the hypothesis.
When the global diagnoser receives a local explanation
from a local diagnoser Ai, it proceeds as follows:
- If a Web Service Wj has been blamed of incorrect

outputs, then the global diagnoser can ask its local
diagnoser Aj to explain them. Aj can either reject the
blame, explain it with an internal failure or blame it on
another service that may have sent the wrong input.

- If a fault hypothesis by Ai has provided additional
predictions on output values sent to a Web Service Wk,
then the global diagnoser can ask Ak to validate the
hypothesis by checking whether the predicted symptoms
have occurred, or by making further predictions.

Hypotheses are maintained and processed by diagnosers as
partial assignments to interface variables and behavior
modes of the involved local models. Unassigned variables
represent parts of the overall model that have not yet been

explored, and possibly do not need to be explored, thus
limiting invocations to local diagnosers.
 The global diagnoser sends hypotheses to local
diagnosers for explanation and/or validation. Local
diagnosers explain blames and validate symptoms by
providing extensions to partial assignments that assign
values to relevant unassigned variables. In particular the
global diagnoser exploits a strategy for invoking as less
local diagnosers as possible, excluding those which would
not contribute to the computation of an overall diagnosis.
 Details about the strategies adopted by the global
diagnoser, about the communication protocol between
global and local diagnosers and about local diagnosers can
be found in [Console et al., 2007], where also properties
about the correctness of the adopted algorithms are proved.

Example on the FoodShop business process
Let us anlyse how the approach work on the FoodShop
example presented above. The faults we consider within
the FoodShop business process are (according to the focus
of the current project work,) those that:
- affect the correctness of data exchanged between

services or between services and customer
- can be detected by looking only at one instance of the

business process.
Accordingly, the diagnosis we carry out focuses on
finding, within the faulty instance, the last point in
execution where data can be safely considered correct.
Repair focuses then on planning and executing an
alternative portion of the business process that tries to
achieve the same goals as the first one without incurring in
the same problem. Achieving this my entail substituting a
partner (e.g. turning to a different supplier), undoing and
redoing some actions (e.g. sending back supplies and
receiving correct one), carrying out some compensation
activity (e.g. restoring the previous item quantities in the
Warehouse database if the wrong quantities were decreased
due to a misplaced order), or carrying out some activity-
specific repair action (e.g. realigning the Shop database to
the Supplier one if it contains obsolete item codes).
 Some examples of the faults that we consider within the
FoodShop business process are:
- The Shop incorrectly matches ordered items to their

codes; since most of the order process works on codes
rather than on names this results in the Warehouse not
being able to assemble the customer parcel.

- The Shop selects the wrong Warehouse; this can have as
effect a higher delivery cost for the customer.

- The Shop does not contact all suppliers, either when
reserving (then some items will be missing in the
Warehouse when assembling the parcel) or when
cancelling or confirming the reservation (these will raise
a timeout in the Supplier).

- The Warehouse or the Supplier make a mistake in
answering on the availability of the items, so that a non-

DX-07, Nashville, TN, USA May 29-31, 2007

247

available item is declared available; this results in the
Warehouse not being able to assemble the parcel.

- The Supplier makes a mistake in saving the supply
order, or in physically preparing the supply package;
again, the consequence is that the Warehouse will not be
able to assemble the customer parcel.

It is easy to see from this list that many faults actually have
the same symptoms (namely, that the Warehouse cannot
assemble the customer parcel).
 We will now see a diagnosis example that shows how
some of these faults can be diagnosed by automated
reasoning on a distributed model of the business process
that includes data dependencies.
 Let us assume that the Warehouse service in the example
raises an exception because, when assembling the parcel
for the customer, the supplies do not correspond to the
order list. The Warehouse local diagnoser, from
information on data dependencies, can automatically derive
that the reason can either be that the supplies sent by one
Supplier were wrong, or that the item named in the order
list from the Shop were the incorrect ones.
 The Global diagnoser, upon receiving this information
from the Warehouse local diagnoser, asks to the Supplier
local diagnoser to evaluate the hypothesis that it sent the
wrong items. Based on the Supplier model, this local
diagnoser computes that this can be happened for three
reasons: a) when sending the package with the Supplies to
the warehouse the wrong items were inserted in it; b) when
receiving the order, the wrong codes were written down; c)
the initial item codes were wrong. It also computes that in
case a) the codes on the shipping note sent to the
Warehouse should be correct and should not match the
supply contents, while in case b) and c) the codes on the
shipping note are also incorrect, and the shipping note
should match the contents of the supply.
 At this point, the Global diagnoser invokes the Shop
local diagnoser in order to evaluate the hypothesis that the
Shop may be the source of the problem. The Shop local
diagnoser computes that the source may indeed be in the
Shop, and in particular that the Shop might have made an
error in matching the ordered items to their codes (possibly
because of a database error). The Shop local diagnoser
also computes that, however, the item names cannot be
wrong, because they were provided by the user.
 Eventually, the Shop local diagnoser computes that if it
made this error, then the item codes in the order list should
be wrong. Given these results, the Supervisor invokes
again the Warehouse local diagnoser for analyzing the new
information, namely to check the predicted consequences
of the different fault hypothesis. The Warehouse thus
checks the order list against the shipping notes and the
following situations can happen: a) The codes in the order
list match those in the shipping note, and the shipping note
matches the contents of the supply. This means that the
responsible for the problem is the Shop. b) The codes in
the order list match those on the shipping note, but the
shipping note does not match the contents of the supply.
Then the responsible for the problem is the Supplier, and

the problem occurred while assembling the supply. c) The
codes in the order list do not match those on the shipping
note. In this case the responsible for the problem is the
Supplier, and the problem occurred while writing down the
codes at the initial stages.

Repair planning
A composition of Web Services can be considered as a
workflow of activities. An invocation of a web service is
an execution of an activity which has some pre-defined
input and output objects. We also say that output objects
are the affected objects of an activity. The input of the
repair process is a set of activities and objects which are
considered as faulty. All other activities are considered to
be correct. However, some correct activities might have
produced wrong outputs (i.e. suspect objects) because of
wrong inputs or because their invocation was mistakenly
caused by a wrong branching of the workflow. Repairing
this composition of faulty activities and suspect objects is
the task of repair.
 Let us assume that in the FoodShop example described
above the “split orders” activity of the Shop is faulty (i.e.
the single fault diagnosis submitted to the repair process).
As mentioned above the wrong product codes for some
product names were determined which was discovered
when assembling the parcel. Since this activity is
performed by a human, there is hope that this failure is
intermittent. Consequently, the repair of this faulty activity
is just a REDO. Basically all subsequent activities of the
“split orders” (Shop) activity in the Shop, Suppliers, and
Warehouse must be redone. However, it is not clear which
one. This indeterminism depends on the unknown
branching of the choosing blocks and on the possibility of
fault masking, i.e. although some input objects are faulty
some of the output objects could be correct. E.g. some
orders to suppliers could have been correct. This can be
determined after the REDO of the “split orders” (Shop)
activity and by comparing the newly generated output
objects with the old ones. Furthermore repair planning has
to take into considerations when a compensation action
should be applied. Roughly speaking, compensation
actions restore the state of objects to a state which was in
effect before then objects were affected by an activity. E.g.
compensating the effects of “prepare supplies and ship to
the warehouse” (Supplier) implies that goods are returned
to the supplier. If a compensation action is applied depends
on the plan generation. In our scenario it might be more
cost efficient to dump the unnecessary items in the
warehouse than to send them back.
 Repairing a compositional, conversationally complex
Web Service consists of plan generation and execution of
(repair) actions until the original intended goals of the web
service are achieved. These actions also include DO and
REDO of activities of the original workflow. Since we
have to deal with indeterminism, the generated repair plan
is conditional. Reasoning is based mostly on the analysis of
the dependencies between the input and output sets of

DX-07, Nashville, TN, USA May 29-31, 2007

248

activities, their preceding relations and dependencies on
goal objects.
 We propose the following algorithm (repair procedure):
1. Represent the description of a workflow process in terms

and models of the planning system;
2. Generate a repair plan using a planner;
3. If the repair plan does not contain any repair actions -

exit;
4. Execute first repair action in the set;
5. Evaluate the new state of the workflow instance;
6. React on the new information received by the workflow;
If old plan can be continued go to Step 3 else go to Step 2.
Note that we are interested in generating optimal and save
plans. However, it is also worth to consider unsafe plans
(in case safe plans do not exist) if the expected cost of
repairing is lower than doing nothing.
 There are different planning systems that use such
planning languages as Ac, PDDL, K-language and their
dialects (Eiter et al 03., Huy Tu et al., 04). In most cases
knowledge is separated into two groups. First, background
knowledge comprises static information that cannot be
changed during planning. In our case this background
knowledge includes the set of goal objects, input and
output parameters of activities, preceding relations between
activities. The second part includes the planning code with
fluents, actions, and causal/execution rules. This part must
be independent of a description of a specific workflow. It
includes a general specification applicable to any workflow
that is correctly described in the background knowledge.
 Depending on the problem there may be many repair
plans with different structures. As we see from the
algorithm, the most important information that can be
obtained from the repair plan is which repair action must
be applied first. The rest of the repair plan can be changed
or removed, so, actually, only the decision which of the
repair actions must be applied first is important.
 The evaluation of the new state is needed to decide
which changes to the repair plan must be applied. This
evaluation must answer the following questions after
executing a repair action:
- Was the applied repair action successfully or not?
- What are the new values of the objects in the workflow

state?
- What was the exit status of the activity after repair (is

there any exit code that shows a fault again)?
- Is there any new information about activities which are

long-running transactions?
The analysis after action execution must also consider the
results produced and compare them with the states of the
objects of the original faulty workflow. Since we do not
know the internal behaviour of an activity, its effects may
not depend on all its input data. Even if all input data was
faulty, it may happen that the effects are correct.
 Such analysis can reduce the amount of suspect objects
and lead to the need for re-planning since more efficient

plans are possible. Note that compared to the original
workflow the order of executing activities may change
because some activities already produced correct results or
because we can easily imagine cases where computing the
correct values for choosing blocks is necessary and
preferred in order to find out which activities are important
to produce correct goal objects. Also, we have to consider
new data, obtained from long-time running activities.
Completed long-running activity that used suspect objects
must be compensated, if needed.
 The proposed solution is intended to resolve situations in
the fully orchestrated workflows. Moving towards
choreography, it is proposed to use the same algorithm for
repair plan generation for each workflow in the
composition but add additional communication protocols
for information exchange.
 As depicted in Figure 3 the Global Recovery Planner
interacts with the Local Recovery Execution of all services.
The task of the Global Recovery planner is to mediate
between the Local Recovery Execution services in order to
optimize the overall repair activities. Repair plans for each
of the local workflows (e.g. Shop, Supplier, and
Warehouse) can be generated in a separated session of
repair planning. The reasoning process in each of these
sessions is performed locally using the same techniques
and algorithms. The only difference to the orchestration
case is that there must be a communication protocol
between sessions. As soon as activities in different
workflows share objects as well as invoke and wait for
results of each other, this information must be shared also
between sessions of repair planning. Note that we not
assume that sessions know about the workflow structures
of each other. The exchanged information includes:
- the objects which are shared between workflows;
- the states of these input and output objects regarding the

correctness;
- the activities which are activated in the partner

workflow;
- the existence of local goal objects of the partner

workflow and the inputs needed by the partner workflow
to achieve these local goals.

By exploiting this information we can propagate
information about goals, their needed input objects, and the
states of objects from one workflow to another.
 In our example, the repair plans for Shop, Supplier and
Warehouse workflows will be generated in separated
sessions. The Warehouse informs the Suppliers about a
local goal, i.e. “deliver the correct parcel to the customer”
which depends on correct inputs from the suppliers, e.g.
correct items. The correctness of these items depends on
the correctness of the input provided by the “split orders”
(Shop) activity. Therefore, the Shop workflow has to
REDO this “split orders” (Shop) activity. Consequently,
goal dependencies are propagated through the composite
workflow. Conversely, the communication process has to
inform the separated repair planning sessions about the
correctness of objects.

DX-07, Nashville, TN, USA May 29-31, 2007

249

Discussion and Future work
The sections above presented the results achieved in the
first phase of the WS-DIAMOND project. In this phase we
concentrated on some specific problems, making
assumptions in order to constrain the problem. Such
assumptions are being progressively relaxed or removed in
the second part of the project; this approach is allowing us
to manage the complexity of the problem and of the task.
In the following we analyse the assumptions we made, the
way we plan to remove or relax them and the way this will
impact the architecture presented in the previous sections.
 A first major assumption we made is that we are
considering orchestrated services. We are currently
extending the approach to deal with choreographed
services. This actually does not impact the overall
diagnostic architecture (which is not influenced by this
distinction except that the global diagnoser must be
associated with the owner of the complex process rather
than with the orchestrator). On the other hand repair and
the self healing layer are being modified.
 In the current approach we are also assuming that all
services are WS-DIAMOND enables, that is that they have
an associated diagnostic service. Such an assumption is
being removed and we are considering also the case where
some services are black boxes.
 Another assumption in the first phase is that we are
concentrating on functional errors, while in the second
phase we are considering also problems related to the
Quality of Service. We will also extend the range of
functional faults we are considering. This means, in
particular, that the self-healing layer discussed in the
previous section is being modified to include also modules
for monitoring quality of service parameters.
 As regards repair, we worked with a limited set of repair
primitives and we are currently extending this set to
include further alternatives to be considered during repair
planning. On the other hand, in the project we do not
expect to remove the general assumption that diagnosis and
repair are performed sequentially. The issue of interleaving
repair/recovery with (Fridrich, 93) which is a very
important one in diagnostic problem solving, will be a
topic for future investigations outside the project.
 Finally in this phase we assumed that the model of
service activities which is needed by its local diagnoser is
hand made. However, the dependencies that are needed can
be derived from the service description and indeed we are
currently investigating how the model can be produced a
partially automated way. Moreover we explored how
semantic annotations on service properties (e.g., properties
of exchanged information) which can be useful as
observations to the diagnostic process can be learned from
service logs.
 Finally, in the second phase of the project we will
develop a framework for the analysis of diagnosability and
repairability of complex services, starting from previous
work and experience in the diagnosticability analysis for
artefacts.

References
AI Magazine, Special Issue on Model-based Diagnosis, AAAI,
Winter 2003.

ISTAG 2004: Information Society Technologies Advisory Group
WG: Grand Challenges in the Evolution of the Information
Society, Report (July 2004), ftp://ftp.cordis.lu/pub/ist/docs
/istag_draft_report_grand_challenges_wahlster_06_07_04.pdf.

V. Brusoni, L. Console, D. Theseider Duprè, P. Terenziani: A
Spectrum of definitions for temporal model-based diagnosis; in
Artificial Intelligence, Vol 102, no 1, June 1998, pp 39-79.

L. Console, O. Dressler: Model-based diagnosis in the real world:
lessons learned and challenges remaining, in Proc. of the 16th Int.
Joint Conf. on Artificial Intelligence. IJCAI 99, Stockholm,
Sweden,1999, pp.1393-1400.

L. Console, C. Picardi, D. Theseider Dupre’. A Framework for
Decentralized Qualitative Model-Based Diagnosis. In: Proc. of
the 20th Int. Joint Conf. on Artificial Intelligence. IJCAI-07.
Hyderabad, India, 2007. pp. 286-291. (Preliminary paper in Proc.
17th Int Work.p on Principles of Diagnosis DX’06, Penaranda de
Duero, Spain, 2006.

T.Eiter, W. Faber, N.Leone: A logic programming approach to
knowledge-state planning, II: The DlvK system. Artificial
Intelligence, vol.144, p.157-211, 2003.

G. Friedrich. Model-based diagnosis and repair. AI
Communications, Vol. 6(3/4), Sept./Dec. 1993.

I. Grosclaude. Model-based monitoring of component-based
software systems, Proc. 15th Int. Work. on Principles of
Diagnosis DX’04, Carcassonne, France, pp. 155-160, 2004.

W. Hamscher, L. Console, J. de Kleer, Readings in Model-Based
Diagnosis, Morgan Kaufmann, 1992.

P. Huy Tu, T. Cao Son: Reasoning and Planning with Sensing
Actions, Incomplete Information, and Static Casual Laws using
Answer Set Programming. Logic Programming and
Nonmonotonic Reasoning, Springer, pp. 261-274, 2004.

W. Mayer, M. Stumptner, F. Wotawa. Model-Based Debugging
or How to Diagnose Programs Automatically, Proc. IEA/AIE
2002, Cairns, Australia, Springer LNAI, pp. 746-757, 2002

W. Mayer, M. Stumptner. Debugging Failures in Web Services
Coordination, in Proc. 17th Int. Work. on Principles of Diagnosis
DX’06, Penaranda de Duero, Spain, pp. 171-178, 2006.

B. Peischl, J. Weber, F. Wotava: Runtime fault detection and
localization in component-oriented software systems, in Proc.
17th Int Work. on Principles of Diagnosis DX’06, Penaranda de
Duero, Spain, pp. 195-203, 2006.

Peltz C., Web Service Orchestration and Choreography, IEEE
Computer, vol. 36, no. 10, 46-52, October 2003.

R. Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, Vol. 32 (1), 1987, pp. 57-95.

M. Stumptner, F. Wotawa: Modeling Java Programs for
Diagnosis, In Proc. ECAI 2000, pp. 171-175.

DX-07, Nashville, TN, USA May 29-31, 2007

250

